
Unit I: Software Engineering

Dr. M. Durairaj
Associate Professor
School of Computer Science, Engineering and Applications,
Bharathidasan University,
Tiruchirappalli – 620 023

MCA20303:
AGILE TECHNOLOGIES

Software Engineering

Unit I : Introduction to Software Engineering
• Introduction : Nature of software, Software

Process, Software Engineering Practice, Software
Myths, Generic Process Model

• Process Models : Waterfall Model, Incremental
Models, Evolutionary Models, Concurrent Process
Model, Specialized process Models

• Personal & Team Process Models
• Agile process Models : Agile Process, Extreme

Programming (XP)

What is Software?

What are the characteristics of Software?

 Nature of Software

 Software Myths

 Software Engineering Practice

 Framework Activities

 Umbrella Activities

What is Software?

 Set of programs

 Data Structures

 Documentation :

 What are the characteristics of Software?

 Logical rather than Physical

 Software is developed or engineered, it is
not manufactured (Quality, People, Process,
Cost)

 Software does not wear out (Bathtub Curve)

 Moving towards component based
construction, however most of the software
is custom built

6

Hardware vs. Software
Hardware Software

 Manufactured
 Wears out
 Built using

components
 Relatively

simple

Developed/Engineered
 Deteriorates
 Custom built

 Complex

7

Manufacturing vs. Development

• Once a hardware product has been manufactured, it
is difficult or impossible to modify. In contrast,
software products are routinely modified and
upgraded.

• In hardware, hiring more people allows you to
accomplish more work, but the same does not
necessarily hold true in software engineering.

• Unlike hardware, software costs are concentrated in
design rather than production.

8

Wear vs. Deterioration
Hardware wears out over time

9

Wear vs. Deterioration
Software deteriorates over time

10

Software Complexity

“I believe the hard part of building software to be the
specification, design, and testing of this conceptual
construct, not the labor of representing it and testing the
fidelity of the representation”.
If this is true, building software will always be hard. There
is inherently no silver bullet.

- Fred Brooks, “No Silver Bullet”
http://www.computer.org/computer/homepage/misc/Brooks/

 Nature of Software
 Systems Software
 Applications Software
 Engineering / Scientific software
 Embedded Software
 Product Line Software
 Web Applications
 Artificial Intelligence Software
 Ubiquitous Software
 Net sourcing
 Open Source

 Software Myths

 Management Myths

 Customer Myths

 Practitioners Myth

Software Myths

 Management Myths
 We are already having a book that is full of

Standards & Procedures for building
software. It will provide my people everything
they need to know.

 If we get behind schedule, we can add more
developers & catch up.

 We can outsource the software project to a
third party. I can just relax & let that firm build
it.

Software Myths

 Customer Myths
• A general statement of objectives is
• sufficient to begin writing programs.
• We can fill in the details later
• Project requirements continually

change, but the change can be easily
accommodated because software is
flexible

Software Myths

 Practitioners Myth

• Once we write the program and get it to work our job is
done

• Until I get the program running, I have no way of
accessing its quality

• The only deliverable work product for a successful
project is the working program

• Software Engineering will make us create voluminous
& unnecessary documentation & invariably slow us
down

 Software Engineering – A layered Technology

• Software Engineering is the application
of systematic, disciplined, quantifiable

approach to the development, operation
and maintenance of software i.e. the
application of engineering to software
[IEEE definition]

17

A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

Software Engineering Layers

Quality Focus : Organizational commitment to
quality (TQM, Six Sigma)

Process : Defines a framework (Foundation
for Software Engineering)

Methods : “How to”s for building software
(Tasks)

Tools : Automated or semi-automated
support (Rational Rose, CASE
tools)

 Framework Activities

 Communication

 Planning

 Modeling

 Construction

 Deployment

20

A Process Framework
Process framework

Umbrella activities

framework activity #1

SE action #1.1

Software process

tas
k
set
s

work
tasks
work
products
QA points
milestone
s

SE action #1.2

tas
k
set
s

work
tasks
work
products
QA points
milestone
s

framework activity #2

SE action #2.1

tas
k
set
s

work
tasks
work
products
QA points
milestone
s

SE action #2.2

tas
k
set
s

work
tasks
work
products
QA points
milestone
s

Umbrella Activities

 Software Project Tracking & Control
 Risk Management
 Software Quality Assurance
 Formal Technical Reviews
 Measurement
 Software Configuration Management
 Reusability Management

Software Engineering Practice

• Practice is collection of Concepts, Principles,
Methods & Tools that a software engineer calls
upon on a daily basis.

• Practice allows Managers to manage software
projects & Software Engineers to build
computer programs.

The Essence of SE Practice

1.Understand the Problem – Communication
& Analysis
2.Plan a Solution – Modeling & Software
Design
3.Carry out the Plan – Code generation
4.Examine the Results – Testing & QA

Core Principles

1.The Reason it all Exists
2.Keep It Simple, Stupid (KISS!)
3.Maintain the Vision
4.What you Produce, others will Consume
5.Be Open to Future
6.Plan Ahead for Reuse
7.THINK

Software process model

•Attempt to organize the software life cycle by
•defining activities involved in software
production
•order of activities and their relationships

•Goals of a software process
–standardization, predictability, productivity, high
product quality, ability to plan time and budget
requirements

Code & Fix
The earliest approach

•Write code
•Fix it to eliminate any errors that have
been detected, to enhance existing
functionality, or to add new features
•Source of difficulties and deficiencies

–impossible to predict
–impossible to manage

Process Models
Prescriptive Process Models

• The Waterfall Model
• Incremental Model
• The RAD Model

Evolutionary Process Models
• The Prototyping Model
• The Spiral Model
• The Concurrent Development Model

28

The Waterfall Model

The Waterfall Model: (Payroll System)
Merits :

• It is systematic sequential approach for
Software Development

Demerits
• All Customer Requirements at the start of

project may be difficult
• Problems remain uncovered until testing

phase
• Customer patience is needed, working version

of the software is delivered too late.

