
BIG DATA ANALYTICS FRAMEWORK

Unit II

Fundamentals of Hadoop 



HDFS is a distributed, fault tolerant, storage filesystem
designed to store large quantities of data (100s of TB) on a
cluster of nodes using commodity hardware



Data Replication - Creating and maintaining multiple copies of the same 

data in different locations to ensure data availability, reliability, and resilience

3

● Files stored in the HDFS are broken into blocks

● Blocks replicated across the cluster for fault tolerance, redundancy, 

and availability. 

● The default block replication is three. 

● The block replication may be set on a per-file basis.

●  The maximum block replication is 512 by default and configured 

with the dfs.replication.max property in hdfs-default.xml . 

● The minimal block replication is 1 and set with the dfs. 

namenode.replication.min property. 



Blocks are replicated for the following reasons:

● Data durability. If one block replica is lost due to machine failure or block   

corruption, data is not lost as other block replicas are available. 

● Fault-tolerance. If a block replica is lost, another block can be used and a 

client can  access another copy of the block or MapReduce application 

accessing the file is still able to access the file. Fault-tolerance provides data 

reliability.

● Data locality. Data locality is the closeness of the map input data to the map task. 

With more block replicas, data is local to more nodes. 

● Speculative execution. If a task is slow, redundant copies of the task are launched 

and the task that completes first is used. With block replicas speculative execution 

becomes feasible.



Configuring Replication 
The default block replication is configured using the configuration property 
dfs.replication in hdfs-site.

xml or hdfs-default.xml . 

 <configuration> 

 <property> 

 <name>dfs.replication</name> 

 <value>3</value> 

 </property> 

 </configuration> 



Block replication example 



NameNode keeps the block locations



The sequence followed in replicating file blocks
Step 1 :The client sends a request to create a file using the FileSystem API. 
First, a temporary internal buffer is created for the file. The client sends file 
data to the internal buffer. A client-side buffer is used to improve network 
throughput.  Without client-side buffering network speed and congestion 
reduces the throughput.

Step 2 : When the internal buffer has data equivalent to fill one block, the 
client request is forwarded to the NameNode

Step 3 :The NameNode assigns blocks and DataNodes for the configured 
number of replicas for the block and sends the block locations and DataNodes 
hosting the blocks to the client. The DataNodes and block locations are ordered 
according to their proximity from the client. 

Step 4: The block of data in the internal buffer is sent to the first DataNode in 
the pipeline in a sequence of packets



The sequence followed in replicating file blocks
Step 5 : When the first DataNode has received a packet of data and written the 
packet to its repository it forwards the packet of data to the second DataNode 
in the pipeline. 

 Step 6: The second DataNode receives block data a packet at a time and fills  
a block replica. The second DataNode forwards block data, a packet at a time,  
to the third DataNode in the pipeline. The DataNodes send acknowledgement 
message to the NameNode to indicate that they have received blocks. 



How Does HDFS Store, Read, and Write Files?
Reading a File : 

✓ To read a file from the HDFS, first obtain a FileSystem object. 

✓Create a Configuration object using the default configuration parameters. 

✓If hdfs-site.xml and hdfs-default.xml are not in the classpath, add them to the 
classpath. 



How Does HDFS Store, Read, and Write Files?
Writing a File 

 The procedure to write a file to the HDFS is similar to reading a file. First, 
obtain a FileSystem object using a Configuration object created with the 
default configuration parameters



How Does HDFS Store, Read, and Write Files?
Storing a File 

✓ HDFS stores files on DataNodes local filesystem. 

✓A file is broken into blocks and the blocks are replicated, three times by 
default and configurable with the dfs.replication configuration property. 

✓The HDFS blocks are an abstraction over the underlying filesystem. 

✓Each block is stored as a data file and a corresponding checksum file. 

✓The data files and the checksum files are stored in the DataNode’s data 
directories, which are configured in hdfs-default.xml . 



Data Serialization Options
Data serialization is the process of converting data in memory to bytes that 

are transmitted over the network or written to disk. 

Data serialization is performed at three phases of a MapReduce application .

