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DATABASE MANAGEMENT SYSTEM (DBMS)

• Collection of interrelated data

• Set of programs to access the data 

• DBMS contains information about a particular enterprise

• DBMS provides an environment that is both convenient and efficient to use.

• Database Applications:

• Banking: all transactions

• Airlines: reservations, schedules

• Universities:  registration, grades

• Sales: customers, products, purchases

• Manufacturing: production, inventory, orders, supply chain

• Human resources:  employee records, salaries, tax deductions

• Databases touch all aspects of our lives



PURPOSE OF DATABASE SYSTEM

• In the early days, database applications were built on top of file systems

• Drawbacks of using file systems to store data:

• Data redundancy and inconsistency

• Multiple file formats, duplication of information in different files

• Difficulty in accessing data 

• Need to write a new program to carry out each new task

• Data isolation — multiple files and formats

• Integrity problems

• Integrity constraints  (e.g. account balance > 0) become part of program code

• Hard to add new constraints or change existing ones



PURPOSE OF DATABASE SYSTEMS (CONT.)

• Drawbacks of using file systems (cont.) 

• Atomicity of updates

• Failures may leave database in an inconsistent state with partial updates carried out

• E.g. transfer of funds from one account to another should either complete or not happen at 
all

• Concurrent access by multiple users

• Concurrent accessed needed for performance

• Uncontrolled concurrent accesses can lead to inconsistencies

• E.g. two people reading a balance and updating it at the same time

• Security problems

• Database systems offer solutions to all the above problems



LEVELS OF ABSTRACTION

• Physical level describes how a record (e.g., customer) is stored.

• Logical level: describes data stored in database, and the relationships among 
the data.

  type customer = record
   name : string;
   street : string;
   city : integer;
  end;

• View level: application programs hide details of data types.  Views can also 
hide information (e.g., salary) for security purposes. 



VIEW OF DATA

An architecture for a database system 



INSTANCES AND SCHEMAS

• Similar to types and variables in programming languages

• Schema – the logical structure of the database 

• e.g., the database consists of information about a set of customers and accounts and 
the relationship between them)

• Analogous to type information of a variable in a program

• Physical schema: database design at the physical level

• Logical schema: database design at the logical level

• Instance – the actual content of the database at a particular point in time 

• Analogous to the value of a variable

• Physical Data Independence – the ability to modify the physical schema without 
changing the logical schema

• Applications depend on the logical schema

• In general, the interfaces between the various levels and components should be well 
defined so that changes in some parts do not seriously influence others.



DATA MODELS
• A collection of tools for describing 

• data 

• data relationships

• data semantics

• data constraints

• Entity-Relationship model

• Relational model

• Other models: 

• object-oriented model

• semi-structured data models

• Older models: network model and hierarchical model



ENTITY-RELATIONSHIP MODEL

Example of schema in the entity-relationship model



ENTITY RELATIONSHIP MODEL (CONT.)

• E-R model of real world

• Entities (objects) 

• E.g. customers, accounts, bank branch

• Relationships between entities

• E.g. Account A-101 is held by customer Johnson

• Relationship set depositor associates customers with accounts

• Widely used for database design

• Database design in E-R model usually converted to design in the relational model 
(coming up next) which is used for storage and processing



RELATIONAL MODEL
• Example of tabular data in the relational model

customer-
name

Customer-
id

customer-
street

customer-
city

account-
number

Johnson

Smith

Johnson

Jones

Smith

192-83-7465

019-28-3746

192-83-7465

321-12-3123

019-28-3746

Alma

North

Alma

Main

North

Palo Alto

Rye

Palo Alto

Harrison

Rye

A-101

A-215

A-201

A-217

A-201

Attributes



A SAMPLE RELATIONAL DATABASE



DATA DEFINITION LANGUAGE (DDL)

• Specification notation for defining the database schema

• E.g.  
 create table account (
             account-number    char(10),
             balance                 integer)

• DDL compiler generates a set of tables stored in a data dictionary

• Data dictionary contains metadata (i.e., data about data)

•  database schema 

• Data storage and definition language 

•  language in which the storage structure and access methods used by the database 
system are specified

• Usually an extension of the data definition language



DATA MANIPULATION LANGUAGE (DML)

• Language for accessing and manipulating the data organized by the 
appropriate data model

• DML also known as query language

• Two classes of languages 

• Procedural – user specifies what data is required and how to get those data 

• Nonprocedural – user specifies what data is required without specifying how to get 
those data

• SQL is the most widely used query language



SQL• SQL: widely used non-procedural language

• E.g. find the name of the customer with customer-id 192-83-7465
  select   customer.customer-name
  from     customer
  where  customer.customer-id = ‘192-83-7465’

• E.g. find the balances of all accounts held by the customer with customer-id 192-83-7465
  select   account.balance
  from     depositor, account
  where  depositor.customer-id = ‘192-83-7465’ and
              depositor.account-number = account.account-number

• Application programs generally access databases through one of

• Language extensions to allow embedded SQL

• Application program interface (e.g. ODBC/JDBC) which allow SQL queries to be sent to a 
database



DATABASE USERS

• Users are differentiated by the way they expect to interact with the system

• Application programmers – interact with system through DML calls

• Sophisticated users – form requests in a database query language

• Specialized users – write specialized database applications that do not fit into 
the traditional data processing framework

• Naïve users – invoke one of the permanent application programs that have 
been written previously

• E.g. people accessing database over the web, bank tellers, clerical staff



DATABASE ADMINISTRATOR

• Coordinates all the activities of the database system; the database 
administrator has a good understanding of the enterprise’s 
information resources and needs.

• Database administrator's duties include:

• Schema definition

• Storage structure and access method definition

• Schema and physical organization modification

• Granting user authority to access the database

• Specifying integrity constraints

• Acting as liaison with users

• Monitoring performance and responding to changes in requirements



TRANSACTION MANAGEMENT 

• A transaction is a collection of operations that performs a single logical 
function in a database application

• Transaction-management component ensures that the database remains in a 
consistent (correct) state despite system failures (e.g., power failures and 
operating system crashes) and transaction failures.

• Concurrency-control manager controls the interaction among the concurrent 
transactions, to ensure the consistency of the database.



STORAGE MANAGEMENT

• Storage manager is a program module that provides the interface between the 
low-level data stored in the database and the application programs and 
queries submitted to the system.

• The storage manager is responsible to the following tasks: 

• interaction with the file manager 

• efficient storing, retrieving and updating of data



OVERALL SYSTEM STRUCTURE 



APPLICATION ARCHITECTURES

▪Two-tier architecture:  E.g. client programs using ODBC/JDBC to  
  communicate with a database
▪Three-tier architecture: E.g. web-based applications, and 
  applications built using “middleware”



ENTITY SETS

• A database can be modeled as:

• a collection of entities,

• relationship among entities.

• An entity is an object that exists and is distinguishable from other objects.

• Example:  specific person, company, event, plant

• Entities have attributes

• Example: people have names and addresses 

• An entity set is a set of entities of the same type that share the same 
properties.

• Example: set of all persons, companies, trees, holidays



ENTITY SETS CUSTOMER AND LOAN
customer-id   customer-  customer-  customer-           loan-    amount
                          name     street         city                    number



ATTRIBUTES

• An entity is represented by a set of attributes, that is descriptive properties 
possessed by all members of an entity set.

 

• Domain – the set of permitted values for each attribute 

• Attribute types:

• Simple and composite attributes.

• Single-valued and multi-valued attributes

• E.g. multivalued attribute: phone-numbers

• Derived attributes

• Can be computed from other attributes

• E.g.  age, given date of birth

Example: 

 customer = (customer-id, customer-name,       
customer-street, customer-city)
 loan = (loan-number, amount)



COMPOSITE ATTRIBUTES



RELATIONSHIP SETS

• A relationship is an association among several entities

 Example:
 Hayes depositor A-102
 customer entity relationship set account entity

• A relationship set is a mathematical relation among n  2 entities, each taken 
from entity sets

  {(e1, e2, … en) | e1   E1, e2   E2, …, en   En}

where (e1, e2, …, en) is a relationship

• Example: 

   (Hayes, A-102)  depositor



RELATIONSHIP SET BORROWER



RELATIONSHIP SETS (CONT.)
• An attribute can also be property of a relationship set.

• For instance, the depositor relationship set between entity sets customer and 
account may have the attribute access-date



DEGREE OF A RELATIONSHIP SET

• Refers to number of entity sets that participate in a relationship set.

• Relationship sets that involve two entity sets are binary (or degree two).  
Generally, most relationship sets in a database system are binary.

• Relationship sets may involve more than two entity sets. 

• Relationships between more than two entity sets are rare.  Most relationships 
are binary. (More on this later.)

E.g.  Suppose employees of a bank may have jobs 
(responsibilities) at multiple branches, with different jobs at 
different branches.  Then there is a ternary relationship set 
between entity sets employee,  job and branch



MAPPING CARDINALITIES

• Express the number of entities to which another entity can be associated 
via a relationship set.

• Most useful in describing binary relationship sets.

• For a binary relationship set the mapping cardinality must be one of the 
following types:

• One to one

• One to many

• Many to one

• Many to many 



MAPPING CARDINALITIES

One to one One to many

Note: Some elements in A and B may not be mapped to any 
elements in the other set



MAPPING CARDINALITIES 

Many to one Many to many

Note: Some elements in A and B may not be mapped to any 
elements in the other set



MAPPING CARDINALITIES AFFECT ER DESIGN
Can make access-date an attribute of account, instead of a 

relationship attribute, if each account can have only one customer 

I.e., the relationship from account to customer is many to one, 

or equivalently, customer to account is one to many



E-R DIAGRAMS

Rectangles represent entity sets.

Diamonds represent relationship sets.

Lines link attributes to entity sets and entity sets to relationship sets.

Ellipses represent attributes

Double ellipses represent multivalued attributes.

Dashed ellipses denote derived attributes.

Underline indicates primary key attributes (will study later)



E-R DIAGRAM WITH COMPOSITE, MULTIVALUED, AND DERIVED 
ATTRIBUTES



RELATIONSHIP SETS WITH ATTRIBUTES



ROLES

• Entity sets of a relationship need not be distinct

• The labels “manager” and “worker” are called roles; they specify how 
employee entities interact via the works-for relationship set.

• Roles are indicated in E-R diagrams by labeling the lines that connect 
diamonds to rectangles.

• Role labels are optional, and are used to clarify semantics of the relationship



CARDINALITY CONSTRAINTS

• We express cardinality constraints by drawing either a directed line (→), 
signifying “one,” or an undirected line (—), signifying “many,” between the 
relationship set and the entity set.