30

Incremental Models: Incremental

Incremental Model: (Word Processor)

Merits :
• Less number of developers required
• All the requirements need not be known at the

beginning of the project
• Technical risks can be managed

Demerits :
• Problems remain uncovered until testing

phase
• Customer patience is needed, working version

of the software is delivered too late.

32

Incremental Models: RAD Model

The RAD Model : (Very Large Projects)

Merits :
• Project cycle time is reduced

Demerits :
• All Customer Requirements at the start of

project may be difficult
• For large projects high human resources are

required
• Risk of project failure if teams are not

committed to rapid fire action
• Problems due to improper modularization of

system
• RAD approach may mot work if high is an issue
• RAD maynot be appropriate if technical risks

are very high

Evolutionary Process Models: Need

 Software like all complex systems evolves over a
period of time.

 Target market deadlines make completion of a
comprehensive software product impossible, but a
limited version must be introduced to meet
competitive or business pressure.

 Some of the core product or system requirements are
well understood but the details of product or system
extensions have yet to be defined.

 Solution is to adapt Evolutionary Model which is
Iterative

The Prototyping Model: (Need)

• Prototyping is used when customers requirements are
fuzzy.

• OR the developer may not be sure of the efficiency of
algorithm, the adaptability of an Operating System or
the form that Human Computer interaction should
take

• But we have to throw away the prototype once the
customer requirements are clear & met for better
quality. The product must be rebuilt using software
engineering practices for long term quality.

36

Evolutionary Models: Prototyping

The Prototyping Model:

Merits:
• Prototyping helps in requirement gathering &

can be applied at any stage of the project.

Demerits:
• Customer insists to convert prototype in

working version by applying “few fixes”
• Developer may become comfortable with the

compromises done. “The-less-than-ideal-
choice” may become integral part of the system

Evolutionary Models: Spiral
Spiral Model is an evolutionary software process model
that couples the iterative nature of Prototyping with
controlled & systematic aspects of the Waterfall Model

Merits:
• Risk is considered as each iteration is made
• Spiral Model can be applied throughout the life of

the computer software.

Demerits:
• It is difficult to convince customers that the

evolutionary approach is controllable
• Considerable risk assessment expertise required
• If major risk is uncovered, problems will occur

Concurrent Development Model:
The concurrent Development Model, sometimes called

concurrent engineering can be represented schematically as a series
of framework activities, software engineering actions and tasks, &
their associated states. All activities exist concurrently.
Modeling activity (Example) :

Under Dev.

Awaiting Chng Under Review

Under Rev.
Baselined

Done

None

Concurrent Development Model: Contd…

Merits:
• Applicable to all types of S/W development &

provides an accurate picture of the current state of
the project.

Demerits:
• Problem to Project planning. How many No of

iterations are to be planned? Uncertainty…
• Process may fall in chaos if the evolutions occurs too

fast without a period of relaxation. On the other hand
if the speed is too slow productivity could be
affected.

• S/W processes are focussed on flexibility &
extendability, rather than on high quality.

41

Risk Exposure

Specialized Process Models:

Specialized process models use many of the characteristics
of one or more of the conventional models presented so far,
however they tend to be applied when a narrowly defined
software engineering approach is chosen. They include,

 Components based development

The Formal Methods Model

Aspect oriented software development

Components Based Development :

In this approach, Commercial Off-The-Shelf (COTS) S/W
components, developed by vendors who offer them as products are
used in the development of software. Characteristics resemble to
spiral model.

Merits:
Leads to software reuse, which provides number of

benefits
• 70% reduction in development cycle time
• 84 % reduction in project cost
• Productivity index goes up to 26.2 (Norm : 16.9)

Demerits:
Component Library must be robust.
Performance may degrade

The Formal Methods Model:
•The formal methods model encompasses a set of activities that

lead to formal mathematical specification of computer software.
• It consists of specifications, development & verification by applying

rigorous mathematical notation. Example, Clean Room S/W
Engineering (CRSE)

Merits:
Removes many of the problems that are difficult to
remove using other S/W Engg. Paradigms.
Ambiguity, Incompleteness & Inconsistency can be
discovered & corrected easily by using formal methods of
mathematical analysis.

Demerits:
Development is time consuming & expensive
 Extensive training is required
Difficult to use with technically unsophisticated customers

Aspect Oriented Software Development (AOSD):

• A set of localized features, functions & information contents
are used while building complex software.

• These localized s/w characteristics are modeled as components
(e.g. OO classes) & then constructed within the context of a
system architecture.

• Certain “concerns” (Customer required properties or areas of
technical interest) span the entire architecture i.e. Cross cutting
Concerns like system security, fault tolerance etc.

Merits:
It is similar to component based development for

aspects
Demerits:

Component Library must be robust.
Performance may degrade

46

Unified Process Model
A software process that is:

 use-case driven
 architecture-centric
 iterative and incremental

Closely aligned with the
Unified Modeling Language (UML)

47

inception

The Unified Process (UP)

48

UP Work Products

inception

49

Common Fears for
Developers

•The project will produce the wrong product.
•The project will produce a product of inferior
quality.
•The project will be late.
•We’ll have to work 80 hour weeks.
•We’ll have to break commitments.
•We won’t be having fun.

50

The Manifesto for Agile
Software

Development

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

-- Kent Beck et al.

“We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

That is, while there is value in the items on the right, we value the
items on the left more.”

51

What is “Agility”?
•Effective (rapid and adaptive) response to change
•Effective communication among all stakeholders
•Drawing the customer onto the team
•Organizing a team so that it is in control of the work
performed

Yielding …

•Rapid, incremental delivery of software

52

An Agile Process
•Is driven by customer descriptions of what
is required (scenarios)
•Recognizes that plans are short-lived
•Develops software iteratively with a heavy
emphasis on construction activities
•Delivers multiple ‘software increments’
•Adapts as changes occur

53

Principles of Agility

•Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
•Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.
•Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter time scale.
•Business people and developers must work together daily
throughout the project.