✓ Serialization to the wire (network) for interprocess communication (IPC) 
using RPC 

✓ Serialization of intermediate map outputs locally to disk 

✓ Serialization at the reducers, which is also the MapReduce application 
output, to HDFS



Data Serialization Options
Writables -  The default serialization interface in Hadoop is 

org.apache.hadoop.io.Writable. 

✓A Writable is a serializable object that implements simple, efficient, 
serialization protocol based on DataInput and DataOutput. 

✓The DataInput interface is used to read bytes from a binary stream and 
convert to any of the Java primitive types such as short, int, double. 

✓DataInput may also be used to read a string from data in a slightly modified 
UTF8 format. 

✓The DataOutput interface is used to convert from any Java primitive types 
and outputting bytes to a binary stream



Data Serialization Options
Avro - Avro has replaced Hadoop Record I/O, which was used, but is presently 
deprecated, for simplifying serialization and deserialization of records in a 
language-neutral method. 

Avro is a schema-based serialization  framework, which stores data using Avro 
data files. 

The schema is serialized with the data file, which has the advantage of not 
having to store the type information in the data file



Data Serialization Options
Thrift 

 Thrift is a software library and a code-generation toolset developed with the 
goal to enable reliable and efficient communication across programming 
languages by providing a common library for the data types and service 
interfaces. 

All the data types and interfaces may be defined in a single language-neutral 
Thrift file to create RPC clients and servers efficiently. 

Thrift’s architecture consists of two layers in the runtime library: 

protocol layer and transport layer. 

✓The protocol layer provides the serialization and deserialization 

✓The transport layer provides the reading and writing to the network. 



Data Serialization Options
Protocol Buffers 

 Protocol buffers are a language-neutral and platform-neutral mechanism for 
serializing structured data and for interprocess communication (IPC). 

Language-neutral implies implementations for protocol buffers are available in 
all the commonly used languages such as Java, C++, PHP, and JavaScript.



Choosing a Serialization Mechanism
Serialization to the wire.

 Protocol buffers or Thrift, protocol buffers being the default. 

• Serialization of intermediate map outputs locally to disk. 

Avro or SequenceFiles 

• Serialization of output from reducers

 Writables or Avro are suitable based on other factors..



Filesystem Shell Commands for HDFS
Hadoop filesystem commands are run using the bin/hdfs script as follows. 

 hdfs  dfs  [COMMAND [COMMAND_OPTIONS]] 

 Making a Directory 

 The mkdir command is used to create one or more directories in the HDFS. 
The mkdir command is used as follows. 

 hdfs  dfs  - mkdir [-p] <paths>

Listing Files and Directories 

 The ls command lists the stats for a given file or directory. For a given 
directory, the command lists the files  and subdirectories. Its usage is as 
follows. 

 hdfs  dfs  -ls <args> 



Filesystem Shell Commands for HDFS
Putting Files in the HDFS 

 The put command is used to put files from the local filesystem, or stdin in the 
HDFS. The put command is as follows. 

 hdfs  dfs  -put  <localsrc> ... <dst>  

 Creating a File 

 The touchz command is used to create a file of zero length and has the 
following syntax. 

 hdfs dfs  -touchz   URI [URI ... 

Changing Permissions of Files, Changing Owner of Files and Directories , 
Copying Files to the Local Filesystem 


	Slide 1: BIG DATA ANALYTICS FRAMEWORK
	Slide 2
	Slide 3: Data Replication - Creating and maintaining multiple copies of the same data in different locations to ensure data availability, reliability, and resilience
	Slide 4:  
	Slide 5:  Configuring Replication 
	Slide 6: Block replication example 
	Slide 7:  NameNode keeps the block locations
	Slide 8: The sequence followed in replicating file blocks
	Slide 9: The sequence followed in replicating file blocks
	Slide 10: How Does HDFS Store, Read, and Write Files?
	Slide 11: How Does HDFS Store, Read, and Write Files?
	Slide 12: How Does HDFS Store, Read, and Write Files?
	Slide 13: Data Serialization Options
	Slide 14: Data Serialization Options
	Slide 15: Data Serialization Options
	Slide 16: Data Serialization Options
	Slide 17: Data Serialization Options
	Slide 18: Choosing a Serialization Mechanism
	Slide 19: Filesystem Shell Commands for HDFS
	Slide 20: Filesystem Shell Commands for HDFS