• E.g.: One-to-one relationship:

• A customer is associated with at most one loan via the relationship borrower

• A loan is associated with at most one customer via borrower



ONE-TO-MANY RELATIONSHIP

• In the one-to-many relationship a loan is associated with at most one customer 
via borrower, a customer is associated with several (including 0) loans via 
borrower



MANY-TO-ONE RELATIONSHIPS

• In a many-to-one relationship a loan is associated with several (including 0) 
customers via borrower, a customer is associated with at most one loan via 
borrower



MANY-TO-MANY RELATIONSHIP

• A customer is associated with several (possibly 0) loans via borrower

• A loan is associated with several (possibly 0) customers via borrower



PARTICIPATION OF AN ENTITY SET IN A RELATIONSHIP SET

Total participation (indicated by double line):  every entity in the entity 

set participates in at least one relationship in the relationship set

E.g. participation of loan in borrower is total

 every loan must have a customer associated to it via borrower

Partial participation:  some entities may not participate in any 

relationship in the relationship set

E.g. participation of customer in borrower is partial



ALTERNATIVE NOTATION FOR CARDINALITY LIMITS

Cardinality limits can also express participation constraints



KEYS

• A super key of an entity set is a set of one or more attributes whose 
values uniquely determine each entity.

• A candidate key of an entity set is a minimal super key

• Customer-id is candidate key of customer

• account-number is candidate key of account

• Although several candidate keys may exist, one of the candidate keys is 
selected to be the primary key.



KEYS FOR RELATIONSHIP SETS

• The combination of primary keys of the participating entity sets forms a super 
key of a relationship set.

• (customer-id, account-number) is the super key of depositor

• NOTE:  this means a pair of entity sets can have at most one relationship in a 
particular relationship set.  

• E.g. if we wish to track all access-dates to each account by each customer, we cannot 
assume a relationship for each access.  We can use a multivalued attribute though

• Must consider the mapping cardinality of the relationship set when deciding 
the what are the candidate keys 

• Need to consider semantics of relationship set in selecting the primary key  in 
case of more than one candidate key



E-R DIAGRAM WITH A TERNARY RELATIONSHIP



CARDINALITY CONSTRAINTS ON TERNARY RELATIONSHIP

• We allow at most one arrow out of a ternary (or greater degree) relationship to 
indicate a cardinality constraint

• E.g. an arrow from works-on to job indicates each employee works on at most one 
job at any branch.

• If there is more than one arrow, there are two ways of defining the meaning.  

• E.g a ternary relationship R between A, B and C with arrows to B and C could mean

• 1.  each A entity is associated with a unique entity from B and C or 

• 2.  each pair of entities from (A, B) is associated with a unique C entity,   and each pair 
(A, C) is associated with a unique B

• Each alternative has been used in different formalisms

• To avoid confusion we outlaw more than one arrow



BINARY VS. NON-BINARY RELATIONSHIPS

• Some relationships that appear to be non-binary may be better represented using 
binary relationships

• E.g.  A ternary relationship parents, relating a child to his/her father and mother, is best 
replaced by two binary relationships,  father and mother

• Using two binary relationships allows partial information (e.g. only mother being know)

• But there are some relationships that are naturally non-binary

• E.g. works-on



CONVERTING NON-BINARY RELATIONSHIPS TO BINARY FORM

• In general, any non-binary relationship can be represented using binary 
relationships by creating an artificial entity set.

• Replace R between entity sets A, B and C by an entity set E, and three relationship sets: 

  1. RA, relating E and A    2.RB, relating E and B

  3. RC, relating E and C

• Create a special identifying attribute for E

• Add any attributes of R to E 

• For each relationship (ai , bi , ci) in R, create 

       1. a new entity ei in the entity set E       2. add (ei , ai ) to RA

       3. add (ei , bi ) to RB                 4. add (ei , ci ) to RC



CONVERTING NON-BINARY RELATIONSHIPS (CONT.)

• Also need to translate constraints

• Translating all constraints may not be possible

• There may be instances in the translated schema that
cannot correspond to any instance of R

• Exercise:  add constraints to the relationships RA, RB and RC to ensure that a newly created 
entity corresponds to exactly one entity in each of entity sets A, B and C

• We can avoid creating an identifying attribute by making E a weak entity set (described 
shortly) identified by the three relationship sets 



DESIGN ISSUES
• Use of entity sets vs. attributes

Choice mainly depends on the structure of the enterprise being modeled, and on 
the semantics associated with the attribute in question.

• Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an action that 
occurs between entities

• Binary versus n-ary relationship sets
Although it is possible to replace any nonbinary (n-ary, for n > 2) relationship set 
by a number of distinct binary relationship sets, a n-ary relationship set shows 
more clearly that several entities participate in a single relationship.

• Placement of relationship attributes



HOW ABOUT DOING AN 
ER DESIGN INTERACTIVELY 

ON THE BOARD?
SUGGEST AN APPLICATION 

TO BE MODELED.



WEAK ENTITY SETS

• An entity set that does not have a primary key is referred to as a weak entity 
set.

• The existence of a weak entity set depends on the existence of a identifying 
entity set

•  it must relate to the identifying entity set via a total, one-to-many relationship set 
from the identifying to the weak entity set

• Identifying relationship depicted using a double diamond

• The discriminator (or partial key) of a weak entity set is the set of attributes 
that distinguishes among all the entities of a weak entity set.

• The primary key of a weak entity set is formed by the primary key of the 
strong entity set on which the weak entity set is existence dependent, plus the 
weak entity set’s discriminator.



WEAK ENTITY SETS (CONT.)

• We depict a weak entity set by double rectangles.

• We underline the discriminator of a weak entity set  with a dashed line.

• payment-number – discriminator of the payment entity set 

• Primary key for payment – (loan-number, payment-number) 



WEAK ENTITY SETS (CONT.)

• Note: the primary key of the strong entity set is not explicitly stored with the 
weak entity set, since it is implicit in the identifying relationship.

• If loan-number were explicitly stored, payment could be made a strong entity, 
but then the relationship between payment and loan would be duplicated by 
an implicit relationship defined by the attribute loan-number common to 
payment and loan



MORE WEAK ENTITY SET EXAMPLES

• In a university, a course is a strong entity and a course-offering can be modeled as 
a weak entity

• The discriminator of course-offering would be semester (including year) and 
section-number (if there is more than one section)

• If we model course-offering as a strong entity we would model course-number as 
an attribute.  

 Then the relationship with course would be implicit in the course-number 
attribute



SPECIALIZATION

• Top-down design process; we designate subgroupings within an entity set that 
are distinctive from other entities in the set.

• These subgroupings become lower-level entity sets that have attributes or 
participate in relationships that do not apply to the higher-level entity set.

• Depicted by a triangle component labeled ISA (E.g. customer “is a” person).

• Attribute inheritance – a lower-level entity set inherits all the attributes and 
relationship participation of the higher-level entity set to which it is linked.



SPECIALIZATION EXAMPLE



GENERALIZATION
• A bottom-up design process – combine a number of entity sets that share the 

same features into a higher-level entity set.

• Specialization and generalization are simple inversions of each other; they are 
represented in an E-R diagram in the same way.

• The terms specialization and generalization are used interchangeably.



SPECIALIZATION AND GENERALIZATION (CONTD.)

• Can have multiple specializations of an entity set based on different features.  

• E.g. permanent-employee vs. temporary-employee, in addition to officer vs. 
secretary vs. teller

• Each particular employee would be 

• a member of one of permanent-employee or temporary-employee, 

• and also a member of one of officer, secretary, or teller

• The ISA relationship also referred to as superclass - subclass relationship



DESIGN CONSTRAINTS ON A 
SPECIALIZATION/GENERALIZATION

• Constraint on which entities can be members of a given lower-level entity 
set.

• condition-defined

• E.g. all customers over 65 years are members of senior-citizen entity set; senior-
citizen ISA  person.

• user-defined

• Constraint on whether or not entities may belong to more than one lower-
level entity set within a single generalization.

• Disjoint

• an entity can belong to only one lower-level entity set

• Noted in E-R diagram by writing disjoint next to the ISA triangle

• Overlapping

• an entity can belong to more than one lower-level entity set



DESIGN CONSTRAINTS ON A 
SPECIALIZATION/GENERALIZATION (CONTD.)

• Completeness constraint -- specifies whether or not an entity in the higher-
level entity set must belong to at least one of the lower-level entity sets within 
a generalization.

• total : an entity must belong to one of the lower-level entity sets

• partial: an entity need not belong to one of the lower-level entity sets



AGGREGATION
 Consider the ternary relationship works-on, which we saw earlier

 Suppose we want to record managers for tasks performed by an   
   employee at a branch



AGGREGATION (CONT.)

• Relationship sets works-on and manages represent overlapping information

• Every manages relationship corresponds to a works-on relationship

• However, some works-on relationships may not correspond to any manages relationships 

• So we can’t discard the works-on relationship

• Eliminate this redundancy via aggregation

• Treat relationship as an abstract entity

• Allows relationships between relationships 

• Abstraction of relationship into new entity

• Without introducing redundancy, the following diagram represents:

• An employee works on a particular job at a particular branch 

• An employee, branch, job combination may have an associated manager



E-R DIAGRAM WITH AGGREGATION



E-R DESIGN DECISIONS

• The use of an attribute or entity set to represent an object.

• Whether a real-world concept is best expressed by an entity set or a 
relationship set.

• The use of a ternary relationship versus a pair of binary relationships.

• The use of a strong or weak entity set.

• The use of specialization/generalization – contributes to modularity in the 
design.

• The use of aggregation – can treat the aggregate entity set as a single unit 
without concern for the details of its internal structure.



UML 

• UML: Unified Modeling Language

• UML has many components to graphically model different aspects of an entire 
software system

• UML Class Diagrams correspond to E-R Diagram, but several differences.



SUMMARY OF UML CLASS DIAGRAM NOTATION



UML CLASS DIAGRAMS (CONTD.)

• Entity sets are shown as boxes, and attributes are shown within  the box, rather 
than as separate ellipses in E-R diagrams.

• Binary relationship sets are represented in UML by just drawing a line connecting 
the entity sets. The relationship set name is written adjacent to the line.  

• The role played by an entity set in a relationship set may also be specified by 
writing the role name on the line, adjacent to the entity set. 

• The relationship set name may alternatively be written in a box, along with 
attributes of the relationship set, and the box is connected, using a dotted line, to 
the line depicting the  relationship set.

•  Non-binary relationships drawn using diamonds, just as in ER diagrams



UML CLASS DIAGRAM NOTATION (CONT.)

*Note reversal of position in cardinality constraint depiction
*Generalization can use merged or separate arrows independent
  of disjoint/overlapping

overlapping

disjoint



UML CLASS DIAGRAMS (CONTD.)

• Cardinality constraints are specified in the form l..h,  where l denotes the minimum 
and h the maximum number of relationships an entity can participate in.

• Beware: the positioning of the constraints is exactly the reverse of the positioning of 
constraints in E-R diagrams.

• The constraint 0..* on the E2 side and 0..1 on the E1 side means that each E2 entity 
can participate in at most one relationship, whereas each E1 entity can participate in 
many relationships; in other words, the relationship is many to one from E2 to E1.

