
BIG DATA ANALYTICS FRAMEWORK

UNIT III MAPREDUCE-II AND SPARK

MapReduce

MapReduce is a big data processing technique, and a model for how
to programmatically implement that technique.

Its goal is to sort and filter massive amounts of data into smaller
subsets, then distribute those subsets to computing nodes, which
process the filtered data in parallel.

Failures

✓In the real world, user code is buggy, processes crash, and machines fail.

✓One of the major benefits of using Hadoop is its ability to handle such
failures and allow your job to complete successfully.

✓We need to consider the failure of any of the following entities:

✓The task

✓The application master

✓The node manager, and

✓The resource manager.

Task Failure
The most common occurrence of this failure is when user code in the map
or reduce task throws a runtime exception.

If this happens,the task JVM reports the error back to its parent application
master before it exits.

The error ultimately makes it into the user logs. The application master
marks the task attempt as failed, and frees up the container so its resources
are available for another task.

Another failure mode is the sudden exit of the task JVM—perhaps there is a
JVM bug that causes the JVM to exit for a particular set of circumstances
exposed by the MapReduce user code. In this case, the node manager
notices that the process has exited and informs the application master so it
can mark the attempt as failed.

Hanging tasks are dealt with differently. The application master notices
that it hasn’t received a progress update for a while and proceeds to
mark the task as failed. The task JVM process will be killed
automatically after this period.

The timeout period after which tasks are considered failed is normally
10 minutes and can be configured on a per-job basis (or a cluster basis)
by setting the mapreduce.task.timeout property to a value in
milliseconds.

Application Master Failure

• Just like MapReduce tasks are given several attempts to succeed (in the face of hardware
or network failures), applications in YARN are retried in the event of failure.

• The maximum number of attempts to run a MapReduce application master is controlled
by the mapreduce.am.max-attempts property.

• The default value is 2, so if a MapReduce application master fails twice it will not be tried
again and the job will fail.

• The way recovery works is :.

• An application master sends periodic heartbeats to the resource manager, and in the
event of application master failure, the resource manager will detect the failure and
start a new instance of the master running in a new container (managed by a node
manager).

Node Manager Failure

• If a node manager fails by crashing or running very slowly, it will stop
sending heartbeats to the resource manager (or send them very
infrequently).

• The resource manager will notice a node manager that has stopped
sending heartbeats if it hasn’t received one for 10 minutes (this is
configured, in milliseconds, via the
yarn.resourcemanager.nm.liveness-monitor.expiry-interval-ms
property) and remove it from its pool of nodes to schedule containers
on.

Resource Manager Failure
• Failure of the resource manager is serious, because without it, neither

jobs nor task containers can be launched.

• In the default configuration, the resource manager is a single point of
failure, since in the (unlikely) event of machine failure, all running jobs
fail—and can’t be recovered.

• To achieve high availability (HA), it is necessary to run a pair of resource
managers in an active-standby configuration. If the active resource
manager fails, then the standby can take over without a significant
interruption to the client.

• Information about all the running applications is stored in a highly
available state store (backed by ZooKeeper or HDFS), so that the standby
can recover the core state of the failed active resource manager

Shuffle and Sort
• MapReduce makes the guarantee that the input to every reducer is

sorted by key.

• The process by which the system performs the sort—and transfers
the map outputs to the reducers as inputs—is known as the shuffle.

• The shuffle is an area of the codebase where refinements and
improvements are continually being made

• In many ways, the shuffle is the heart of MapReduce and is where
the “magic” happens.

• YARN stands for “Yet Another Resource Negotiator“. It was introduced
in Hadoop 2.0 to remove the bottleneck on Job Tracker which was
present in Hadoop 1.0.

	Slide 1: BIG DATA ANALYTICS FRAMEWORK
	Slide 2: MapReduce
	Slide 3: Failures
	Slide 4: Task Failure
	Slide 5
	Slide 6: Application Master Failure
	Slide 7: Node Manager Failure
	Slide 8: Resource Manager Failure
	Slide 9: Shuffle and Sort
	Slide 10

