
1 Unit 3:control flow, functions

UNIT IV

COMPOUND DATA: LISTS, TUPLES, DICTIONARIES

Lists, list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists,

list parameters; Tuples, tuple assignment, tuple as return value; Dictionaries:

operations and methods; advanced list processing - list comprehension, Illustrative

programs: selection sort, insertion sort, merge sort, quick sort.

Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square

brackets[].

 Items in the lists can be of different data types.

Operations on list:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Updating

6. Membership

7. Comparison

operations examples description

create a list >>> a=[2,3,4,5,6,7,8,9,10]

>>> print(a)

[2, 3, 4, 5, 6, 7, 8, 9, 10]

in this way we can create a

list at compile time

Indexing

>>> print(a[0])

2

>>> print(a[8])

10

>>> print(a[-1])

10

Accessing the item in the

position 0

Accessing the item in the

position 8

Accessing a last element

using negative indexing.

Slicing

>>> print(a[0:3])

[2, 3, 4]

>>> print(a[0:])

[2, 3, 4, 5, 6, 7, 8, 9, 10]

Printing a part of the list.

Concatenation

>>>b=[20,30]

>>> print(a+b)

[2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30]

Adding and printing the

items of two lists.

Repetition

>>> print(b*3)

[20, 30, 20, 30, 20, 30]

 Create a multiple copies of

the same list.

2 Unit 3:control flow, functions

Updating

>>> print(a[2])

4

>>> a[2]=100

>>> print(a)

[2, 3, 100, 5, 6, 7, 8, 9, 10]

Updating the list using

index value.

Membership

>>> a=[2,3,4,5,6,7,8,9,10]

>>> 5 in a

True

>>> 100 in a

False

>>> 2 not in a

False

Returns True if element is

present in list. Otherwise

returns false.

Comparison

>>> a=[2,3,4,5,6,7,8,9,10]

>>>b=[2,3,4]

>>> a==b

False

>>> a!=b

True

Returns True if all elements

in both elements are same.

Otherwise returns false

List slices:

 List slicing is an operation that extracts a subset of elements from an list and

packages them as another list.

Syntax:

Listname[start:stop]

Listname[start:stop:steps]

 default start value is 0

 default stop value is n-1

 [:] this will print the entire list

 [2:2] this will create a empty slice

slices example description

a[0:3]

>>> a=[9,8,7,6,5,4]

>>> a[0:3]

[9, 8, 7]

Printing a part of a list from

0 to 2.

a[:4]

>>> a[:4]

[9, 8, 7, 6]

Default start value is 0. so

prints from 0 to 3

a[1:] >>> a[1:]

[8, 7, 6, 5, 4]

default stop value will be

n-1. so prints from 1 to 5

a[:] >>> a[:]

[9, 8, 7, 6, 5, 4]

Prints the entire list.

3 Unit 3:control flow, functions

a[2:2]

>>> a[2:2]

[]

print an empty slice

a[0:6:2] >>> a[0:6:2]

[9, 7, 5]

Slicing list values with step

size 2.

a[::-1] >>> a[::-1]

[4, 5, 6, 7, 8, 9]

Returns reverse of given list

values

List methods:

 Methods used in lists are used to manipulate the data quickly.

 These methods work only on lists.

 They do not work on the other sequence types that are not mutable, that is, the

values they contain cannot be changed, added, or deleted.

syntax:

list name.method name(element/index/list)

 syntax example description

1 a.append(element) >>> a=[1,2,3,4,5]

>>> a.append(6)

>>> print(a)

[1, 2, 3, 4, 5, 6]

Add an element to

the end of the list

2 a.insert(index,element) >>> a.insert(0,0)

>>> print(a)

[0, 1, 2, 3, 4, 5, 6]

Insert an item at the

defined index

3 a.extend(b) >>> b=[7,8,9]

>>> a.extend(b)

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8,9]

Add all elements of a

list to the another

list

4 a.index(element) >>> a.index(8)

8

Returns the index of

the first matched

item

5 a.sort() >>> a.sort()

>>> print(a)

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Sort items in a list in

ascending order

6 a.reverse() >>> a.reverse()

>>> print(a)

[8, 7, 6, 5, 4, 3, 2, 1, 0]

Reverse the order of

items in the list

4 Unit 3:control flow, functions

7 a.pop() >>> a.pop()

0

Removes and

returns an element

at the last element

8 a.pop(index) >>> a.pop(0)

8

Remove the

particular element

and return it.