• Single values, such as 1 or * may be written on edges; The single value 1 on an edge 
is treated as equivalent to 1..1, while * is equivalent to 0..*.



REDUCTION OF AN E-R SCHEMA TO TABLES

• Primary keys allow entity sets and relationship sets to be expressed 
uniformly as tables which represent the contents of the database.

• A database which conforms to an E-R diagram can be represented by a 
collection of tables.

• For each entity set and relationship set there is a unique table which is 
assigned the name of the corresponding entity set or relationship set.

• Each table has a number of columns (generally corresponding to 
attributes), which have unique names.

• Converting an E-R diagram to a table format is the basis for deriving a 
relational database design from an E-R diagram.



REPRESENTING ENTITY SETS AS TABLES

• A strong entity set reduces to a table with the same attributes.



COMPOSITE AND MULTIVALUED ATTRIBUTES

• Composite attributes are flattened out by creating a separate attribute for each 
component attribute

• E.g. given entity set customer with composite attribute name with component attributes 
first-name and last-name the table corresponding to the entity set has two attributes
                 name.first-name  and name.last-name

• A multivalued attribute M of an entity E is represented by a separate table EM

• Table EM has attributes corresponding to the primary key of E and an attribute 
corresponding to multivalued attribute M

• E.g.  Multivalued attribute dependent-names of employee is represented by a table
    employee-dependent-names( employee-id, dname) 

• Each value of the multivalued attribute maps to a separate row of the table EM

• E.g.,  an employee entity with primary key  John and 
dependents  Johnson and Johndotir maps to two rows:   
   (John, Johnson) and (John, Johndotir) 



REPRESENTING WEAK ENTITY SETS

A weak entity set becomes a table that includes a column for 

the primary key of the identifying strong entity set



REPRESENTING RELATIONSHIP SETS AS TABLES
• A many-to-many relationship set is represented as a table with columns 

for the primary keys of the two participating entity sets, and any 
descriptive attributes of the relationship set. 

• E.g.: table for relationship set borrower



REDUNDANCY OF TABLES

Many-to-one and one-to-many relationship sets that are total 
on the many-side can be represented by adding an extra 
attribute to the many side, containing the primary key of the 
one side

E.g.: Instead of creating a table for relationship account-
branch, add an attribute branch to the entity set account



REDUNDANCY OF TABLES (CONT.)

• For one-to-one relationship sets, either side can be chosen to act as the 
“many” side

• That is, extra attribute can be added to either of the tables corresponding to the 
two entity sets 

• If participation is partial on the many side, replacing a table by an extra 
attribute in the relation corresponding to the “many” side could result in null 
values

• The table corresponding to a relationship set linking a weak entity set to its 
identifying strong entity set is redundant.

• E.g. The payment table already contains the information that would appear in the 
loan-payment table (i.e., the columns loan-number and payment-number).



Relational Model

• Structure of Relational Databases

• Relational Algebra

• Tuple Relational Calculus

• Domain Relational Calculus

• Extended Relational-Algebra-Operations

• Modification of the Database

• Views



Example of a Relation



Basic Structure

• Formally, given sets D1, D2, …. Dn a relation r is a subset of 
D1 x  D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where 
each ai   Di

• Example:  if

  customer-name = {Jones, Smith, Curry, Lindsay}
 customer-street = {Main, North, Park}
 customer-city     = {Harrison, Rye, Pittsfield}
Then r = {   (Jones, Main, Harrison), 
                   (Smith, North, Rye),
                   (Curry, North, Rye),
                   (Lindsay, Park, Pittsfield)}
 is a relation over customer-name x customer-street x customer-city



Attribute Types

• Each attribute of a relation has a name

• The set of allowed values for each attribute is called the domain of 
the attribute

• Attribute values are (normally) required to be atomic, that is, 
indivisible
• E.g. multivalued attribute values are not atomic

• E.g. composite attribute values are not atomic

• The special value null  is a member of every domain

• The null value causes complications in the definition of many 
operations
•  we shall ignore the effect of null values in our main presentation and 

consider their effect later



Relation Schema

• A1, A2, …, An are attributes

• R = (A1, A2, …, An ) is a relation schema

  E.g.   Customer-schema =
                     (customer-name, customer-street, customer-city)

• r(R) is a relation on the relation schema R

  E.g. customer (Customer-schema)



Relation Instance

• The current values (relation instance) of a relation are specified by a 
table

• An element t of r is a tuple, represented by a row in a table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes
(or columns)

tuples
(or rows)



Relations are Unordered
 Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
 E.g. account relation with unordered tuples



Database
• A database consists of multiple relations

• Information about an enterprise is broken up into parts, with each 
relation storing one part of the information

 E.g.:   account :    stores information about accounts
                   depositor : stores information about which customer
                                     owns which account 
                   customer : stores information about customers

• Storing all information as a single relation such as 
   bank(account-number, balance, customer-name, ..)
results in
• repetition of information (e.g. two customers own an account)

• the need for null values  (e.g. represent a customer without an account)

• Normalization theory (Chapter 7) deals with how to design relational 
schemas



The customer Relation



The depositor Relation



E-R Diagram for the Banking Enterprise



Keys

• Let K  R

• K is a superkey of R if values for K are sufficient to identify a unique 
tuple of each possible relation r(R) 
• by “possible r” we mean a relation r that could exist in the enterprise we 

are modeling.

• Example:  {customer-name, customer-street} and
                 {customer-name} 
are both superkeys of Customer, if no two customers can possibly have 
the same name.

• K is a candidate key if K is minimal
Example:  {customer-name} is a candidate key for Customer, since it 
is a superkey (assuming no two customers can possibly have the 
same name), and no subset of it is a superkey.



Determining Keys from E-R Sets

• Strong entity set.  The primary key of the entity set becomes the 
primary key of the relation.

• Weak entity set.  The primary key of the relation consists of the 
union of the primary key of the strong entity set and the 
discriminator of the weak entity set.

• Relationship set.  The union of the primary keys of the related    
entity sets becomes a super key of the relation.
• For binary many-to-one relationship sets, the primary key of the “many” 

entity set becomes the relation’s primary key.

• For one-to-one relationship sets, the relation’s primary key can be that of 
either entity set.

• For many-to-many relationship sets, the union of the primary keys 
becomes the relation’s primary key



Schema Diagram for the Banking Enterprise



Query Languages

• Language in which user requests information from the database.

• Categories of languages
• procedural

• non-procedural

• “Pure” languages:
• Relational Algebra

• Tuple Relational Calculus

• Domain Relational Calculus

• Pure languages form underlying basis of query languages that 
people use.



Relational Algebra

• Procedural language

• Six basic operators
• select

• project

• union

• set difference

• Cartesian product

• rename

• The operators take two or more relations as inputs and give a new 
relation as a result.



Select Operation – Example
• Relation r A B C D

1

5

12

23

7

7

3

10

• A=B ^ D > 5 (r)
A B C D

1

23

7

10



Select Operation
• Notation:   p(r)

• p is called the selection predicate

• Defined as:

    p(r) = {t | t  r and p(t)}

 Where p is a formula in propositional calculus consisting of 
terms connected by :  (and),  (or),  (not)
Each term is one of:

  <attribute> op <attribute> or <constant>

     where op is one of:  =, , >, . <. 

• Example of selection:
   branch-name=“Perryridge”(account)



Project Operation – Example

• Relation r: A B C

10

20

30

40

1

1

1

2

A C

1

1

1

2

=

A C

1

1

2

n A,C (r)



Project Operation

• Notation:

 A1, A2, …, Ak (r)

 where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by 
erasing the columns that are not listed

• Duplicate rows removed from result, since relations are sets

• E.g. To eliminate the branch-name attribute of account
          account-number, balance (account) 



Union Operation – Example
• Relations r, s:

r  s:

A B

1

2

1

A B

2

3

r

s

A B

1

2

1

3



Union Operation

• Notation:  r  s

• Defined as: 

  r   s = {t | t  r or t  s}

• For r  s to be valid.

 1.  r, s must have the same arity (same number of attributes)

 2.  The attribute domains must be compatible (e.g., 2nd column 
     of r deals with the same type of values as does the 2nd 
     column of s)

• E.g. to find all customers with either an account or a loan
    customer-name (depositor)    customer-name (borrower)



Set Difference Operation – Example

• Relations r, s:

r – s:

A B

1

2

1

A B

2

3

r

s

A B

1

1



Set Difference Operation

• Notation r – s

• Defined as:

   r – s  = {t | t  r and t  s} 

• Set differences must be taken between compatible relations.
• r and s must have the same arity

• attribute domains of r and s must be compatible



Cartesian-Product Operation-Example

Relations r, s:

r x s:

A B

1

2

A B

1
1
1
1
2
2
2
2

C D

 
10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

C D

10
10
20
10

E

a
a
b
br

s



Cartesian-Product Operation

• Notation r x s

• Defined as:

  r x s = {t q | t  r and q  s}

• Assume that attributes of r(R) and s(S) are disjoint.  (That is, 
R  S = ).

• If attributes of r(R) and s(S) are not disjoint, then renaming must be 
used.



Composition of Operations

• Can build expressions using multiple operations

• Example:  A=C(r x s)

• r x s

• A=C(r x s)

A B

1
1
1
1
2
2
2
2

C D

 

 

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E

1
2
2

10
20
20

a
a
b



Rename Operation

• Allows us to name, and therefore to refer to, the results of relational-
algebra expressions.

• Allows us to refer to a relation by more than one name.

Example:

     x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then 

                                          x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.



Banking Example
branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)



Example Queries
• Find all loans of over $1200

                       

Find the loan number for each loan of an amount greater than                             
    $1200

                     

amount > 1200 (loan)

loan-number ( amount > 1200 (loan))



Example Queries

• Find the names of all customers who have a loan, an account, or both, 
from the bank

Find the names of all customers who have a loan and an 
   account at bank.

customer-name (borrower)  customer-name (depositor)

customer-name (borrower)  customer-name (depositor)



Example Queries

• Find the names of all customers who have a loan at the Perryridge branch.

  Find the names of all customers who have a loan at the 
    Perryridge branch but do not have an account at any branch of   
    the bank.

customer-name ( branch-name = “Perryridge”

    ( borrower.loan-number = loan.loan-number(borrower x loan)))  –           

     customer-name(depositor)

customer-name ( branch-name=“Perryridge”

    ( borrower.loan-number = loan.loan-number(borrower x loan)))



Example Queries
• Find the names of all customers who have a loan at the Perryridge branch.