54

Principles of Agility

•Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.
•The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.
•Working software is the primary measure of progress.
•Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

55

Principles of Agility

•Continuous attention to technical excellence and good
design enhances agility.
•Simplicity - the art of maximizing the amount of work
not done - is essential.
•The best architectures, requirements, and designs
emerge from self-organizing teams.
•At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

56

Extreme Programming (XP)
•The most widely used agile process, originally
proposed by Kent Beck
•XP Planning

–Begins with the creation of user stories
–Agile team assesses each story and assigns a cost
–Stories are grouped to for a deliverable increment
–A commitmentt is made on delivery date
–After the first increment project velocity is used to help
define subsequent delivery dates for other increments

57

Extreme Programming (XP)
•XP Design

–Follows the KIS principle
–Encourage the use of CRC cards (see Chapter 8)
–For difficult design problems, suggests the creation of spike
solutions — a design prototype
–Encourages refactoring — an iterative refinement of the
internal program design

•XP Coding
–Recommends the construction of a unit test for a store before
coding commences
–Encourages pair programming

•XP Testing
–All unit tests are executed daily
–Acceptance tests are defined by the customer and executed to
assess customer visible functionality

58

Extreme Programming (XP)

59

Other Agile Processes

•Adaptive Software Development (ASD)
•Dynamic Systems Development Method
(DSDM)
•Scrum
•Crystal
•Feature Driven Development
•Agile Modeling (AM)

PSP and TSP
• PSP is a high-maturity process framework for

individuals
•TSP addresses high-maturity practices for teams

of PSP-trained engineers
• PSP & TSP provide a set of “Hows” to the CMM’s

“Whats”
• PSP & TSP get individuals and teams more

involved in process improvement
• PSP & TSP are sometimes referred to as Level 5

processes for individuals and team

THE PSP PHILOSOPHY

• Use effective methods
• Recognize strengths and weaknesses
• Practice, practice, practice
• Learn from history
• Find and learn new methods
• Practice software development as an

engineering discipline rather than craft

What is the PSP?

• The PSP is a set of practices that engineers can apply
to most structured personal tasks to improve
predictability, quality, & productivity

• The PSP as taught contains one set of methods that
can be effective for many

– An excellent starting point, but not expected to
be a “one size fits all” process

• Currently, few engineers practice the best available
methods, negatively impacting chances of project
success—PSP addresses this

What does PSP Developer DO
• Tracks basic development process data

– Size, time, defects, and task completion
– Time & defects are tracked by phase, e.g., planning,

design, code, personal reviews, test, postmortem
• Uses data derived from the basic data for process

management and improvement
• Plans using historical data and tracks progress

– “PROBE” (PROxy Based Estimating) estimating
– “Earned Value” scheduling & tracking
– Quality planning

• “Builds in” Quality
– Produces verifiable designs
– Conducts structured personal design and code reviews

• Improves development process using data

What is the TSP?
The TSP strategy is to improve performance from the bottom up. This strategy
starts with PSP training.

Team Member Skills
Process discipline
Performance measures
Estimating and planning skills
Quality management skills

Team Building
Goal setting
Role assignment
Tailored team process
Detailed and balanced plans

Team Management
Team communication
Team coordination
Project tracking
Risk analysis
PSP TSP

Make CMM Level 5 behavior normal and expected

What does TSP Developer DO

• Developers use PSP practices for their personal work
• For each development phase (2-4 months), the team

– Conducts a team “launch” to come to a common
understanding of the project & to develop detailed
plans

– Tracks progress against schedule and quality weekly,
adjusts plans, and takes immediate action if necessary to
ensure commitments will be met

– Uses team-level data the same way as developers use
their individual data to assess schedule and quality

• Quality data, Software inspections, Time on Task,
Earned value , etc.

– Conducts Postmortems to improve development process

Process Patterns
•A Process pattern provides us with a template
which provides a consistent method for describing
an important characteristics of the software
process
• Thus software process can be defined as a
collection of patterns that define a set of activities,
actions, work tasks, work products and related
behaviors required to develop computer software.
• By combining patterns, a software team can
construct a process that best meets the needs of a
project.
• Patterns can be defined at any level of
abstraction – Complete process, framework
Activity, Umbrella activity, SE action or a task

Process Patterns Template
Item Contents

Pattern Name Meaningful Name of pattern

Intent Objective of pattern

Type Task, SE action, Framework activity, Umbrella
activity etc

Initial Context Applicable Pre-requisites

Problem Problem Definition

Solution Solution to the problem / process

Resulting Context S/W Engg. Info. & Project info. Generated
after completion

Related Processes A list of other related process patterns

Known Uses Where it is useful & Examples where it has
been used

Applied Software Project Management

Software Requirement Analysis

Unit II

Dr M. Durairaj
Associate Professor

School of Computer Science, Engineering and Applications
Bharathidasan University

1

Applied Software Project Management

Software Requirements

• Software requirements are documentation that completely
describes the behavior that is required of the software-before
the software is designed built and tested.
– Requirements analysts (or business analysts) build software

requirements specifications through requirements elicitation.
• Interviews with the users, stakeholders and anyone else whose

perspective needs to be taken into account during the design,
development and testing of the software

• Observation of the users at work
• Distribution of discussion summaries to verify the data gathered in

interviews

2

Applied Software Project Management

Discussion Summary
• A requirements analyst can use a

discussion summary to
summarize information gathered
during elicitation and validate it
through a review.

• Notes gathered during the
elicitation should fit into the
discussion summary template

• The discussion summary outline
can serve as a guide for a novice
requirements analyst in leading
interviews and meetings

Discussion Summary outline

1. Project background
a) Purpose of project
b) Scope of project
c) Other background information

2. Perspectives
a) Who will use the system?
b) Who can provide input about the

system?
3. Project Objectives

a) Known business rules
b) System information and/or diagrams
c) Assumptions and dependencies
d) Design and implementation constraints

4. Risks
5. Known future enhancements
6. References
7. Open, unresolved or TBD issues

3

Applied Software Project Management

Use Cases

• A use case is a description of a specific interaction that a user
may have with the system.