9 a.remove(element) >>> a.remove(1)

>>> print(a)

[7, 6, 5, 4, 3, 2]

Removes an item

from the list

10 a.count(element) >>> a.count(6)

1

Returns the count of

number of items

passed as an

argument

11 a.copy() >>> b=a.copy()

>>> print(b)

[7, 6, 5, 4, 3, 2]

Returns a shallow

copy of the list

12 len(list) >>> len(a)

6

return the length of

the length

13 min(list) >>> min(a)

2

return the minimum

element in a list

14 max(list) >>> max(a)

7

return the maximum

element in a list.

15 a.clear() >>> a.clear()

>>> print(a)

[]

Removes all items

from the list.

16 del(a) >>> del(a)

>>> print(a)

Error: name 'a' is not

defined

delete the entire list.

List loops:

1. For loop

2. While loop

3. Infinite loop

List using For Loop:

 The for loop in Python is used to iterate over a sequence (list, tuple, string) or

other iterable objects.

 Iterating over a sequence is called traversal.

 Loop continues until we reach the last item in the sequence.

 The body of for loop is separated from the rest of the code using indentation.

5 Unit 3:control flow, functions

Syntax:

for val in sequence:

Accessing element output

a=[10,20,30,40,50]

for i in a:

 print(i)

1

2

3

4

5

Accessing index output

a=[10,20,30,40,50]

for i in range(0,len(a),1):

 print(i)

0

1

2

3

4

Accessing element using range: output

a=[10,20,30,40,50]

for i in range(0,len(a),1):

 print(a[i])

10

20

30

40

50

List using While loop

 The while loop in Python is used to iterate over a block of code as long as the test

expression (condition) is true.

 When the condition is tested and the result is false, the loop body will be skipped

and the first statement after the while loop will be executed.

Syntax:

while (condition):

 body of while

Sum of elements in list Output:

a=[1,2,3,4,5]

i=0

sum=0

while i<len(a):

 sum=sum+a[i]

 i=i+1

print(sum)

15

6 Unit 3:control flow, functions

Infinite Loop

A loop becomes infinite loop if the condition given never becomes false. It keeps on

running. Such loops are called infinite loop.

Example Output:

a=1

while (a==1):

 n=int(input("enter the number"))

 print("you entered:" , n)

Enter the number 10

you entered:10

Enter the number 12

you entered:12

Enter the number 16

you entered:16

Mutability:

 Lists are mutable. (can be changed)

 Mutability is the ability for certain types of data to be changed without entirely

recreating it.

 An item can be changed in a list by accessing it directly as part of the assignment

statement.

 Using the indexing operator (square brackets[]) on the left side of an assignment,

one of the list items can be updated.

Example description

>>> a=[1,2,3,4,5]

>>> a[0]=100

>>> print(a)

[100, 2, 3, 4, 5]

changing single element

>>> a=[1,2,3,4,5]

>>> a[0:3]=[100,100,100]

>>> print(a)

[100, 100, 100, 4, 5]

changing multiple element

>>> a=[1,2,3,4,5]

>>> a[0:3]=[]

>>> print(a)

[4, 5]

The elements from a list can also be

removed by assigning the empty list to

them.

>>> a=[1,2,3,4,5]

>>> a[0:0]=[20,30,45]

>>> print(a)

[20,30,45,1, 2, 3, 4, 5]

The elements can be inserted into a list by

squeezing them into an empty slice at the

desired location.

7 Unit 3:control flow, functions

Aliasing(copying):

 Creating a copy of a list is called aliasing. When you create a copy both list will be

 having same memory location. changes in one list will affect another list.

 Alaising refers to having different names for same list values.

Example Output:

a= [1, 2, 3 ,4 ,5]

b=a

print (b)

a is b

a[0]=100

print(a)

print(b)

[1, 2, 3, 4, 5]

True

[100,2,3,4,5]

[100,2,3,4,5]

 In this a single list object is created and modified using the subscript operator.

 When the first element of the list named “a” is replaced, the first element of the list

named “b” is also replaced.

 This type of change is what is known as a side effect. This happens because after

the assignment b=a, the variables a and b refer to the exact same list object.

 They are aliases for the same object. This phenomenon is known as aliasing.

 To prevent aliasing, a new object can be created and the contents of the original can

be copied which is called cloning.

Clonning:

 To avoid the disadvantages of copying we are using cloning. creating a copy of a

 same list of elements with two different memory locations is called cloning.