 Query 2

     customer-name( loan.loan-number = borrower.loan-number(
             ( branch-name = “Perryridge”(loan)) x  borrower))

−Query 1

  customer-name( branch-name = “Perryridge” (
  borrower.loan-number = loan.loan-number(borrower x loan)))



Example Queries

Find the largest account balance

• Rename account relation as d

• The query is:

     

balance(account) - account.balance
    ( account.balance < d.balance (account x d (account)))



Formal Definition

• A basic expression in the relational algebra consists of either one of 
the following:
• A relation in the database
• A constant relation

• Let E1 and E2 be relational-algebra expressions; the following are all 
relational-algebra expressions:
• E1  E2

• E1 - E2

• E1 x E2

• p (E1), P is a predicate on attributes in E1

• s(E1), S is a list consisting of some of the attributes in E1
•  x (E1), x is the new name for the result of E1



Additional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

• Set intersection

• Natural join

• Division

• Assignment



Set-Intersection Operation

• Notation: r  s

• Defined as:

• r  s ={ t | t  r and t  s }

• Assume: 
• r, s have the same arity 

• attributes of r and s are compatible

• Note: r  s = r - (r - s)



Set-Intersection Operation - Example
• Relation r, s:

• r  s

A       B

1
2
1

A       B

2
3

r s

A       B

      2



    Notation:  r     s

Natural-Join Operation

• Let r and s be relations on schemas R and S respectively. 
Then,  r     s  is a relation on schema R  S obtained as follows:
• Consider each pair of tuples tr from r and ts from s.  

• If tr and ts have the same value on each of the attributes in R  S, add a tuple t  to 
the result, where

• t has the same value as tr on r

• t has the same value as ts on s

• Example:
R = (A, B, C, D)

S = (E, B, D)

• Result schema = (A, B, C, D, E)

• r     s is defined as:

      r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x  s))



Natural Join Operation – Example

• Relations r, s:

A B

1
2
4
1
2

C D

a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E

r

A B

1
1
1
1
2

C D

a
a
a
a
b

E

s

r     s



Division Operation

• Suited to queries that include the phrase “for all”.

• Let r and s be relations on schemas R and S respectively where
• R = (A1, …, Am, B1, …, Bn)

• S = (B1, …, Bn)

The result of  r  s is a relation on schema

R – S = (A1, …, Am)

  r  s = { t  |  t   R-S(r)   u  s ( tu  r ) } 

r  s 



Division Operation – Example

Relations r, s:

r  s: A

B

1

2

A B

1
2
3
1
1
1
3
4
6
1
2

r

s



Another Division Example

A B

a
a
a
a
a
a
a
a

C D

a
a
b
a
b
a
b
b

E

1
1
1
1
3
1
1
1

Relations r, s:

r  s:

D

a
b

E

1
1

A B

a
a

C

r

s



Division Operation (Cont.)

• Property 
• Let q – r  s

• Then q is the largest relation satisfying q x s  r

• Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S  R

 r  s = R-S (r) –R-S ( (R-S (r) x s) – R-S,S(r))

 To see why
• R-S,S(r) simply reorders attributes of r

• R-S(R-S (r) x s) – R-S,S(r)) gives those tuples t in 

 R-S (r) such that for some tuple u  s, tu  r.



Assignment Operation

• The assignment operation () provides a convenient way to express 
complex queries. 

•  Write query as a sequential program consisting of

• a series of assignments 

• followed by an expression whose value is displayed as a result of the query.

• Assignment must always be made to a temporary relation variable.

• Example:  Write r  s as 

   temp1  R-S (r) 

  temp2  R-S  ((temp1 x s) – R-S,S (r))

  result = temp1 – temp2

• The result to the right of the  is assigned to the relation variable on the 

left of the .

• May use variable in subsequent expressions.



Example Queries
• Find all customers who have an account from at least the “Downtown” 

and the Uptown” branches.

where CN denotes customer-name and BN denotes 

branch-name.

Query 1

CN( BN=“Downtown”(depositor    account)) 

        CN( BN=“Uptown”(depositor    account))

Query 2

 customer-name, branch-name (depositor     account)

          temp(branch-name) ({(“Downtown”), (“Uptown”)})



Example Queries

• Find all customers who have an account at all branches located in 

Brooklyn city.

customer-name, branch-name (depositor     account)

  branch-name ( branch-city = “Brooklyn” (branch))



Extended Relational-Algebra-Operations

• Generalized Projection

• Outer Join

• Aggregate Functions



Generalized Projection

• Extends the projection operation by allowing arithmetic functions 
to be used in the projection list.

  F1, F2, …, Fn(E)

• E is any relational-algebra expression

• Each of F1, F2, …, Fn are are arithmetic expressions involving 
constants and attributes in the schema of E.

• Given relation credit-info(customer-name, limit, credit-balance), find 
how much more each person can spend: 

  customer-name, limit – credit-balance (credit-info)



Aggregate Functions and Operations

• Aggregation function takes a collection of values and returns a single 
value as a result.

  avg:  average value
 min:  minimum value
 max:  maximum value
 sum:  sum of values
 count:  number of values

• Aggregate operation in relational algebra 

  G1, G2, …, Gn g F1( A1), F2( A2),…, Fn( An) (E)
• E is any relational-algebra expression
• G1, G2 …, Gn is a list of attributes on which to group (can be empty)

• Each Fi is an aggregate function

• Each Ai is an attribute name



Aggregate Operation – Example

• Relation r:

A B C

7

7

3

10

g sum(c) (r)
sum-C

27



Aggregate Operation – Example
• Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700



Aggregate Functions (Cont.)

• Result of aggregation does not have a name
• Can use rename operation to give it a name

• For convenience, we permit renaming as part of aggregate operation

branch-name g sum(balance) as sum-balance (account)



Outer Join

• An extension of the join operation that avoids loss of information.

• Computes the join and then adds tuples form one relation that 
does not match tuples in the other relation to the result of the join. 

• Uses null values:
• null signifies that the value is unknown or does not exist 

• All comparisons involving null are (roughly speaking) false by definition.

• Will study precise meaning of comparisons with nulls later



Outer Join – Example

• Relation loan

Relation borrower

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount

L-170
L-230
L-260

branch-name

Downtown
Redwood
Perryridge



Outer Join – Example
• Inner Join

loan     Borrower

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

Jones
Smith
null

loan-number amount

L-170
L-230
L-260

3000
4000
1700

customer-namebranch-name

Downtown
Redwood
Perryridge

 Left Outer Join
    loan          Borrower



Outer Join – Example

• Right Outer Join

       loan borrower

loan borrower

 Full Outer Join

loan-number amount

L-170
L-230
L-155

3000
4000
null

customer-name

Jones
Smith
Hayes

branch-name

Downtown
Redwood
null

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

branch-name

Downtown
Redwood
Perryridge
null



Null Values

• It is possible for tuples to have a null value, denoted by null, for 
some of their attributes

• null signifies an unknown value or that a value does not exist.

• The result of any arithmetic expression involving null is null.

• Aggregate functions simply ignore null values
• Is an arbitrary decision.  Could have returned null as result instead.

• We follow the semantics of SQL in its handling of null values

• For duplicate elimination and grouping, null is treated like any 
other value, and two nulls are assumed to be  the same
• Alternative: assume each null is different from each other

• Both are arbitrary decisions,  so we simply follow SQL



Null Values
• Comparisons with null values return the special truth value unknown

• If false was used instead of unknown, then    not (A < 5) 
               would not be equivalent to               A >= 5

• Three-valued logic using the truth value unknown:
• OR: (unknown or true)         = true, 

       (unknown or false)        = unknown
       (unknown or unknown) = unknown

• AND:   (true and unknown)         = unknown,   
           (false and unknown)        = false,
           (unknown and unknown) = unknown

• NOT:  (not unknown) = unknown

• In SQL “P is unknown” evaluates to true if predicate P evaluates to unknown

• Result of select predicate is treated as false if it evaluates to unknown



Modification of the Database

• The content of the database may be modified using the following 
operations:
• Deletion

• Insertion

• Updating

• All these operations are expressed using the assignment operator.



Deletion

• A delete request is expressed similarly to a query, except instead of 
displaying tuples to the user, the selected tuples are removed from 
the database.

• Can delete only whole tuples; cannot delete values on only 
particular attributes

• A deletion is expressed in relational algebra by:

  r  r – E

 where r is a relation and E is a relational algebra query.



Deletion Examples

• Delete all account records in the Perryridge branch.

Delete all accounts at branches located in Needham.

r1  branch-city = “Needham” (account      branch)

r2  branch-name, account-number, balance (r1)

r3   customer-name, account-number (r2     depositor)
account  account – r2

depositor  depositor – r3

Delete all loan records with amount in the range of 0 to 50

loan  loan – amount 0 and amount  50 (loan)

account  account – branch-name = “Perryridge” (account)



Insertion

• To insert data into a relation, we either:
• specify a tuple to be inserted

• write a query whose result is a set of tuples to be inserted

• in relational algebra, an insertion is expressed by:

  r  r    E

 where r is a relation and E is a relational algebra expression.

• The insertion of a single tuple is expressed by letting E be a 
constant relation containing one tuple. 



Insertion Examples

• Insert information in the database specifying that Smith has $1200 in 
account A-973 at the Perryridge branch.

  Provide as a gift for all loan customers in the Perryridge
     branch, a $200 savings account.  Let the loan number serve
     as the account number for the new savings account.

account  account   {(“Perryridge”, A-973, 1200)}
depositor  depositor   {(“Smith”, A-973)}

r1  ( branch-name = “Perryridge” (borrower    loan))
account  account  branch-name, account-number,200 (r1)
depositor  depositor  customer-name, loan-number(r1)



Updating

• A mechanism to change a value in a tuple without charging all 
values in the tuple

• Use the generalized projection operator to do this task

  r   F1, F2, …, FI, (r)

• Each Fi is either 
• the ith attribute of r, if the ith attribute is not updated, or,

• if the attribute is to be updated Fi is an expression, involving only 
constants and the attributes of r, which gives the new value for the 
attribute



Update Examples
• Make interest payments by increasing all balances by 5 percent.

  Pay all accounts with balances over $10,000 6 percent interest 
     and pay all others 5 percent 

account       AN, BN, BAL * 1.06 (  BAL  10000 (account))

                         AN, BN, BAL * 1.05 ( BAL  10000 (account))

account   AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name and 
balance, respectively.



Views

• In some cases, it is not desirable for all users to see the entire logical 
model (i.e., all the actual relations stored in the database.)

• Consider a person who needs to know a customer’s loan number but 
has no need to see the loan amount.  This person should see a relation 
described, in the relational algebra, by 

  customer-name, loan-number (borrower    loan)

• Any relation that is not of the conceptual model but is made visible to a 
user as a “virtual relation” is called a view.



View Definition

• A view is defined using the create view statement which has the 
form

  create view v as <query expression

 where <query expression> is any legal relational algebra query 
expression.  The view name is represented by v.

• Once a view is defined, the view name can be used to refer to the 
virtual relation that the view generates.

• View definition is not the same as creating a new relation by 
evaluating the query expression  
• Rather, a view definition causes the saving of an expression; the 

expression is substituted into queries using the view.



View Examples
• Consider the view (named all-customer) consisting of branches and 

their customers.