• Use cases are deceptively simple tools for describing the
functionality of the software.
– Use cases do not describe any internal workings of the software, nor

do they explain how that software will be implemented.
– They simply show how the steps that the user follows to use the

software to do his work.
– All of the ways that the users interact with the software can be

described in this manner.

4

Applied Software Project Management

Functional Requirements

• Functional requirements define the outward
behavior required of the software project.
– The goal of the requirement is to communicate the needed

behavior in as clear and unambiguous a manner as
possible.

– The behavior in the requirement can contain lists, bullets,
equations, pictures, references to external documents, and
any other material that will help the reader understand
what needs to be implemented.

5

Applied Software Project Management

Nonfunctional Requirements

• Nonfunctional requirements define characteristics of the
software which do not change its behavior.
– Users have implicit expectations about how well the software will

work.
– These characteristics include how easy the software is to use, how

quickly it executes, how reliable it is, and how well it behaves when
unexpected conditions arise.

– The nonfunctional requirements define these aspects about the
system.

• The nonfunctional requirements are sometimes referred to as “non-
behavioral requirements” or “software quality attributes”

6

Applied Software Project Management

Software Requirements Specification

• The software requirements specification (SRS) represents a
complete description of the behavior of the software to be
developed.

• The SRS includes:
– A set of use cases that describe all of the interactions that the users

will have with the software.
– All of the functional requirements necessary to define the internal

workings of the software: calculations, technical details, data
manipulation and processing, and other specific functionality that
shows how the use cases are to be satisfied

– Nonfunctional requirements, which impose constraints on the design
or implementation (such as performance requirements, quality
standards or design constraints).

7

Applied Software Project Management

Requirements vs. Design

• Many people have difficulty understanding the
difference between scope, requirements and design.
– Scope demonstrates the needs of the organization, and is

documented in a vision and scope document
– Requirements document the behavior of the software that

will satisfy those needs
– Design shows how those requirements will be

implemented technically

8

Applied Software Project Management

Change Control

• Change control is a method for implementing only
those changes that are worth pursuing, and for
preventing unnecessary or overly costly changes
from derailing the project.
– Change control is an agreement between the project team

and the managers that are responsible for decision-making
on the project to evaluate the impact of a change before
implementing it.

– Many changes that initially sound like good ideas will get
thrown out once the true cost of the change is known.

9

Applied Software Project Management

Change Control

• A change control board (CCB) is made up of the decision-
makers, project manager, stakeholder or user representatives,
and selected team members.
– The CCB analyzes the impact of all requested changes to the software

and has the authority to approve or deny any change requests once
development is underway.

– Before the project begins, the list of CCB members should be written
down and agreed upon, and each CCB member should understand
why the change control process is needed and what their role will be
in it.

10

Applied Software Project Management

Change Control

• Whenever a change is needed, the CCB follows the
change control process to evaluate the change:
– The potential benefit of the change is written down, and

the project manager works with the team to estimate the
potential impact that the change will have on the project.

– If the benefit of the change is worth the cost, the project
manager updates the plan to reflect the new estimates.
Otherwise, the change is thrown out and the team
continues with the original plan.

– The CCB either accepts or rejects the change.

11

UNIT-III: UNDERSTANDING XP

Dr. M. Durairaj

Associate Professor, Bharathidasan University

Introduction/Course Description

 Introduction
 The XP Lifecycle

 The XP Team

 XP Concepts

 Adopting XP:
 Is XP Right for US? Go!
 Assess Your Agility

The XP Team
Working solo on your own project—“scratching your own itch”—can be a lot of fun. There
are no questions about which features to work on, how things ought to work, if the
software works correctly, or whether stakeholders are happy. All the answers are right
there in one brain.

Team software development is different. The same information is spread out among many
members of the team. Different people know:

 • How to design and program the software (programmers, designers, and architects)

 • Why the software is important (product manager)

 • The rules the software should follow (domain experts)

 • How the software should behave (interaction designers)

 • How the user interface should look (graphic designers)

 • Where defects are likely to hide (testers)

 How to interact with the rest of the company (project manager)

 • Where to improve work habits (coach)

All of this knowledge is necessary for success.

The Whole Team

 XP teams sit together in an open workspace.

 At the beginning of each iteration, the team meets for a series of activities: an
iteration demo, a retrospective, and iteration planning.

 These typically take two to four hours in total. The team also meets for daily
stand-up meetings, which usually take five to ten minutes each.

 Other than these scheduled activities, everyone on the team plans his own work.

 That doesn’t mean everybody works independently; they just aren’t on an
explicit schedule.

 Team members work out the details of each meeting when they need to.

 Sometimes it’s as informal as somebody standing up and announcing across the
shared workspace that he would like to discuss an issue.

 This self-organization is a hallmark of agile teams.

XP Concepts

 As with any specialized field, XP has its own
vocabulary. This vocabulary distills several
important concepts into snappy descriptions. Any
serious discussion of XP (and of agile in general)
uses this vocabulary. Some of the most common
ideas follow.

 Prefer better to bigger.
 Fractional assignment is dreadfully

counterproductive.

Refactoring

 There are multiple ways of expressing the same concept
in source code.

 Some are better than others.

 Refactoring is the process of changing the structure of
code—rephrasing it—without changing its meaning or
behavior.

 It’s used to improve code quality, to fight off software’s
unavoidable entropy, and to ease adding new features.

Technical Debt

 Technical debt is the total amount of less-than-perfect design
and implementation decisions inyour project.

 This includes quick and dirty hacks intended just to get
something working right now! and design decisions that may no
longer apply due to business changes.

 Technical debt can even come from development practices such
as an unwieldy build process or incomplete test coverage.

 It lurks in gigantic methods filled with commented-out code and
“TODO: not sure why this works” comments.

 These dark corners of poor formatting, unintelligible control
flow, and insufficient testing breed bugs like mad.

Timeboxing

 Some activities invariably stretch to fill the available time.