 Changes in one list will not affect locations of aother list.

 Cloning is a process of making a copy of the list without modifying the original
list.

1. Slicing

2. list()method

3. copy() method

8 Unit 3:control flow, functions

clonning using Slicing
>>>a=[1,2,3,4,5]

>>>b=a[:]

>>>print(b)

[1,2,3,4,5]
>>>a is b
False
clonning using List() method
>>>a=[1,2,3,4,5]
>>>b=list
>>>print(b)
[1,2,3,4,5]
>>>a is b
false
>>>a[0]=100
>>>print(a)
>>>a=[100,2,3,4,5]
>>>print(b)
>>>b=[1,2,3,4,5]
clonning using copy() method

a=[1,2,3,4,5]
>>>b=a.copy()
>>> print(b)
[1, 2, 3, 4, 5]
>>> a is b
False

List as parameters:

 In python, arguments are passed by reference.

 If any changes are done in the parameter which refers within the function, then

the changes also reflects back in the calling function.

 When a list to a function is passed, the function gets a reference to the list.

 Passing a list as an argument actually passes a reference to the list, not a copy of

the list.

 Since lists are mutable, changes made to the elements referenced by the

parameter change the same list that the argument is referencing.

Example 1`: Output

def remove(a):

 a.remove(1)

a=[1,2,3,4,5]

remove(a)

print(a)

[2,3,4,5]

9 Unit 3:control flow, functions

Example 2: Output
def inside(a):

 for i in range(0,len(a),1):

 a[i]=a[i]+10

 print(“inside”,a)

a=[1,2,3,4,5]

inside(a)

print(“outside”,a)

inside [11, 12, 13, 14, 15]
outside [11, 12, 13, 14, 15]

Example 3 output
def insert(a):
 a.insert(0,30)
a=[1,2,3,4,5]
insert(a)
print(a)

[30, 1, 2, 3, 4, 5]

Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.

 A tuple is an immutable list. i.e. once a tuple has been created, you can't add

elements to a tuple or remove elements from the tuple.

 But tuple can be converted into list and list can be converted in to tuple.

methods example description
list() >>> a=(1,2,3,4,5)

>>> a=list(a)
>>> print(a)
[1, 2, 3, 4, 5]

it convert the given tuple
into list.

tuple() >>> a=[1,2,3,4,5]
>>> a=tuple(a)
>>> print(a)
(1, 2, 3, 4, 5)

it convert the given list into
tuple.

Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

Operations on Tuples:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Membership

6. Comparison

10 Unit 3:control flow, functions

Operations examples description

Creating a tuple

>>>a=(20,40,60,”apple”,”ball”)

Creating the tuple with

elements of different data

types.

Indexing

>>>print(a[0])

20

>>> a[2]

60

Accessing the item in the

position 0

Accessing the item in the

position 2

Slicing

>>>print(a[1:3])

(40,60)

Displaying items from 1st

till 2nd.

Concatenation >>> b=(2,4)

>>>print(a+b)

>>>(20,40,60,”apple”,”ball”,2,4)

Adding tuple elements at

the end of another tuple

elements

Repetition >>>print(b*2)

>>>(2,4,2,4)

repeating the tuple in n no

of times

Membership

>>> a=(2,3,4,5,6,7,8,9,10)

>>> 5 in a

True

>>> 100 in a

False

>>> 2 not in a

False

Returns True if element is

present in tuple. Otherwise

returns false.

Comparison

>>> a=(2,3,4,5,6,7,8,9,10)

>>>b=(2,3,4)

>>> a==b

False

>>> a!=b

True

Returns True if all elements

in both elements are same.

Otherwise returns false

Tuple methods:

 Tuple is immutable so changes cannot be done on the elements of a tuple once it

is assigned.

methods example description
a.index(tuple) >>> a=(1,2,3,4,5)

>>> a.index(5)
4

Returns the index of the
first matched item.

a.count(tuple) >>>a=(1,2,3,4,5)
>>> a.count(3)
1

Returns the count of the
given element.

len(tuple) >>> len(a)
5

return the length of the

tuple

11 Unit 3:control flow, functions

min(tuple) >>> min(a)
1

return the minimum

element in a tuple

max(tuple) >>> max(a)
5

return the maximum

element in a tuple

del(tuple) >>> del(a) Delete the entire tuple.

Tuple Assignment:

 Tuple assignment allows, variables on the left of an assignment operator and

values of tuple on the right of the assignment operator.