  We can find all customers of the Perryridge branch by writing:

create view all-customer as
  branch-name, customer-name (depositor    account)
            branch-name, customer-name (borrower    loan)

branch-name 
 ( branch-name = “Perryridge” (all-customer)) 



Updates Through View

• Database modifications expressed as views must be translated to 
modifications of the actual relations in the database.

• Consider the person who needs to see all loan data in the loan relation 
except amount.  The view given to the person, branch-loan, is defined 
as: 

   create view branch-loan as

    branch-name, loan-number (loan)

• Since we allow a view name to appear wherever a relation name is 
allowed, the person may write:

  branch-loan  branch-loan  {(“Perryridge”, L-37)}

 



Updates Through Views (Cont.)
• The previous insertion must be represented by an insertion into the actual 

relation loan from which the view branch-loan is constructed.

• An insertion into loan requires a value for amount. The insertion can be 
dealt with by either.
• rejecting the insertion and returning an error message to the user.

• inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

• Some updates through views are impossible to translate into database 
relation updates
• create view v as branch-name = “Perryridge” (account))

     v  v  (L-99, Downtown, 23)

• Others cannot be translated uniquely
• all-customer  all-customer   {(“Perryridge”, “John”)}

• Have to choose loan or account, and 
create a new loan/account number!



Views Defined Using Other Views

• One view may be used in the expression defining another view 

• A view relation v1 is said to depend directly on a view relation v2 if v2 
is used in the expression defining v1

• A view relation v1 is said to depend on view relation v2 if either v1 

depends directly to v2 or there is a path of dependencies from v1 
to v2 

• A view relation v is said to be recursive if it depends on itself.



View Expansion

• A way to define the meaning of views defined in terms of other 
views.

• Let view v1 be defined by an expression e1 that may itself contain 
uses of view relations.

• View expansion of an expression repeats the following replacement 
step:

  repeat
  Find any view relation vi in e1
  Replace the view relation vi by the expression defining vi 
 until no more view relations are present in e1

• As long as the view definitions are not recursive, this loop will 
terminate



Tuple Relational Calculus• A nonprocedural query language, where each query is of the form

  {t | P (t) }

• It is the set of all tuples t such that predicate P is true for t

• t is a tuple variable, t[A] denotes the value of tuple t on attribute A

• t  r denotes that tuple t is in relation r

• P is a formula similar to that of the predicate calculus



Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators:  (e.g., , , =, , , )

3. Set of connectives:  and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

    x  y  x v y

5. Set of quantifiers:
 t  r (Q(t))  ”there exists” a tuple in t in relation r

                        such that predicate Q(t) is true

t  r (Q(t))  Q is true “for all” tuples t in relation r



Banking Example

• branch (branch-name, branch-city, assets) 

• customer (customer-name, customer-street, customer-city) 

• account (account-number, branch-name, balance) 

• loan (loan-number, branch-name, amount)

• depositor (customer-name, account-number)

• borrower (customer-name, loan-number)



Example Queries
• Find the loan-number, branch-name, and amount for loans of over 

$1200

Find the loan number for each loan of an amount greater than $1200

Notice that a relation on schema [loan-number] is implicitly defined by 
the query

{t |  s loan (t[loan-number] = s[loan-number]  s [amount]  1200)}

{t | t  loan  t [amount]  1200}



Example Queries

• Find the names of all customers having a loan, an account, or both at 
the bank

{t | s  borrower( t[customer-name] = s[customer-name])
       u  depositor( t[customer-name] = u[customer-name])

   Find the names of all customers who have a loan and an account 
      at the bank

{t | s  borrower( t[customer-name] = s[customer-name])
      u  depositor( t[customer-name] = u[customer-name])



Example Queries

• Find the names of all customers having a loan at the Perryridge branch

{t | s  borrower( t[customer-name] = s[customer-name]
        u  loan(u[branch-name] = “Perryridge”
                             u[loan-number] = s[loan-number]))
        not v  depositor (v[customer-name] = 
                                                      t[customer-name]) }

  Find the names of all customers who have a loan at the 
     Perryridge branch, but no account at any branch of the bank

{t | s  borrower(t[customer-name] = s[customer-name] 
      u  loan(u[branch-name] = “Perryridge”
                           u[loan-number] = s[loan-number]))}



Example Queries

• Find the names of all customers having a loan from the Perryridge 
branch, and the cities they live in

{t | s  loan(s[branch-name] = “Perryridge”
         u  borrower (u[loan-number] = s[loan-number]
       t [customer-name] = u[customer-name])
              v  customer (u[customer-name] = v[customer-name]
                                    t[customer-city] = v[customer-city])))}



Example Queries

• Find the names of all customers who have an account at all branches 
located in Brooklyn:

{t |  c  customer (t[customer.name] = c[customer-name]) 
        s  branch(s[branch-city] = “Brooklyn”  
            u  account ( s[branch-name] = u[branch-name]
             s  depositor (  t[customer-name] = s[customer-name]
                               s[account-number] = u[account-number] )) )}



Safety of Expressions

• It is possible to write tuple calculus expressions that generate 
infinite relations.

• For example, {t |  t  r} results in an infinite relation if the domain 
of any attribute of relation r is infinite

• To guard against the problem, we restrict the set of allowable 
expressions to safe expressions.

• An expression {t | P(t)} in the tuple relational calculus is safe if every 
component of t appears in one of the relations, tuples, or constants 
that appear in P
• NOTE: this is more than just a syntax condition. 

• E.g. { t | t[A]=5  true } is not safe --- it defines an infinite set with attribute 
values that do not appear in any relation or tuples or constants in P. 



Domain Relational Calculus

• A nonprocedural query language equivalent in power to the tuple 
relational calculus

• Each query is an expression of the form:

   {  x1, x2, …, xn  | P(x1, x2, …, xn)}

• x1, x2, …, xn represent domain variables

• P represents a formula similar to that of the predicate calculus



Safety of Expressions

  {  x1, x2, …, xn  | P(x1, x2, …, xn)}

is safe if all of the following hold:

 1. All values that appear in tuples of the expression are values  
from dom(P) (that is, the values appear either in P or in a tuple  of 
a relation mentioned in P).

 2. For every “there exists” subformula of the form  x (P1(x)), the 
 subformula is true if and only if there is a value of x in dom(P1)

  such that P1(x) is true.

     3. For every “for all” subformula of the form x (P1 (x)), the      
   subformula is true if and only if P1(x) is true for all values x 
   from dom (P1).



SQL
Basic Structure 

Set Operations

Aggregate Functions

Null Values

Nested Subqueries

Derived Relations

Views

Modification of  the Database 

Joined Relations

Data Definition Language 



Schema Used in Examples



Basic Structure 
SQL is based on set and relational operations with certain 

modifications and enhancements

A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

Ais represent attributes

ris represent relations

P is a predicate.

This query is equivalent to the relational algebra expression.

A1, A2, ..., An(P (r1 x r2    x  ...  x  rm))

The result of  an SQL query is a relation.



The select ClauseThe select clause list the attributes desired in the result of  a query

corresponds to the projection operation of  the relational algebra

E.g. find the names of  all branches in the loan relation
select branch-name
from loan

In the “pure” relational algebra syntax, the query would be: 

branch-name(loan)

NOTE: SQL does not permit the ‘-’ character in names, 

Use, e.g., branch_name instead of  branch-name in a real implementation.  

We use ‘-’ since it looks nicer!

NOTE:  SQL names are case insensitive, i.e. you can use capital or 
small letters.  

You may wish to use upper case where-ever we use bold font.



The select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.

To force the elimination of  duplicates, insert the keyword distinct 

after select.

Find the names of  all branches in the loan relations, and remove 

duplicates

select distinct branch-name

from loan

The keyword all specifies that duplicates not be removed.

select all branch-name

from loan



The select Clause (Cont.)

An asterisk in the select clause denotes “all attributes”

select *
from loan

The select clause can contain arithmetic expressions involving the 
operation, +, –, , and /, and operating on constants or attributes 
of  tuples.

The query: 

select loan-number, branch-name, amount  100
from loan

would return a relation which is the same as the loan relations, 
except that the attribute amount is multiplied by 100.



The where Clause

The where clause specifies conditions that the result must satisfy

corresponds to the selection predicate of  the relational algebra.  

To find all loan number for loans made at the Perryridge branch 

with loan amounts greater than $1200.

select loan-number

from loan

where branch-name = ‘Perryridge’ and amount > 1200

Comparison results can be combined using the logical connectives 

and, or, and not.

Comparisons can be applied to results of  arithmetic expressions.



The where Clause (Cont.)
SQL includes a between comparison operator

E.g.  Find the loan number of  those loans with loan amounts between 

$90,000 and $100,000 (that is, $90,000 and $100,000)

select loan-number

 from loan

 where amount between 90000 and 100000



The from Clause
The from clause lists the relations involved in the query

corresponds to the Cartesian product operation of  the relational algebra.

Find the Cartesian product borrower x loan select 

from borrower, loan

   Find the name, loan number and loan amount of all customers   
     having a loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount

 from borrower, loan

 where  borrower.loan-number = loan.loan-number  and

                  branch-name = ‘Perryridge’



The Rename Operation
The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

Find the name, loan number and loan amount of  all customers; 

rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number



Tuple Variables
Tuple variables are defined in the from clause via the use of  the as 

clause.

Find the customer names and their loan numbers for all customers 

having a loan at some branch.

select distinct T.branch-name

    from branch as T, branch as S

    where T.assets > S.assets and S.branch-city = ‘Brooklyn’

    Find the names of all branches that have greater assets than 
      some branch located in Brooklyn.

select customer-name, T.loan-number, S.amount
          from borrower as T, loan as S
          where T.loan-number = S.loan-number



String Operations
SQL includes a string-matching operator for comparisons on character 
strings.  Patterns are described using two special characters:

percent (%).  The % character matches any substring.

underscore (_).  The _ character matches any character.

Find the names of  all customers whose street includes the substring 
“Main”.

select customer-name
from customer
where customer-street like ‘%Main%’

Match the name “Main%”

like ‘Main\%’ escape  ‘\’

SQL supports a variety of  string operations such as

concatenation (using “||”)

converting from upper to lower case (and vice versa)

finding string length, extracting substrings, etc.



Ordering the Display of  Tuples
List in alphabetic order the names of  all customers having a loan in 

Perryridge branch

select distinct customer-name

from    borrower, loan

where borrower loan-number - loan.loan-number and

branch-name = ‘Perryridge’
order by customer-name

We may specify desc for descending order or asc for ascending 

order, for each attribute; ascending order is the default.

E.g.  order by customer-name desc



Duplicates

In relations with duplicates, SQL can define how many copies of  

tuples appear in the result.

Multiset versions of  some of  the relational algebra operators –

given multiset relations r1 and r2:

1.  (r1): If  there are c1 copies of  tuple t1 in r1, and t1 satisfies 

selections ,, then there are c1 copies of  t1 in  (r1).

2. A(r): For each copy of  tuple t1 in r1, there is a copy of  tuple A(t1)

in A(r1) where A(t1) denotes the projection of  the single tuple t1.

