MSC-CS

CRYPTOGRAPHY
&
NETWORK SECURITY

UNIT - 4



Unit-4: Other Public — Key Cryptosystems:

Hellman Key Exchange- Elgamal Cryptographic
System- Elliptic Curve Arithmetic — Elliptic Curve
Cryptography

Digital Signatures:

Digital Signatures- Elgamal Digital Signature
Scheme - Schnorr Digital Signature Scheme- NIST
Digital Signature Algorithm — Elliptic Curve Digital

Signature Algorithm



Diffie-Hellman Key Exchange

~ first public-key type scheme proposed

- by Diffie & Hellman in 1976 along with the
exposition of public key concepts

- IS a practical method for public exchange
of a secret key

~ Used In a number of commercial products



Diffie-Hellman Key Exchange

- a public-key distribution scheme

» Cannot be used to exchange an arbitrary message
o rather it can establish a common key.

» Known only to the two participants

- value of key depends on the participants (and
thelr private and public key: information)

~ based on exponentiation in a finite (Galois) field
(modulo a prime or a polynomial) - easy

~ security relies on the difficulty: ofi computing
discrete logarithms (similar te factering) — hard



Discrete Logs

Given b — ax(HDd q)

We denote this as x = Log (b)(mod q)

Why is this hard?



Diffie-Hellman Setup

~ all users agree on global parameters:

o large prime integer or polynomial ¢

o a being a primitive root mod g

~ each user (eg. A) generates their key

« Chooses a secret key (number): x, < g

. compute their public key: v, = a * mod g
— each user makes public that key: v,



Diffie-Hellman Key Exchange

-~ shared session key for users A & B IS Kug:

2A 5B

Kig = 2 mod g
= v, ©° mod g (which B can compute)
— y. * mod g (which A can compute)

- Kag IS USed as session key in private-key
encryption scheme between Alice and Bob

~ It Alice and Bob subsequently communicate,
they will have the same key as before, unless
they choose new public-keys

- attacker needs an x, must selve discrete log



User A

Generate

random X, < q.
Calculate

Y, = a® modg

Calculate
K= (Yp)* modg

User B

Generate

random Xz < ¢t
Calculate

Y= axB mod q.
Calculate

K = (Y,)*s mod g




Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime g=353 and a=3

- select random secret keys:

« A chooses x,=97, B chooses x.=233

compute respective publlc Keys:
—3 mod 353 = 40 (Alice)
. yB—S mod 353 = 248 (Bob)
-~ compute shared session key as:
e K.o— v, " mod 353 = 248 = 160 (Alice)
e K,.= v, ° mod 353 = 40" = 160 (Bob)



Key Exchange Protocols

- users could create random private/public
D-H keys each time they communicate

~ uUsers could create a known private/public
D-H key and publish in a directory, then
consulted and used to securely
communicate with them

- both of these are vulnerable to a meet-in-
the-Middle Attack

- authentication of the keys Is needead



Man-in-the-middle attack on Diffie-Hellman

Darth prepares for the attack by generating two random private
keys X5, and X5, and then computing the corresponding public
keys Yy.=a”*p; mod q and Yy, =a X5, mod g

Alice transmits Y/, to Bob.

Darth intercepts Y, but transmits Y, to Bob. Darth also calculates
K2 = (Y,4) *pomod q.

Bob receives Y, and calculates K1 = (Yy,)*g mod q.

Bob transmits Y to Alice.

Darth intercepts Yy but transmits Y, to Alice. Darth calculates
Kl =(Y:s) 25, mod q.

Alice receives Y, and calculates K2 = (Y p,) 4 mod q.

Allice and Bob think they share a secret key, but actually Bob and
Darth share K1, and Alice and Darth share K2.



ElGamal Cryptosystem

~ Another public-key cryptosystem like RSA.
- Bob publishes (o, p, B), where 1 <m < p
and p=02

~ Alice chooses secret k, computes and
sends to Bob the pair (r,t) where

o =0 (Mod p)

o t=p"m (mod p)

- Bob calculates: tri=m (mod p)
> Why does this decrypt?



ElGamal Cryptosystem

Bob publishes (o, p, 3), where 1
<M < p and p=0?