 Multiple assignment works by creating a tuple of expressions from the right hand

side, and a tuple of targets from the left, and then matching each expression to a

target.

 Because multiple assignments use tuples to work, it is often termed tuple

assignment.

Uses of Tuple assignment:

 It is often useful to swap the values of two variables.

Example:

Swapping using temporary variable: Swapping using tuple assignment:
a=20
b=50
temp = a
a = b
b = temp
print("value after swapping is",a,b)

a=20
b=50
(a,b)=(b,a)
print("value after swapping is",a,b)

Multiple assignments:

Multiple values can be assigned to multiple variables using tuple assignment.

>>>(a,b,c)=(1,2,3)
>>>print(a)
1
>>>print(b)
2
>>>print(c)
3

Tuple as return value:

 A Tuple is a comma separated sequence of items.

 It is created with or without ().

 A function can return one value. if you want to return more than one value from a

function. we can use tuple as return value.

12 Unit 3:control flow, functions

Example1: Output:
def div(a,b):
 r=a%b
 q=a//b
 return(r,q)
a=eval(input("enter a value:"))
b=eval(input("enter b value:"))
r,q=div(a,b)
print("reminder:",r)
print("quotient:",q)

enter a value:4
enter b value:3
reminder: 1
quotient: 1

Example2: Output:
def min_max(a):
 small=min(a)
 big=max(a)
 return(small,big)
a=[1,2,3,4,6]
small,big=min_max(a)
print("smallest:",small)
print("biggest:",big)

smallest: 1
biggest: 6

Tuple as argument:

 The parameter name that begins with * gathers argument into a tuple.

Example: Output:

def printall(*args):

 print(args)

printall(2,3,'a')

(2, 3, 'a')

Dictionaries:

 Dictionary is an unordered collection of elements. An element in dictionary has a

key: value pair.

 All elements in dictionary are placed inside the curly braces i.e. { }

 Elements in Dictionaries are accessed via keys and not by their position.

 The values of a dictionary can be any data type.

 Keys must be immutable data type (numbers, strings, tuple)

Operations on dictionary:

1. Accessing an element

2. Update

3. Add element

4. Membership

13 Unit 3:control flow, functions

Operations Example Description

Creating a

dictionary

>>> a={1:"one",2:"two"}

>>> print(a)

{1: 'one', 2: 'two'}

Creating the dictionary with

elements of different data types.

accessing an

element

>>> a[1]

'one'

>>> a[0]

KeyError: 0

Accessing the elements by using

keys.

Update >>> a[1]="ONE"

>>> print(a)

{1: 'ONE', 2: 'two'}

Assigning a new value to key. It

replaces the old value by new value.

add element >>> a[3]="three"

>>> print(a)

{1: 'ONE', 2: 'two', 3: 'three'}

Add new element in to the

dictionary with key.

membership a={1: 'ONE', 2: 'two', 3: 'three'}

>>> 1 in a

True

>>> 3 not in a

False

Returns True if the key is present in

dictionary. Otherwise returns false.

Methods in dictionary:

Method Example Description

a.copy() a={1: 'ONE', 2: 'two', 3: 'three'}
>>> b=a.copy()
>>> print(b)
{1: 'ONE', 2: 'two', 3: 'three'}

It returns copy of the
dictionary. here copy of
dictionary ’a’ get stored
in to dictionary ‘b’

a.items() >>> a.items()
dict_items([(1, 'ONE'), (2, 'two'), (3,
'three')])

Return a new view of
the dictionary's items. It
displays a list of
dictionary’s (key, value)
tuple pairs.

a.keys() >>> a.keys()
dict_keys([1, 2, 3])

It displays list of keys in
a dictionary

a.values() >>> a.values()
dict_values(['ONE', 'two', 'three'])

It displays list of values
in dictionary

a.pop(key) >>> a.pop(3)
'three'
>>> print(a)
{1: 'ONE', 2: 'two'}

Remove the element
with key and return its
value from the
dictionary.