 There’s always a bit more polish you can put on a program or a bit more design
you can discuss in a meeting.

 Yet at some point you need to make a decision.

 At some point you’ve identified as many options as you ever will.

 Recognizing the point at which you have enough information is not easy.

 If you use timeboxing, you set aside a specific block of time for your research or
discussion and stop when your time is up, regardless of your progress.

 This is both difficult and valuable.

 It’s difficult to stop working on a problem when the solution may be seconds away.

 However, recognizing when you’ve made as much progress as possible is an
important time-management skill.

 Timeboxing meetings, for example, can reduce wasted discussion.

The Last Responsible Moment

 XP views a potential change as an opportunity to exploit; it’s the chance to learn something

 significant.

 This is why XP teams delay commitment until the last responsible moment.*

 Note that the phrase is the last responsible moment, not the last possible moment.

 As [Poppendieck & Poppendieck] says, make decisions at “the moment at which failing to make
a decision eliminates an important alternative.

 If commitments are delayed beyond the last responsible moment, then decisions are made by
default, which is generally not a good approach to making decisions.”

 By delaying decisions until this crucial point, you increase the accuracy of your decisions,
decrease your workload, and decrease the impact of changes.

 Why? A delay gives you time to increase the amount of information you have when you make
a decision, which increases the likelihood it is a correct decision.

 That, in turn, decreases your workload by reducing the amount of rework that results from
incorrect decisions.

 Changes are easier because they are less likely to invalidate decisions or incur additional

Stories

 Stories represent self-contained, individual elements of the
project.

 They tend to correspond to individual features and typically
represent one or two days of work.

 Stories are customer-centric, describing the results in terms
of business results.

 They’re not implementation details, nor are they full
requirements specifications.

 They are traditionally just an index card’s worth of
information used for scheduling purposes.

Iterations

 An iteration is the full cycle of design-code-verify-
release practiced by XP teams.

 It’s a timebox that is usually one to three weeks
long.

 Each iteration begins with the customer selecting
which stories the team will implement during the
iteration, and it ends with the team producing
software that the customer can install and use.

Velocity

 In well-designed systems, programmer estimates of
effort tend to be consistent but notaccurate.

 Programmers also experience interruptions that prevent
effort estimates from corresponding to calendar time.

 Velocity is a simple way of mapping estimates to the
calendar.

 It’s the total of the estimates for the stories finished in
an iteration.

Theory of Constraints
 [Goldratt 1992]’s Theory of Constraints says,in part, that every system has a single

constraint
 that determines the overall throughput of the system.
 This book assumes that programmers are the constraint on your team.
 Regardless of how much work testers and customers do, many software teams can

only complete their projects as quickly as the programmers can program them.
 If the rest of the team outpaces the programmers, the work piles up, falls out of

date and needs reworking, and slows the programmers further.
 Therefore, the programmers set the pace, and their estimates are used for planning.
 As long as the programmers are the constraint, the customers and testers will have

more slack in their schedules, and they’ll have enough time to get their work done
before the programmers need it.

Mindfulness
 Agility—the ability to respond effectively to change—requires that everyone

pay attention to the process and practices of development.

 This is mindfulness.

 Sometimes pending changes can be subtle.

 You may realize your technical debt is starting to grow when adding a new
feature becomes more difficult this week than last week.

 You may notice the amount and tone of feedback you receive from your
customers change.

 XP offers plenty of opportunities to collect feedback from the code, from your
coworkers, and from every activity you perform.

 Take advantage of these.

 Pay attention.

 See what changes and what doesn’t, and discuss the results frequently.

Adopting XP

 “I can see how XP would work for IT projects, but product
development is different.” —a product development team

 “I can see how XP would work for product development, but
IT projects are different.” —an in-house IT development
team

 Before adopting XP, you need to decide whether it’s
appropriate for your situation.

 Often, people’s default reaction to hearing about XP is to
say, “Well, of course that works for other teams, but it
couldn’t possibly work for us.”

Is XP Right for Us?

 You can adopt XP in many different conditions, although
the practices you use will vary depending on your
situation.

 The practices in this book were chosen to give you the
greatest chance of success.

 That leads to some prerequisites and recommendations
about your team’s environment.

 You don’t have meet these criteria exactly, but it’s worth
trying to change your environment so that you do.

 This will give you the best chance of succeeding.

UNIT-IV
PRACTICING XP

Dr. M. Durairaj
Bharathidasan University

Practicing XP
A. Thinking

B. Collaborating

C. Releasing

D. Planning

E. Developing

COLLABORATING
1. Trust
2. Sit Together
3. Real Customer
4. Ubiquitous Language
5. Stand-Up Meetings
6. Coding Standards
7. Iteration Demo
8. Reporting

Trust
• Team Strategy 1 – Customer-Programmer Empathy

• Team Strategy 2 – Programmer-Tester Empathy

• Team Strategy 3 – Eat Together

• Team Strategy 4 – Team Continuity

• Impressions

• Organizational Strategy 1 :

• Show Some Hustle

• Organizational Strategy 2 :

• Deliver on Commitments

• Organizational Strategy 3 :
• Manage Problems
• Organizational Strategy 4 :
• Respect Customer Goals
• Organizational Strategy 5 :
• Promote the Team
• Organizational Strategy 6 :
• Be Honest

Sit Together
• Accommodating Poor Communication

• A Better Way

• Exploiting Great Communication

• Secrets of Sitting Together

• Making Room

• Designing Your Workspace

• Sample Workspaces

• Adopting an Open Workspace

Real Customer Involvement
• Personal Development

• In-House Custom Development

• Vertical-Market Software

• Horizontal-Market Software

Ubiquitous Language
You need a ubiquitous language to explain business

logic to a nonprogrammer domain expert.
• The Domain Expertise Conundrum

• Two Languages

• How to Speak the Same Languages

• Ubiquitous Language in Code

• Refining the Ubiquitous Language

Stand-Up Meetings
• We know what our teammates are doing.
• I have a special antipathy for status meetings.
• You know—a manager reads a list of tasks and asks about each

one in turn.
• They seem to go on forever, although my part in them is typically

only five minutes.
• I learn something new in perhaps 10 of the other minutes.
• The remaining 45 minutes are pure waste.
• There’s a good reason that organizations hold status meetings:

people need to know what’s going on.
• XP projects have a more effective mechanism: informative

workspaces and the daily stand-up meeting.
• How to Hold a Daily Stand-Up Meeting
• Be Brief