3. r1 x r2 : If  there are c1 copies of  tuple t1 in r1 and c2 copies of  tuple t2

in r2, there are c1 x c2 copies of  the tuple t1. t2 in r1 x r2



Duplicates (Cont.)
Example: Suppose multiset relations r1 (A, B) and r2 (C) are as 
follows:

r1 = {(1, a) (2,a)}     r2 = {(2), (3), (3)}

Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

SQL duplicate semantics: 

select A1,, A2, ..., An

from r1, r2, ..., rm
where P

is equivalent to the multiset version of  the expression:

 A1,, A2, ..., An(P (r1 x r2 x ... x rm))



Set Operations

The set operations union, intersect, and except operate on 
relations and correspond to the relational algebra operations 
  −

Each of  the above operations automatically eliminates 
duplicates; to retain all duplicates use the corresponding multiset 
versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it 
occurs:

m + n times in r union all s

min(m,n) times in r intersect all s

max(0, m – n) times in r except all s



Set Operations
Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
 except
 (select customer-name from borrower)

(select customer-name from depositor)

 intersect
 (select customer-name from borrower)

   Find all customers who have an account but no loan. 

(select customer-name from depositor)

 union
 (select customer-name from borrower)

    Find all customers who have both a loan and an account.



Aggregate Functions

These functions operate on the multiset of  values of  a column of  

a relation, and return a value

avg: average value

min:  minimum value

max:  maximum value

sum:  sum of  values

count:  number of  values



Aggregate Functions (Cont.)
Find the average account balance at the Perryridge branch.

   Find the number of depositors in the bank.

   Find the number of tuples in the customer relation.

select avg (balance)

 from account
 where branch-name = ‘Perryridge’

select count (*)
 from customer

select count (distinct customer-name)

 from depositor



Aggregate Functions – Group By
Find the number of  depositors for each branch.

Note:  Attributes in select clause outside of aggregate functions must         
           appear in group by list

select branch-name, count (distinct customer-name)

 from depositor, account

 where depositor.account-number = account.account-number
 group by branch-name



Aggregate Functions – Having Clause

Find the names of  all branches where the average account balance is 

more than $1,200.

Note:  predicates in the having clause are applied after the 

           formation of groups whereas predicates in the where 

          clause are applied before forming groups

select branch-name, avg (balance)

 from account

 group by branch-name
 having avg (balance) > 1200



Null Values
It is possible for tuples to have a null value, denoted by null, for 
some of  their attributes

null signifies an unknown value or that a value does not exist.

The predicate  is null can be used to check for null values.

E.g. Find all loan number which appear in the loan relation with null 
values for amount.

select loan-number
from loan
where amount is null

The result of  any arithmetic expression involving null is null

E.g.  5 + null  returns null

However, aggregate functions simply ignore nulls

more on this shortly



Null Values and Three Valued Logic

Any comparison with null returns unknown

E.g.  5 < null   or   null <> null    or    null = null

Three-valued logic using the truth value unknown:

OR: (unknown or true) = true, (unknown or false) = unknown

(unknown or unknown) = unknown

AND: (true and unknown) = unknown,    (false and unknown) = false,

(unknown and unknown) = unknown

NOT:  (not unknown) = unknown

“P is unknown” evaluates to true if  predicate P evaluates to unknown

Result of  where clause predicate is treated as false if  it evaluates to

unknown



Null Values and Aggregates
Total all loan amounts

select sum (amount)

from loan

Above statement ignores null amounts

result is null if  there is no non-null amount, that is the  

All aggregate operations except count(*) ignore tuples with null 

values on the aggregated attributes.



Nested SubqueriesSQL provides a mechanism for the nesting of  subqueries.

A subquery is a select-from-where expression that is nested 

within another query.

A common use of  subqueries is to perform tests for set 

membership, set comparisons, and set cardinality.



Example Query
Find all customers who have both an account and a loan at the 

bank.

   Find all customers who have a loan at the bank but do not have 
     an account at the bank

select distinct customer-name

 from borrower

 where customer-name not in (select customer-name
                                                             from depositor)

select distinct customer-name

 from borrower

 where customer-name in (select customer-name
                                                       from depositor)



Example Query
Find all customers who have both an account and a loan at the 

Perryridge branch

  Note: Above query can be written in a much simpler manner.  The 

               formulation above is simply to illustrate SQL features.

(Schema used in this example)

select distinct customer-name

 from borrower, loan

 where borrower.loan-number = loan.loan-number and

          branch-name = “Perryridge” and

                 (branch-name, customer-name) in

   (select branch-name, customer-name

   from depositor, account

   where depositor.account-number = 
                                     account.account-number)



Set Comparison
Find all branches that have greater assets than some branch located 

in Brooklyn.

  Same query using > some clause

select branch-name

 from branch

 where assets > some

  (select assets

   from branch

                where branch-city = ‘Brooklyn’)

select distinct T.branch-name

 from branch as T, branch as S

 where T.assets > S.assets and

              S.branch-city = ‘Brooklyn’



Definition of   Some Clause
F <comp> some r   t  r s.t. (F <comp> t)

Where <comp> can be:     = 

0

5

6

(5< some ) = true

0
5

0

) = false

5

0

5(5  some ) = true (since 0  5)

(read:  5 < some tuple in the relation)

(5< some

) = true(5 = some

(= some)  in
However, ( some)  not in



Definition of  all Clause

F <comp> all r   t  r (F <comp> t)

0

5

6

(5< all ) = false

6
10

4

) = true

5

4

6(5  all ) = true (since 5  4 and 5  6)

(5< all

) = false(5 = all

( all)  not in
However, (= all)  in



Example Query
Find the names of  all branches that have greater assets than all 

branches located in Brooklyn.

select branch-name

 from branch

 where assets > all

  (select assets

  from branch
  where branch-city = ‘Brooklyn’)



Test for Empty Relations
The exists construct returns the value true if  the argument 

subquery is nonempty.

exists r  r  Ø

not exists r  r = Ø



Example Query
Find all customers who have an account at all branches located in 

Brooklyn.

select distinct S.customer-name

 from depositor as S

 where not exists (

  (select branch-name

  from branch

  where branch-city = ‘Brooklyn’)

           except

  (select R.branch-name

  from depositor as T, account as R

  where T.account-number = R.account-number and

   S.customer-name = T.customer-name))

   (Schema used in this example)

   Note that X – Y = Ø      X  Y

   Note: Cannot write this query using = all and its variants



Test for Absence of  Duplicate 

Tuples
The unique construct tests whether a subquery has any duplicate 
tuples in its result.

Find all customers who have at most one account at the Perryridge 
branch.

select T.customer-name
from depositor as T
where unique (

select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and

R.account-number = account.account-number and
account.branch-name = ‘Perryridge’)

(Schema used in this example)



Example Query
Find all customers who have at least two accounts at the Perryridge 

branch. 

select distinct T.customer-name

from depositor T

where not unique (

 select R.customer-name

 from account, depositor as R

 where T.customer-name = R.customer-name 

and

 R.account-number = account.account-number  

and

 account.branch-name = ‘Perryridge’)

(Schema used in this example)



Views
Provide a mechanism to hide certain data from the view of  certain 

users.  To create a view we use the command:

create view v as <query expression>

where:

<query expression> is any legal expression

The view name is represented by v



Example Queries
A view consisting of  branches and their customers

   Find all customers of the Perryridge branch

create view all-customer as

  (select branch-name, customer-name

   from depositor, account

   where depositor.account-number = account.account-number)

    union

 (select branch-name, customer-name

  from borrower, loan
  where borrower.loan-number = loan.loan-number)

select customer-name

 from all-customer
 where branch-name = ‘Perryridge’



Derived Relations

Find the average account balance of  those branches where the 
average account balance is greater than $1200.

select branch-name, avg-balance
from (select branch-name, avg (balance)

from account
group by branch-name)
as result (branch-name, avg-balance)

where avg-balance > 1200

Note that we do not need to use the having clause, since we 
compute the temporary (view) relation result in the from clause, 
and the attributes of  result can be used directly in the where 
clause.



With Clause
With clause allows views to be defined locally to a query, rather 

than globally.  Analogous to procedures in a programming 

language.

Find all accounts with the maximum balance 

with max-balance(value) as

select max (balance)

from account

select account-number

from account, max-balance

where account.balance = max-balance.value



Complex Query using With 

ClauseFind all branches where the total account deposit is greater than the 

average of  the total account deposits at all branches.

with branch-total (branch-name, value) as

   select branch-name, sum (balance)

   from account

   group by branch-name

    with branch-total-avg(value) as

   select avg (value)

   from branch-total

    select branch-name

    from branch-total, branch-total-avg 
    where branch-total.value >= branch-total-avg.value



Modification of  the Database – Deletion

Delete all account records at the Perryridge branch

delete from account
where branch-name = ‘Perryridge’

Delete all accounts at every branch located in Needham city.

delete from account
where branch-name in (select branch-name

from branch
where branch-city = ‘Needham’)

delete from depositor
where account-number in 

(select account-number
from branch, account
where branch-city = ‘Needham’

and branch.branch-name = account.branch-name)

(Schema used in this example)



Example Query
Delete the record of  all accounts with balances below the average at 

the bank.

delete from account

           where balance < (select avg (balance)

      from account)

   Problem:  as we delete tuples from deposit, the average balance 

     changes

   Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or   

       retesting the tuples)



Modification of  the Database –

Insertion

Add a new tuple to account

insert into account

values (‘A-9732’, ‘Perryridge’,1200)

or equivalently

insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, ‘A-9732’)

Add a new tuple to account with balance set to null

insert into account

values (‘A-777’,‘Perryridge’, null)



Modification of  the Database –

Insertion
Provide as a gift for all loan customers of  the Perryridge branch, a 

$200 savings account.  Let the loan number serve as the account 

number for the new savings account

insert into account

select loan-number, branch-name,  200

from loan

where branch-name = ‘Perryridge’

insert into depositor

select customer-name, loan-number

from loan, borrower

where branch-name = ‘Perryridge’

and loan.account-number = borrower.account-number

The select from where statement is fully evaluated before any of  its 

results are inserted into the relation (otherwise queries like

insert into table1 select * from table1

would cause problems



Modification of  the Database – Updates

Increase all accounts with balances over $10,000 by 6%, all other 
accounts receive 5%.

Write two update statements:

update account
set balance = balance  1.06
where balance > 10000

update account
set balance = balance  1.05
where balance  10000

The order is important

Can be done better using the case statement (next slide)



Case Statement for Conditional Updates

Same query as before: Increase all accounts with balances over 

$10,000 by 6%, all other accounts receive 5%.

update account

set balance =  case

when balance <= 10000 then balance *1.05

else balance * 1.06

end



Update of  a View
Create a view of  all loan data in loan relation, hiding the amount attribute

create view branch-loan as

select branch-name, loan-number

from loan

Add a new tuple to branch-loan

insert into branch-loan

values (‘Perryridge’, ‘L-307’)

This insertion must be represented by the insertion of  the tuple

(‘L-307’, ‘Perryridge’, null)

into the loan relation

Updates on more complex views are difficult or impossible to translate, 

and hence are disallowed. 