14 Unit 3:control flow, functions

setdefault(key,value) >>> a.setdefault(3,"three")
'three'
>>> print(a)
{1: 'ONE', 2: 'two', 3: 'three'}
>>> a.setdefault(2)
'two'

If key is in the
dictionary, return its
value. If key is not
present, insert key with
a value of dictionary and
return dictionary.

a.update(dictionary) >>> b={4:"four"}
>>> a.update(b)
>>> print(a)
{1: 'ONE', 2: 'two', 3: 'three', 4: 'four'}

It will add the dictionary
with the existing
dictionary

fromkeys() >>> key={"apple","ball"}
>>> value="for kids"
>>> d=dict.fromkeys(key,value)
>>> print(d)
{'apple': 'for kids', 'ball': 'for kids'}

It creates a dictionary
from key and values.

len(a) a={1: 'ONE', 2: 'two', 3: 'three'}
>>>lena(a)
3

It returns the length of
the list.

clear() a={1: 'ONE', 2: 'two', 3: 'three'}
>>>a.clear()
>>>print(a)
>>>{ }

Remove all elements
form the dictionary.

del(a) a={1: 'ONE', 2: 'two', 3: 'three'}
>>> del(a)

It will delete the entire
dictionary.

Difference between List, Tuples and dictionary:

List Tuples Dictionary
A list is mutable A tuple is immutable A dictionary is mutable
Lists are dynamic Tuples are fixed size in nature

In values can be of any
data type and can
repeat, keys must be of
immutable type

List are enclosed in
brackets[] and their
elements and size
can be changed

Tuples are enclosed in parenthesis ()
and cannot be updated

Tuples are enclosed in
curly braces { } and
consist of key:value

Homogenous Heterogeneous Homogenous
Example:
List = [10, 12, 15]

Example:
Words = ("spam", "egss")

Or
Words = "spam", "eggs"

Example:
Dict = {"ram": 26, "abi":
24}

Access:
print(list[0])

Access:
print(words[0])

Access:
print(dict["ram"])

http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences

15 Unit 3:control flow, functions

Can contain duplicate
elements

Can contain duplicate elements.
Faster compared to lists

Cant contain duplicate
keys, but can contain
duplicate values

Slicing can be done Slicing can be done Slicing can't be done
Usage:
 List is used if a
collection of data that
doesnt need random
access.
 List is used when
data can be modified
frequently

Usage:
 Tuple can be used when data
cannot be changed.
 A tuple is used in combination
with a dictionary i.e.a tuple might
represent a key.

Usage:
 Dictionary is used
when a logical
association between
key:value pair.
 When in need of fast
lookup for data, based
on a custom key.
 Dictionary is used
when data is being
constantly modified.

Advanced list processing:

List Comprehension:
 List comprehensions provide a concise way to apply operations on a list.
 It creates a new list in which each element is the result of applying a given

operation in a list.
 It consists of brackets containing an expression followed by a “for” clause, then a

list.
 The list comprehension always returns a result list.

Syntax

 list=[expression for item in list if conditional]

List Comprehension Output

>>>L=[x**2 for x in range(0,5)]
>>>print(L)

[0, 1, 4, 9, 16]

>>>[x for x in range(1,10) if x%2==0] [2, 4, 6, 8]

>>>[x for x in 'Python Programming' if x in ['a','e','i','o','u']] ['o', 'o', 'a', 'i']

>>>mixed=[1,2,"a",3,4.2]
>>> [x**2 for x in mixed if type(x)==int]

[1, 4, 9]

>>>[x+3 for x in [1,2,3]]

[4, 5, 6]

>>> [x*x for x in range(5)]

[0, 1, 4, 9, 16]

>>> num=[-1,2,-3,4,-5,6,-7]
>>> [x for x in num if x>=0]

[2, 4, 6]

>>> str=["this","is","an","example"]
>>> element=[word[0] for word in str]
>>> print(element)

['t', 'i', 'a', 'e']

16 Unit 3:control flow, functions

Nested list:

 List inside another list is called nested list.

Example:
>>> a=[56,34,5,[34,57]]
>>> a[0]
56
>>> a[3]
[34, 57]
>>> a[3][0]
34
>>> a[3][1]
57

Programs on matrix:

Matrix addition Output
a=[[1,1],[1,1]]
b=[[2,2],[2,2]]
c=[[0,0],[0,0]]
for i in range(len(a)):
 for j in range(len(b)):
 c[i][j]=a[i][j]+b[i][j]
for i in c:
 print(i)

[3, 3]
[3, 3]

Matrix multiplication Output
a=[[1,1],[1,1]]
b=[[2,2],[2,2]]
c=[[0,0],[0,0]]
for i in range(len(a)):
 for j in range(len(b)):
 for k in range(len(b)):
 c[i][j]=a[i][j]+a[i][k]*b[k][j]
for i in c:
 print(i)