Coding Standards
• Beyond Formatting

• How to Create a Coding Standard

• Dealing with Disagreement

• Adhering to the Standard

Iteration Demo
It is a powerful way to show off your work, and stakeholders
are happy to see product.
• How to Conduct an Iteration Demo

• Two Key Questions

• Weekly Deployment Is Essential

Reporting
• Types of Reports
• Progress Reports to Provide

• Vision Statement
• Weekly demo
• Release and iteration plans
• Burn-up chart

• Progress Reports to Consider
• Roadmap
• Status email

• Management Reports to Consider
• Productivity
• Throughput
• Defects
• Time usage

• Reports to Avoid
• Source lines of code (SLOC) and function points
• Number of stories
• Velocity
• Code quality

RELEASING

1. “Done Done”

2. No Bugs

3. Version Control

4. Ten-Minute Build

5. Continuous Integration

6. Collective Code Ownership

7. Documentation

What is the value of code? Agile developers value “working software over
comprehensive documentation.”* Does that mean a requirements document
has no value? Does it mean unfinished code has no value?

1. "done done" ensures that completed work is ready to
release.

2. No bugs allows you to release your software without a
separate testing phase.

3. Version control allows team members to work together
without stepping on each other’s toes.

4. A ten-minute build builds a tested release package in
under 10 minutes.

5. Continuous integration prevents a long, risky integration
phase.

6. Collective code ownership allows the team to solve
problems no matter where they may lie.

7. Post-hoc documentation decreases the cost of
documentation and increases its accuracy.

PLANNING
1. Vision
2. Release Planning
3. The Planning Game
4. Risk Management
5. Iteration Planning
6. Slack
7. Stories
8. Estimating

1. Vision reveals where the project is going and why it’s going
there.

2. Release Planning provides a roadmap for reaching your
destination.

3. The Planning Game combines the expertise of the whole
team to create achievable plans.

4. Risk Management allows the team to make and meet
long-term commitments.

5. Iteration Planning provides structure to the team’s daily
activities.

6. Slack allows the team to reliably deliver results every iteration.

7. Stories form the line items in the team’s plan.

8. Estimating enables the team to predict how long its work will
take.

DEVELOPING
1. Incremental Requirements allows the team to get

started while customers work out requirements details.

2. Customer Tests help communicate tricky domain rules.

3. Test-Driven Development allows programmers to be
confident that their code does what they think it should.

4. Refactoring enables programmers to improve code
quality without changing its behavior.

5. Simple Design allows the design to change to support
any feature request, no matter how surprising.

Contd..
8. Incremental Design and Architecture allows

programmers to work on features in parallel with
technical infrastructure.

9. Spike Solutions use controlled experiments to provide
information.

10. Performance Optimization uses hard data to drive
optimization efforts.

11. Exploratory Testing enables testers to identify gaps in
the team’s thought processes.

D R . M . D U R A I R A J

B H A R A T H I D A S A N U N I V E R S I T Y

Unit – V
Deliver Value

Deliver Value :Deliver Value : Seek Technical Excellence :Seek Technical Excellence :

 Exploit Your Agility,

 Only Releasable Code Has
Value,

 Deliver Business Results,

 Deliver frequently,

 Software Doesn’t Exist,
 Design Is for

Understanding,
 Design Trade-offs,
 Quality with a Name,
 Great Design,
 Universal Design

Principles,
 Principles in Practice,
 Pursue Mastery

Unit V -Deliver Value

Deliver Value

 Your software only begins to have real value when
it reaches users.

 Only at that point do you start to generate trust, to
get the most important kinds of feedback, and to
demonstrate a useful return on investment.

 That’s why successful agile projects deliver value
early, often, and repeatedly.

o Exploit Your Agility

 Simplicity of code and process are aesthetically
pleasing.

 Yet there’s a more important reason why agility helps
you create great software:

 it improves your ability to recognize and take advantage of new
opportunities.

 If you could predict to the hour how long your project
would take, know what risks would and wouldn’t
happen, and completely eliminate all surprises, you
wouldn’t need agility

 —you would succeed with any development method.

 In Practice
 XP exploits agility by removing the time between taking an

action and observing its results, which improves your ability to
learn from this feedback.

 This is especially apparent when the whole team sits together.

 Beyond Practices

o Only Releasable Code Has Value

 Having the best, most beautiful code in the world matters very little
unless it does what the customer wants.

 It’s also true that having code that meets customer needs perfectly has
little value unless the customer can actually use it.

 Until your software reaches the people who need it, it has only potential
value.

 Delivering actual value means delivering real software.

 Un-releasable code has no value.

 Working software is the primary measure of your progress.

 At every point, it should be possible to stop the project and have actual
value proportional to your investment in producing the software

 In Practice
 The most important practice is that of “done done,” where

work is either complete or incomplete.

 This unambiguous measure of progress immediately lets you
know where you stand.

 Practicing “no bugs” is a good reminder that deferring
important and specific decisions decreases the project’s
value—especially if those decisions come directly from real
customer feedback.

 Beyond Practices

o Deliver Business Results

 What if you could best meet your customer’s need without writing any
software? Would you do it? Could you do it?

 Someday that may happen to you.

 It may not be as dramatic as telling a recurring customer that he’ll get better
results if you don’t write software, but you may have to choose between
delivering code and delivering business results.

 Value isn’t really about software, after all.

 Your goal is to deliver something useful for the customer.

 The software is merely how you do that.

 The single most essential criterion for your success is the fitness of the project
for its business purposes.

 Everything else is secondary—not useless by any means, but of lesser
importance.