Most SQL implementations allow updates only on simple views (without 

aggregates) defined on a single relation



Transactions
A transaction is a sequence of  queries and update statements executed as a 

single unit

Transactions are started implicitly and terminated by one of

commit work: makes all updates of  the transaction permanent in the database

rollback work: undoes all updates performed by the transaction. 

Motivating example

Transfer of  money from one account to another involves two steps:

deduct from one account and credit to another

If  one steps succeeds and the other fails, database is in an inconsistent state

Therefore, either both steps should succeed or neither should

If  any step of  a transaction fails, all work done by the transaction can be 

undone by rollback work.  

Rollback of  incomplete transactions is done automatically, in case of  system 

failures 



Transactions (Cont.)

In most database systems, each SQL statement that executes 

successfully is automatically committed.  

Each transaction would then consist of  only a single statement

Automatic commit can usually be turned off, allowing multi-

statement transactions,  but how to do so depends on the database 

system

Another option in SQL:1999:  enclose statements within

begin atomic

… 

end



Joined Relations
Join operations take two relations and return as a result another 

relation.

These additional operations are typically used as subquery 

expressions in the from clause

Join condition – defines which tuples in the two relations match, 

and what attributes are present in the result of  the join.

Join type – defines how tuples in each relation that do not match 

any tuple in the other relation (based on the join condition) are 

treated.

Join Types

inner join

left outer join

right outer join

full outer join

Join Conditions

natural

on <predicate>

using (A1, A2, ..., An)



Joined Relations – Datasets for Examples

Relation loan

Relation borrower

customer-name loan-number 

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170 

L-230

L-260

Note: borrower information missing for L-260 and loan 

information missing for L-155



Joined Relations – Examples 
loan inner join borrower on

loan.loan-number = borrower.loan-number

loan left outer join borrower on

loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number 

Jones

Smith

L-170

L-230

loan-number 

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number 

Jones

Smith

null

L-170

L-230

null

loan-number 

L-170

L-230

L-260



Joined Relations – Examples
loan natural inner join borrower

loan natural right outer join borrower

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number 

L-170

L-230

branch-name amount

Downtown

Redwood

null 

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number 

L-170

L-230

L-155



Joined Relations – Examples
loan full outer join borrower using (loan-number)

Find all customers who have either an account or a loan (but 

not both) at the bank.

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number 

L-170

L-230

L-260

L-155

select customer-name

 from (depositor natural full outer join borrower)

 where account-number is null or loan-number is null



Data Definition Language (DDL)

The schema for each relation.

The domain of  values associated with each attribute.

Integrity constraints

The set of  indices to be maintained for each relations.

Security and authorization information for each relation.

The physical storage structure of  each relation on disk.

Allows the specification of not only a set of relations but also 

information about each relation, including:



Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum 
length n.

int.  Integer (a finite subset of  the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of  the integer domain 
type).

numeric(p,d). Fixed point number, with user-specified precision of  p digits, 
with n digits to the right of  decimal point. 

real, double precision. Floating point and double-precision floating point 
numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of  at least n
digits.

Null values are allowed in all the domain types.  Declaring an attribute to be 
not null prohibits null values for that attribute.

create domain construct in SQL-92 creates user-defined domain types

create domain person-name char(20) not null



Date/Time Types in SQL (Cont.)

date. Dates, containing a (4 digit) year, month and date

E.g.   date ‘2001-7-27’

time. Time of  day, in hours, minutes and seconds.

E.g. time ’09:00:30’        time ’09:00:30.75’

timestamp: date plus time of  day

E.g.  timestamp ‘2001-7-27 09:00:30.75’

Interval:  period of  time

E.g.   Interval  ‘1’ day

Subtracting a date/time/timestamp value from another gives an interval value

Interval values can be added to date/time/timestamp values

Can extract values of  individual fields from date/time/timestamp

E.g.   extract (year from r.starttime) 

Can cast string types to date/time/timestamp 

E.g.   cast <string-valued-expression> as date



Storage and File Structure

 Overview of Physical Storage Media

 Magnetic Disks

 RAID

 Tertiary Storage 

 Storage Access

 File Organization

 Organization of Records in Files

 Data-Dictionary Storage



Classification of Physical Storage 

Media

 Speed with which data can be accessed

 Cost per unit of data

 Reliability

 data loss on power failure or system crash

 physical failure of the storage device

 Can differentiate storage into:

 volatile storage: loses contents when power is switched 
off

 non-volatile storage: 

  Contents persist even when power is switched off. 

  Includes secondary and tertiary storage, as well as batter-
backed up main-memory.



Physical Storage Media

 Cache – fastest and most costly form of storage; 
volatile; managed by the computer system 
hardware.

 Main memory:

 fast access (10s to 100s of nanoseconds; 1 
nanosecond = 10–9 seconds)

 generally too small (or too expensive) to store the 
entire database

 capacities of up to a few Gigabytes widely used currently

 Capacities have gone up and per-byte costs have 
decreased steadily and rapidly  (roughly factor of 2 every 
2 to 3 years)

 Volatile — contents of main memory are usually lost if a 
power failure or system crash occurs.



Physical Storage Media 

(Cont.)
 Flash memory 

 Data survives power failure

 Data can be written at a location only once, but 
location can be erased and written to again 

 Can support only a limited number of write/erase cycles.

 Erasing of memory has to be done to an entire  bank of 
memory 

 Reads are roughly as fast as main memory

 But writes are slow (few microseconds), erase is slower

 Cost per unit of storage roughly similar to main memory 

 Widely used in embedded devices such as digital 
cameras

 also known as EEPROM (Electrically Erasable 
Programmable Read-Only Memory)



Physical Storage Media (Cont.)

 Magnetic-disk

 Data is stored on spinning disk, and read/written magnetically

 Primary medium for the long-term storage of data; typically 
stores entire database.

 Data must be moved from disk to main memory for access, and 
written back for storage

 Much slower access than main memory (more on this later)

 direct-access –  possible to read data on disk in any order, unlike 
magnetic tape

 Hard disks  vs  floppy disks

 Capacities range up to roughly 100 GB currently

 Much larger capacity and cost/byte than main memory/flash 
memory

 Growing constantly and rapidly with technology improvements 
(factor of 2 to 3 every 2 years)

 Survives power failures and system crashes

 disk failure can destroy data, but is very rare



Physical Storage Media 

(Cont.)

 Optical storage 

 non-volatile, data is read optically from a spinning disk using a 

laser 

 CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms

 Write-one, read-many (WORM) optical disks used for archival 

storage (CD-R and DVD-R)

 Multiple write versions also available (CD-RW, DVD-RW, and 

DVD-RAM)

 Reads and writes are slower than with magnetic disk 

 Juke-box systems, with large numbers of removable disks, a 

few drives, and a mechanism for automatic 

loading/unloading of disks available for storing large volumes 

of data



Physical Storage Media 

(Cont.)

 Tape storage 

 non-volatile, used primarily for backup (to recover 

from disk failure), and for archival data

 sequential-access – much slower than disk 

 very high capacity (40 to 300 GB tapes available)

 tape can be removed from drive  storage costs 

much cheaper than disk, but drives are expensive

 Tape jukeboxes available for storing massive 

amounts of data 

 hundreds of terabytes (1 terabyte = 109 bytes) to even 

a petabyte (1 petabyte = 1012 bytes)



Storage Hierarchy



Storage Hierarchy (Cont.)

 primary storage: Fastest media but volatile 

(cache, main memory).

 secondary storage: next level in hierarchy, non-
volatile, moderately fast access time

 also called on-line storage 

 E.g. flash memory, magnetic disks

 tertiary storage: lowest level in hierarchy, non-
volatile, slow access time

 also called off-line storage 

 E.g. magnetic tape, optical storage



Magnetic Hard Disk 

Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives



Magnetic Disks
 Read-write head 

 Positioned very close to the platter surface (almost touching it)

 Reads or writes magnetically encoded information.

 Surface of platter divided into circular tracks

 Over 16,000 tracks per platter on typical hard disks

 Each track is divided into sectors.  

 A sector is the smallest unit of data that can be read or written.

 Sector size typically 512 bytes

 Typical sectors per track: 200 (on inner tracks) to 400 (on outer tracks)

 To read/write a sector

 disk arm swings to position head on right track

 platter spins continually; data is read/written as sector passes under head

 Head-disk assemblies 

 multiple disk platters on a single spindle (typically 2 to 4)

 one head per platter, mounted on a common arm.

 Cylinder i consists of ith track of all the platters 



Magnetic Disks (Cont.)
 Earlier generation disks were susceptible to head-crashes

 Surface of earlier generation disks had metal-oxide coatings 
which would disintegrate on head crash and damage all data 
on disk

 Current generation disks are less susceptible to such disastrous 
failures, although individual sectors may get corrupted

 Disk controller – interfaces between the computer system 
and the disk drive hardware.

 accepts high-level commands to read or write a sector 

 initiates actions such as moving the disk arm to the right track 
and actually reading or writing the data

 Computes and attaches checksums to each sector to verify 
that data is read back correctly

 If data is corrupted, with very high probability stored checksum 
won’t match recomputed checksum

 Ensures successful writing by reading back sector after writing it

 Performs remapping of bad sectors



Disk Subsystem

 Multiple disks connected to a computer system through a 
controller

 Controllers functionality (checksum, bad sector remapping) often 
carried out by individual disks; reduces load on controller

 Disk interface standards families

 ATA (AT adaptor) range of standards 

 SCSI (Small Computer System Interconnect) range of standards

 Several variants of each standard (different speeds and capabilities)



Performance Measures of Disks

 Access time – the time it takes from when a read or write request is 
issued to when data transfer begins.  Consists of: 

 Seek time – time it takes to reposition the arm over the correct track. 

  Average seek time is 1/2 the worst case seek time.

 Would be 1/3 if all tracks had the same number of sectors, and 
we ignore the time to start and stop arm movement

 4 to 10 milliseconds on typical disks

 Rotational latency – time it takes for the sector to be accessed to appear 
under the head. 

  Average latency is 1/2 of the worst case latency.

 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

 Data-transfer rate – the rate at which data can be retrieved from or 
stored to the disk.

 4 to 8 MB per second is typical

 Multiple disks may share a controller, so rate that controller can handle is 
also important

 E.g. ATA-5: 66 MB/second,  SCSI-3: 40 MB/s

 Fiber Channel: 256 MB/s



Performance Measures 

(Cont.)

 Mean time to failure (MTTF) – the average time the 

disk is expected to run continuously without any 
failure.