[3, 3]
[3, 3]

Matrix transpose Output
a=[[1,3],[1,2]]
c=[[0,0],[0,0]]
for i in range(len(a)):
 for j in range(len(a)):
 c[i][j]=a[j][i]
for i in c:
 print(i)

[1, 1]
[3, 2]

17 Unit 3:control flow, functions

Illustrative programs:

Selection sort Output

a=input("Enter list:").split()
a=list(map(eval,a))
for i in range(0,len(a)):
 smallest = min(a[i:])
 sindex= a.index(smallest)
 a[i],a[sindex] = a[sindex],a[i]
print (a)

Enter list:23 78 45 8 32 56
[8,2 3, 32, 45,56, 78]

Insertion sort output
a=input("enter a list:").split()
a=list(map(int,a))
for i in a:
 j = a.index(i)
 while j>0:
 if a[j-1] > a[j]:
 a[j-1],a[j] = a[j],a[j-1]
 else:
 break
 j = j-1
print (a)

enter a list: 8 5 7 1 9 3
[1,3,5,7,8,9]

18 Unit 3:control flow, functions

Merge sort output
def merge(a,b):
 c = []
 while len(a) != 0 and len(b) != 0:
 if a[0] < b[0]:
 c.append(a[0])
 a.remove(a[0])
 else:
 c.append(b[0])
 b.remove(b[0])
 if len(a) == 0:
 c=c+b
 else:
 c=c+a
 return c

def divide(x):
 if len(x) == 0 or len(x) == 1:
 return x
 else:
 middle = len(x)//2
 a = divide(x[:middle])
 b = divide(x[middle:])
 return merge(a,b)

x=[38,27,43,3,9,82,10]
c=divide(x)
print(c)

[3,9,10,27,38,43,82]

19 Unit 3:control flow, functions

Histogram Output
def histogram(a):
 for i in a:
 sum = ''
 while(i>0):
 sum=sum+'#'
 i=i-1
 print(sum)
a=[4,5,7,8,12]
histogram(a)

Calendar program Output
import calendar

y=int(input("enter year:"))

m=int(input("enter month:"))

print(calendar.month(y,m))

enter year:2017

enter month:11

 November 2017

Mo Tu We Th Fr Sa Su

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

20 Unit 3:control flow, functions

PART - A
1. What is slicing?
2. How can we distinguish between

tuples and lists?
3. What will be the output of the given

code?
a. List=[‘p’,’r’,’i’,’n’,’t’,]
b. Print list[8:]

4. Give the syntax required to convert an
integer number into string?

5. List is mutable. Justify?
6. Difference between del and remove

methods in List?
7. Difference between pop and remove

in list?
8. How are the values in a tuple

accessed?
9. What is a Dictionary in Python
10. Define list comprehension
11. Write a python program using list

looping
12. What do you meant by mutability

and immutability?
13. Define Histogram
14. Define Tuple and show it is

immutable with an example.
15. state the difference between aliasing

and cloning in list
16. what is list cloning
17. what is deep cloning
18. state the difference between pop

and remove method in list
19. create tuple with single element
20. swap two numbers without using

third variable
21. define properties of key in

dictionary
22. how can you access elements from

the dictionary
23. difference between delete and clear

method in dictionary
24. What is squeezing in list? give an

example
25. How to convert a tuple in to list
26. How to convert a list in to tuple
27. Create a list using list

comprehension
28. Advantage of list comprehension
29. What is the use of map () function.

30. How can you return multiple values
from function?

31. what is sorting and types of sorting
32. Find length of sequence without

using library function.
33. how to pass tuple as argument
34. how to pass a list as argument
35. what is parameter and types of

parameter
36. how can you insert values in to

dictionary
37. what is key value pair
38. mention different data types can be

used in key and value
39. what are the immutable data types

available in python
40. What is the use of fromkeys() in

dictioanary.

PART-B

1. Explain in details about list methods
2. Discuss about operations in list
3. What is cloning? Explain it with

example
4. What is aliasing? Explain with

example
5. How can you pass list into function?

Explain with example.
6. Explain tuples as return values with

examples
7. write a program for matrix

multiplication
8. write a program for matrix addition
9. write a program for matrix

subtraction
10. write a program for matrix

transpose
11. write procedure for selection sort
12. explain merge sort with an example
13. explain insertion with example
14. Explain in detail about dictionaries

and its methods.
15. Explain in detail about advanced list

processing.