 In Practice
 XP encourages close involvement with actual customers by

bringing them into the team, so they can measure progress and
make decisions based on business value every day.

 Real customer involvement allows the on-site customer to
review these values with end-users and keep the plan on track.

 Their vision provides answers to the questions most important
to the project.

 Beyond Practices

o Deliver frequently

 If you have a business problem, a solution to that problem today is much more valuable
than a solution to that problem in six months—especially if the solution will be the same
then as it is now.

 Value is more than just doing what the customer needs.

 It’s doing what the customer needs when the customer needs it.

 Delivering working, valuable software frequently makes your software more valuable.

 This is especially true when a real customer promotes the most valuable stories to the
start of the project.

 Delivering working software as fast as possible enables two important feedback loops.

 One is from actual customers to the developers, where the customers use the software
and communicate how well it meets their needs.

 The other is from the team to the customers, where the team communicates by
demonstrating how trustworthy and capable it is.

 In Practice
 Once you’ve identified what the customer really needs and

what makes the software valuable, XP’s technical practices
help you achieve fast and frequent releases.

 Short iterations keep the schedule light and manageable by
dividing the whole project into week-long cycles, culminating
in a deliverable project demonstrated in the iteration demo.

 This allows you to deliver once a week, if not sooner.

 Beyond Practices

Seek Technical Excellence

 I like logical frameworks and structures.

 When I think about technical excellence, I can’t help but wonder:
“What’s the intellectual basis for design? What does it mean to have
a good design?”

 Unfortunately, many discussions of “good” design focus on specific
techniques.

 These discussions often involve assumptions that one particular
technology is better than another, or that rich object-oriented
domain models or stored procedures or service-oriented
architectures are obviously good.

 With so many conflicting points of view about what’s obviously
good, only one thing is clear:

 good isn’t obvious.

Seek Technical Excellence

 Software Doesn’t Exist

 Design Is for Understanding

 Design Trade-offs

 Quality with a Name

 Great Design

 Universal Design Principles

 Principles in Practice

 Pursue Mastery

• Software Doesn’t Exist

 Let me digress for a moment: software doesn’t exist. OK, I exaggerate—but only slightly.

 When you run a program, your computer loads a long series of magnetic fields from your
hard drive and translates them into capacitances in RAM.

 Transistors in the CPU interpret those charges, sending the results out to peripherals
such as your video card. More transistors in your monitor selectively allow light to shine
through colored dots onto your screen.

 Yet none of that is software. Software isn’t even ones and zeros; it’s magnets, electricity,
and light.

 The only way to create software is to toggle electrical switches up and down—or to use
existing software to create it for you.

 You write software, though, don’t you?

 Actually, you write a very detailed specification for a program that writes the software for
you.

 This special program translates your specification into machine instructions, then directs
the computer’s operating system to save those instructions as magnetic fields on the hard
drive.

 Once they’re there, you can run your program, copy it, share it, or whatever.

• Design Is for Understanding

 If source code is design, then what is design?

 Why do we bother with all these UML diagrams and CRC cards and discussions around a
whiteboard?

 All these things are abstractions—even source code.

 The reality of software’s billions of evanescent electrical charges is inconceivably
complex, so we create simplified models that we can understand.

 Some of these models, like source code, are machine-translatable.

 Others, like UML, are not—at least not yet.

 Early source code was assembly language: a very thin abstraction over the hardware.

 Programs were much simpler back then, but assembly language was hard to understand.

 Programmers drew flow charts to visualize the design.

 Why don’t we use flow charts anymore?

 Our programming languages are so much more expressive that we don’t need them!

 You can read a method and see the flow of control.

• Design Trade-offs

 When the engineers at Boeing design a passenger airplane, they constantly have to trade off safety, fuel
efficiency, passenger capacity, and production cost.

 Programmers rarely have to make those kinds of decisions these days.

 The assembly programmers of yesteryear had tough decisions between using lots of memory (space) or
making the software fast (speed).

 Now, we almost never face such speed/space trade-offs. Our machines are so fast and have so much
RAM that once-beloved hand optimizations rarely matter.

 In fact, our computers are so fast that modern languages actually waste computing resources.

 With an optimizing compiler, C is just as good as assembly language.

 C++ adds virtual method lookups—requiring more memory and an extra level of indirection.

 Java and C# add a complete intermediate language that runs in a virtual machine atop the normal
machine.

 Ruby* interprets the entire program on every invocation!

 How wasteful.

 So why is Ruby on Rails so popular? How is it possible that Java and C# succeed?

 What do they provide that makes their waste worthwhile?

 Why aren’t we all programming in C?

• Quality with a Name

 A good airplane design balances the trade-offs of safety, carrying capacity, fuel
consumption, and manufacturing costs.

 A great airplane design gives you better safety, and more people, for less fuel, at a
cheaper price than the competition.

 What about software? If we’re not balancing speed/space trade-offs, what are we
doing?

 Actually, there is one trade-off that we make over and over again. Java, C#, and
Ruby demonstrate that we are often willing to sacrifice computer time in order to
save programmer time and effort.

 Some programmers flinch at the thought of wasting computer time and making
“slow” programs.

 However, wasting cheap computer time to save programmer resources is a wise
design decision.

 Programmers are often the most expensive component in software development.
 If good design is the art of maximizing the benefits of our trade-offs—and if software

design’s only real trade-off is between machine performance and programmer
time—then the definition of “good software design” becomes crystal clear:

 A good software design minimizes the time required to create, modify, and maintain
the software while achieving acceptable runtime performance.

• Great Design
 Equating good design with the ease of maintenance is not a new idea, but stating it this way leads to

some interesting conclusions:

 1. Design quality is people-sensitive.
 Programmers, even those of equivalent competence, have varying levels of expertise.

 A design that assumes Java idioms may be incomprehensible to a programmer who’s only familiar with Perl, and
vice versa.

 Because design quality relies so heavily on programmer time, it’s very sensitive to which programmers are doing the
work. A good design takes this into account.

