

Dr. M. Durairaj Associate Professor School of Computer Science, Engineering and Applications Bharathidasan Univerisity

Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

Learning

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

 Build a model that is a good and useful approximation to the data.

Machine Learning

- It is very hard to write programs that solve problems like recognizing a face.
 - We don't know what program to write because we don't know how our brain does it.
 - Even if we had a good idea about how to do it, the program might be horrendously complicated.
- Instead of writing a program by hand, we collect lots of examples that specify the correct output for a given input.
- A machine learning algorithm then takes these examples and produces a program that does the job.
 - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
 - If we do it right, the program works for new cases as well as the ones we trained it on.

What is Machine Learning?

- Machine Learning
 - Study of algorithms that
 - □ improve their performance
 - at some task
 - with experience
- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

Growth of Machine Learning

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - Computational biology
- This trend is accelerating
 - Improved machine learning algorithms
 - Improved data capture, networking, faster computers
 - Software too complex to write by hand
 - New sensors / IO devices
 - Demand for self-customization to user, environment
 - It turns out to be difficult to extract knowledge from human experts → failure of expert systems in the 1980's.

Some more examples of tasks that are best solved by using a learning algorithm

Recognizing patterns:

- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images
- Generating patterns:
 - Generating images or motion sequences (demo)

Recognizing anomalies:

- Unusual sequences of credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant or unusual sound in your car engine.

Prediction:

Future stock prices or currency exchange rates

Applications

- Association Analysis
- Supervised Learning
 - Classification
 - Regression/Prediction
- Unsupervised Learning
- Reinforcement Learning

Learning Associations

Basket analysis:

P(Y|X) probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF *income* > θ_1 AND *savings* > θ_2 THEN low-risk ELSE high-risk Model

Classification: Applications

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Medical diagnosis: From symptoms to illnesses
- Web Advertizing: Predict if a user clicks on an ad on the Internet.

Face Recognition

Training examples of a person

Test images

AT&T Laboratories, Cambridge UK http://www.uk.research.att.com/facedatabase.html

Prediction: Regression

x: milage

Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

Supervised Learning: Uses

Example: decision trees tools that create rules

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Other applications: Summarization, Association Analysis
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Reinforcement Learning

Topics:

- Policies: what actions should an agent take in a particular situation
- □ Utility estimation: how good is a state (\rightarrow used by policy)
- No supervised output but delayed reward
- Credit assignment problem (what was responsible for the outcome)
- Applications:
 - Game playing
 - Robot in a maze
 - Multiple agents, partial observability, ...

Resources: Datasets

UCI Repository:

http://www.ics.uci.edu/~mlearn/MLRepository.html

- UCI KDD Archive: <u>http://kdd.ics.uci.edu/summary.data.application.html</u>
- Statlib: <u>http://lib.stat.cmu.edu/</u>
- Delve: <u>http://www.cs.utoronto.ca/~delve/</u>

Resources: Journals

- Journal of Machine Learning Research <u>www.jmlr.org</u>
- Machine Learning
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association
- **...**

Resources: Conferences

- International Conference on Machine Learning (ICML)
- European Conference on Machine Learning (ECML)
- Neural Information Processing Systems (NIPS)
- Computational Learning
- International Joint Conference on Artificial Intelligence (IJCAI)
- ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
- IEEE Int. Conf. on Data Mining (ICDM)

Summary COSC 6342

- Introductory course that covers a wide range of machine learning techniques—from basic to state-of-the-art.
- More theoretical/statistics oriented, compared to other courses I teach → might need continuous work not "to get lost".
- You will learn about the methods you heard about: Naïve Bayes', belief networks, regression, nearest-neighbor (kNN), decision trees, support vector machines, learning ensembles, over-fitting, regularization, dimensionality reduction & PCA, error bounds, parameter estimation, mixture models, comparing models, density estimation, clustering centering on K-means, EM, and DBSCAN, active and reinforcement learning.
- Covers algorithms, theory and applications
- It's going to be fun and hard work

Which Topics Deserve More Coverage —if we had more time?

- Graphical Models/Belief Networks (just ran out of time)
- More on Adaptive Systems
- Learning Theory
- More on Clustering and Association Analysis

 Covered by Data Mining Course
- More on Feature Selection, Feature Creation
- More on Prediction
- Possibly: More depth coverage of optimization techniques, neural networks, hidden Markov models, how to conduct a machine learning experiment, comparing machine learning algorithms,...