Alice chooses secret K,
computes and sends to Bob
the pair (r,t) where

» r=0f (mod p)
« t=[m (modp)

Bob finds: tr2=m (mod p)
Why does this work?

Multiplying m by % scrambles it.

Eve sees a, p, 3, I, t. If she only
knew a or k!

» Knowing a allows decryption.

» Knowing k also allows decryption.
Why?

Can't find k from r or:t. Why?



Elliptic curve Arithmetic

majority of public-key crypto (RSA, D-H)
use either integer or polynomial arithmetic
with very large numbers/polynomials

- Imposes a significant load in storing and
processing keys and messages

~ an alternative Is to use elliptic curves
offers same security with smaller bit sizes
newer, but not as well analysed



Abelian Group

- A set of elements G and operation *
among elements (G,*) with some
AXIomS:

e (A1) Closure: 0 a,b 0 G, a*b 0 G

o (A2) associative law: (a*b) *c = a* (b*c)
(A3) has identity e: e*a = a*e = a

e (A4) has inverses a . a*a ! = e
(AS) commutative law a*b = b*a




Operations

It the operation * IS x, and we perform all
operations mod @,

axax..xa=a‘modq

K
It the operation * Is +,

ada+ad+..+ra=ka

K



Real Elliptic Curves

- an elliptic curve Is defined by an eguation in
two variables x & Yy, with coefficients

- consider a cubic elliptic curve of form

e VP=XxX3+ax+b

« Where x,y,a,b are all real numbers

« also define zero point O

« Note: More general form of the elliptical curve
(Welerstrass equation):

V2 +axy + by =x3+cx2+dx + e
can be transformed to the form: y2 = X + ax + b
- ave addition eperation for elliptic curve

« geometrically sum ofi Q+R Is reflection of
intersection R



Real Elliptic Curve Example




Elliptic Curve Cryptography

P=(xp,yp), Qz(xQ’yQ)

Slope of the line between P and Q

Yo =.Xp

A=

R=P+P=2P, y,#0



Elliptic Curve Cryptography

~ ECC addition is analog of modulo multiply

~ ECC repeated addition is analog of
modulo exponentiation

~ need "hard” problem equiv to discrete log

« O= kP = P+P+..+P, Where Q, P belong to a
prime curve

o IS "easy to compute O given k, P
o but “hard” to find 'k given 0, P
o KNnown as the elliptic curve logaritnm problem



Finite Elliptic Curves

- Elliptic curve cryptography uses curves
whose variables & coefficients are finite

have two families commonly used:

o prime curves E_ (a,b) defined over Zp
* Use Integers modulo a prime
* best in software
o binary curves k., (a, b) defined over GF(2")

* Use polynomials with binary coefficients
* best in hardware



Certicom
example:
Bos (U

All operations
work mod 23.

Not all values for
X and y satisfy

o For x=9, only

—_— g W A A O =] OC

e
-

\




ECC Diffie-Hellman

~ can do key exchange analogous to D-H
- users select a suitable curve £ (a, b)

- select base point G= (x,, v,)
« With large order n s.t. nG=0

- A & B select private keys n,<n, n.<n
~ compute public keys: P,=n,G, P.=n.G
- compute shared key: K=n,P., K=n_P,
s SAMe Since K=n,n.G



ECC Encryption/Decryption

~ several alternatives, will consider simplest

~ must first encode any message M as a point on
the elliptic curve P,

-~ select suitable curve & point G as in D-H

- each user chooses private key n,<n

- and computes public key P,=n,G

- toencrypt P, : C ={kG, P _+kP,},Krandom
-~ decrypt G, compute:

P orkR —n (kG) = Pork(n,G) —n,(k6) = F

I



ECC Security

-~ relies on elliptic curve logarithm problem
fastest method is “Pollard rho method”

compared to factoring, can use much
smaller key sizes than with RSA etc

~ for equivalent key lengths computations
are roughly equivalent

- hence for similar security ECC offers
significant computational advantages



Comparable Key Sizes for
Equivalent Security

Symmetric ECC-based RSA/DSA
scheme scheme (modulus size in
(key size in bits) | (size of #n in bits) bits)
56 112 512
80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 312 15360




Legal use of ECC

A lot of ECC technigues are patented by
the company Certicom

NSA bought some patents from them and
made the royalty free via NIST
standardisation