 2. Design quality is change-specific.
 Software is often designed to be easy to change in specific ways.

 This can make other changes difficult.

 A design that’s good for some changes may be bad in others.

 A genuinely good design correctly anticipates the changes that actually occur.

 3. Modification and maintenance time are more important than creation time.
 It bears repeating that most software spends far more time in maintenance than in initial development.

 When you consider that even unreleased software often requires modifications to its design, the importance of
creation time shrinks even further.

 A good design focuses on minimizing modification and maintenance time over minimizing creation time.

 4. Design quality is unpredictable.
 If a good design minimizes programmer time, and it varies

depending on the people doing the work and the changes required,
then there’s no way to predict the quality of a design.

 You can have an informed opinion, but ultimately the proof of a good
design is in how it deals with change.

 Furthermore, great designs:
 Are easy to modify by the people who most frequently work within

them
 Easily support unexpected changes
 Are easy to maintain
 Prove their value by becoming steadily easier to modify over years of

changes and upgrades

• Universal Design Principles

 In the absence of design quality measurements, there is
no objective way to prove that one design approach is
better than another.

 Still, there are a few universal principles—which seem to
apply to any programming language or platform—that
point the way.

 None of these ideas are my invention.
 How could they be? They’re all old, worn, well-loved

principles.
 They’re so old you may have lost track of them amidst the

incessant drum-beating over new fads. Here’s a
reminder.

 The Source Code Is the (Final) Design

 Don’t Report Yourself (DRY)

 Be Cohesive

 Decouple

 Clarify, Simplify, and Refine

 Fail Fast

 Optimize from Measurements

 Eliminate Technical Debt

• Principles in Practice

 These universal design principles provide good guidance, but they don’t help
with specific languages or platforms.

 Every design decision occurs in the context of the whole design—the problem
domain, other design decisions, the time schedule, other team members’
capabilities, etc.

 Context makes every piece of specific design advice suspect.

 Yes, you should listen to it—there’s a lot of wisdom out there—but exercise
healthy skepticism.

 Ask yourself, “When is this not true?” and “What is the author assuming?”

 Consider the simple and popular “instance variables must be private” design
rule.

 As one of the most widely repeated design rules, it often gets applied without
real thought.

 That’s a shame because without context, the rule is meaningless and easily
misused.

• Pursue Mastery

 A good software design minimizes the time required to create,
modify, and maintain the software while achieving acceptable
runtime performance.

 This definition, and the conclusions it leads to keep in mind
when considering a design.

 Follow some core design principles, and have some
techniques that are useful for the languages you work with.

 However, have a willing to throw away even the design
principles if they get in the way of reducing programmer time
and, most importantly, solving real customer problems.

 The same is true of agile software development.
 Ultimately, what matters is success, however you define it.

 The practices, principles, and values are merely guides along the way.

 Start by following the practices rigorously.

 Learn what the principles mean.

 Break the rules, experiment, see what works, and learn some more.

 Share your insights and passion, and learn even more.

 Over time, with discipline and success, even the principles will seem
less important.

 When doing the right thing is instinct and intuition, finely honed by
experience, it’s time to leave rules and principles behind.

 When you produce great software for a valuable purpose and pass your
wisdom on to the next generation of projects, you will have mastered
the art of successful software development.

End of Unit V

Mastering Agility
Dr. M. Durairaj
Bharathidasan University

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

1

• Commonalities
• Can any set of principles really represent agile development?
• After all, agility is just an umbrella term for a variety of methods,

most of which came about long before the term “agile” was coined.
• The answer is yes: agile methods do share common values and

principles.
• Five themes:

1. Improve the Process,
2. Rely on People,
3. Eliminate Waste,
4. Deliver Value, and
5. Seek Technical Excellence.

• Each is compatible with any of the specific agile methods.

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

2

Mastering Agility
• Values and Principles:
❖Commonalities,
❖About Values, Principles, and Practices,
❖Further Reading,

• Improve the Process:
❖Understand Your Project,
❖Tune and Adapt,
❖Break the Rules,

• Rely on People :
❖Build Effective Relationships,
❖Let the Right People Do the Right Things,
❖Build the Process for the People,

• Eliminate Waste :
❖Work in Small,
❖Reversible Steps,
❖Fail Fast,
❖Maximize Work Not Done,
❖Pursue Throughput

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

3

• Values and Principles:
• No process is perfect. Every approach to development

has some potential for improvement.
• Ultimately, your goal is to remove every barrier between

your team and the success of your project, and fluidly
adapt your approach as conditions change. That is
agility.

❖Commonalities,

❖About Values, Principles, and Practices,

❖Further Reading,

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

4

• Improve the Process:
• Agile methods are more than a list of practices to follow.
• When your team has learned how to perform them

effectively, you can become a great team by using the
practices to modify your process.

❖Understand Your Project,

❖Tune and Adapt,

❖Break the Rules,

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

5

• Rely on People :
• Agile methods put people and their interactions at the

center of all decisions.
• How can we best work together?
• How can we communicate effectively?
• Successful software projects must address these

questions.

❖Build Effective Relationships,

❖Let the Right People Do the Right Things,

❖Build the Process for the People,

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

6

• Eliminate Waste :

❖Work in Small, Reversible Steps
❖ The easiest way to reduce waste is to reduce the amount of work you may

have to throw away.
❖ Fail Fast

• Failure is another source of waste. Unfortunately, the only way to avoid
failure entirely is to avoid doing anything worthwhile.

• That’s no way to excel.
❖Maximize Work Not Done

• Simplicity is the art of maximizing the work not done.”
• This idea is central to eliminating waste. To make your process more agile, do

less.
❖ Pursue Throughput
❖ To minimize partially done work and wasted effort, maximize your throughput.

21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

7

Agility requires flexibility and a lean process, stripped to its essentials.
Anything more is wasteful. Eliminate it! The less you have to do, the less
time your work will take, the less it will cost, and the more quickly you will
deliver.

END OF THE UNIT V 21
-O

ct
-2

0
Fo

ot
er

 T
ex

t

8