 Typically 3 to 5 years

 Probability of failure of new disks is quite low, 

corresponding to a

“theoretical MTTF” of 30,000 to 1,200,000 hours for a 

new disk

 E.g., an MTTF of 1,200,000 hours for a new disk means 

that given 1000 relatively new disks, on an average 

one will fail every 1200 hours

 MTTF decreases as disk ages



Optimization of Disk-Block 

Access
 Block – a contiguous sequence of sectors from a single 

track 

 data is transferred between disk and main memory in blocks 

 sizes range from 512 bytes to several kilobytes

 Smaller blocks: more transfers from disk

 Larger blocks:  more space wasted due to partially filled blocks

 Typical block sizes today range from 4 to 16 kilobytes

 Disk-arm-scheduling algorithms order pending accesses 

to tracks so that disk arm movement is minimized 

 elevator algorithm : move disk arm in one direction (from 

outer to inner tracks or vice versa), processing next request in 

that direction, till no more requests in that direction, then 

reverse direction and repeat



Optimization of Disk Block Access 

(Cont.)

 File organization – optimize block access time by 
organizing the blocks to correspond to how data 
will be accessed

 E.g.  Store related information on the same or 
nearby cylinders.

 Files may get fragmented over time

 E.g. if data is inserted to/deleted from the file

 Or free blocks on disk are scattered, and newly 
created file has its blocks scattered over the disk

 Sequential access to a fragmented file results in 
increased disk arm movement

 Some systems have utilities to defragment the file 
system, in order to speed up file access



Optimization of Disk Block Access 

(Cont.)

 Nonvolatile write buffers speed up disk writes by writing blocks to a non-
volatile RAM buffer immediately

 Non-volatile RAM:  battery backed up RAM or flash memory

 Even if power fails, the data is safe and will be written to disk when power 
returns

 Controller then writes to disk whenever the disk has no other requests or 
request has been pending for some time

 Database operations that require data to be safely stored before continuing 
can continue without waiting for data to be written to disk

 Writes can be reordered to minimize disk arm movement

 Log disk – a disk devoted to writing a sequential log of block updates

  Used exactly like nonvolatile RAM

 Write to log disk is very fast since no seeks are required

 No need for special hardware (NV-RAM)

 File systems typically reorder writes to disk to improve performance

 Journaling file systems write data in safe order to NV-RAM or log disk

 Reordering without journaling: risk of corruption of file system data



RAID
 RAID: Redundant Arrays of Independent Disks 

 disk organization techniques that manage a large numbers of disks, 
providing a view of a single disk of 

 high capacity and high speed  by using multiple disks in parallel, and 

 high reliability by storing data redundantly, so that data can be 
recovered even if  a disk fails 

 The chance that some disk out of a set of N disks will fail is much 
higher than the chance that a specific single disk will fail.

   E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx.  
11 years), will have a system MTTF of 1000 hours (approx. 41 days)

 Techniques for using redundancy to avoid data loss are critical with 
large numbers of disks

 Originally a cost-effective alternative to large, expensive disks

 I in RAID originally stood for ``inexpensive’’

 Today RAIDs are used for their higher reliability and bandwidth.  

 The “I” is interpreted as independent



Improvement of Reliability via 

Redundancy
 Redundancy – store extra information that can be used to rebuild 

information lost in a disk failure

 E.g., Mirroring (or shadowing)

 Duplicate every disk.  Logical disk consists of two physical disks.

 Every write is carried out on both disks

 Reads can take place from either disk

 If one disk in a pair fails, data still available in the other

 Data loss would occur only if a disk fails, and its mirror disk also fails before 
the system is repaired

 Probability of combined event is very small 

 Except for dependent failure modes such as fire or building collapse or 
electrical power surges

 Mean time to data loss depends on mean time to failure, 
and mean time to repair

 E.g. MTTF of 100,000 hours, mean time to repair of 10 hours gives 
mean time to data loss of 500*106 hours (or 57,000 years) for a 
mirrored pair of disks (ignoring dependent failure modes)



Improvement in Performance via Parallelism

 Two main goals of parallelism in a disk system: 

1. Load balance multiple small accesses to increase 
throughput

2. Parallelize large accesses to reduce response time.

 Improve transfer rate by striping data across multiple disks.

 Bit-level striping – split the bits of each byte across 
multiple disks

 In an array of eight disks, write bit i of each byte to disk i.

 Each access can read data at eight times the rate of a 
single disk.

 But seek/access time worse than for a single disk

 Bit level striping is not used much any more

 Block-level striping – with n disks, block i of a file goes to 
disk (i mod n) + 1

 Requests for different blocks can run in parallel if the blocks 
reside on different disks

 A request for a long sequence of blocks can utilize all disks in 
parallel



RAID Levels
 Schemes to provide redundancy at lower cost by using disk 

striping combined with parity bits

 Different RAID organizations, or RAID levels, have differing 

cost, performance and reliability characteristics

RAID Level 1:  Mirrored disks with block striping

 Offers best write performance.  

 Popular for applications such as storing log files in a database system.

RAID Level 0:  Block striping; non-redundant. 

 Used in high-performance applications where data lost is not critical. 



RAID Levels (Cont.)
 RAID Level 2:  Memory-Style Error-Correcting-Codes (ECC) with 

bit striping.

 RAID Level 3: Bit-Interleaved Parity

  a single parity bit is enough for error correction, not just detection, 

since we know which disk has failed

 When writing data, corresponding parity bits must also be computed 

and written to a parity bit disk

 To recover data in a damaged disk, compute XOR of bits from other 

disks (including parity bit disk) 



RAID Levels (Cont.)
 RAID Level 3 (Cont.)

 Faster data transfer than with a single disk, but fewer I/Os per 
second since every disk has to participate in every I/O. 

 Subsumes Level 2 (provides all its benefits, at lower cost). 

 RAID Level 4: Block-Interleaved Parity; uses block-level 
striping, and keeps a parity block on a separate disk for 
corresponding blocks from N other disks.

 When writing data block, corresponding block of parity bits 
must also be computed and written to parity disk

 To find value of a damaged block, compute XOR of bits from 
corresponding blocks (including parity block) from other disks.



RAID Levels (Cont.)

 RAID Level 4 (Cont.)

 Provides higher I/O rates for independent block reads than 
Level 3 

 block read goes to a single disk, so blocks stored on different 
disks can be read in parallel

 Provides high transfer rates for reads of multiple blocks than 
no-striping

 Before writing a block, parity data must be computed 

 Can be done by using old parity block, old value of current 
block and new value of current block (2 block reads + 2 block 
writes)

 Or by recomputing the parity value using the new values of 
blocks corresponding to the parity block

 More efficient for writing large amounts of data sequentially

 Parity block becomes a bottleneck for independent block 
writes since every block write also writes to parity disk



RAID Levels (Cont.)
 RAID Level 5: Block-Interleaved Distributed Parity; 

partitions data and parity among all N + 1 disks, rather 

than storing data in N disks and parity in 1 disk.

 E.g., with 5 disks, parity block for nth set of blocks is stored 

on disk (n mod 5) + 1, with the data blocks stored on the 

other 4 disks.



RAID Levels (Cont.)

 RAID Level 5 (Cont.)

 Higher I/O rates than Level 4.  

 Block writes occur in parallel if the blocks and their parity blocks are on 

different disks.

 Subsumes Level 4: provides same benefits, but avoids bottleneck 

of parity disk.

 RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but 
stores extra redundant information to guard against multiple 

disk failures. 

  Better reliability than Level 5 at a higher cost; not used as widely. 



Choice of RAID Level

 Factors in choosing RAID level

 Monetary cost

 Performance: Number of I/O operations per second, and 
bandwidth during normal operation

 Performance during failure

 Performance during rebuild of failed disk

 Including time taken to rebuild failed disk

 RAID 0 is used only when data safety is not important 

 E.g. data can be recovered quickly from other sources

 Level 2 and 4 never used since they are subsumed by 3 and 5

 Level 3 is not used anymore since bit-striping forces single block 
reads to access all disks, wasting disk arm movement, which block 
striping (level 5) avoids

 Level 6 is rarely used since levels 1 and 5 offer adequate safety for 
almost all applications

 So competition is between 1 and 5 only



Choice of RAID Level 

(Cont.)
 Level 1 provides much better write performance than level 5

 Level 5 requires at least 2 block reads and 2 block writes to write 
a single block, whereas Level 1 only requires 2 block writes

 Level 1 preferred for high update environments such as log disks

 Level 1 had higher storage cost than level 5

 disk drive capacities increasing rapidly (50%/year) whereas disk 
access times have decreased much less (x 3 in 10 years)

 I/O requirements have increased greatly, e.g. for Web servers

 When enough disks have been bought to satisfy required rate 
of I/O, they often have spare storage capacity

  so there is often no extra monetary cost for Level 1!

 Level 5 is preferred for applications with low update rate,
and large amounts of data

  Level 1 is preferred for all other applications



Hardware Issues

 Software RAID:  RAID implementations done entirely in 
software, with no special hardware support

 Hardware RAID:  RAID implementations with special 
hardware

 Use non-volatile RAM to record writes that are being executed

 Beware:  power failure during write can result in corrupted disk

 E.g. failure after writing one block but before writing the 
second in a mirrored system

 Such corrupted data must be detected when power is 
restored

 Recovery from corruption is similar to recovery from failed disk

 NV-RAM helps to efficiently detected potentially corrupted blocks

 Otherwise all blocks of disk must be read and compared 
with mirror/parity block



Hardware Issues (Cont.)

 Hot swapping: replacement of disk while system is running, 
without power down

 Supported by some hardware RAID systems, 

 reduces time to recovery, and improves availability greatly

 Many systems maintain spare disks which are kept online, 
and used as replacements for failed disks immediately on 
detection of failure

 Reduces time to recovery greatly

 Many hardware RAID systems ensure that a single point of 
failure will not stop the functioning of the system by using 

 Redundant power supplies with battery backup

 Multiple controllers and multiple interconnections to guard 
against controller/interconnection failures



Optical Disks
 Compact disk-read only memory (CD-ROM)

 Disks can be loaded into or removed from a drive 

 High storage capacity (640 MB per disk)

 High seek times or about 100 msec (optical read head is heavier 
and slower)

 Higher latency (3000 RPM) and lower data-transfer rates (3-6 MB/s) 
compared to magnetic disks

 Digital Video Disk (DVD) 

 DVD-5  holds 4.7 GB , and DVD-9 holds 8.5 GB 

 DVD-10 and DVD-18 are double sided formats with capacities of 9.4 
GB and 17 GB

 Other characteristics similar to CD-ROM 

 Record once versions (CD-R and DVD-R) are becoming popular

 data can only be written once, and cannot be erased.

 high capacity and long lifetime; used for archival storage 

 Multi-write versions (CD-RW, DVD-RW and DVD-RAM) also available



Magnetic Tapes

 Hold large volumes of data and provide high transfer rates

 Few GB for DAT (Digital Audio Tape) format, 10-40 GB with DLT 
(Digital Linear Tape) format, 100 GB+ with Ultrium format, and 330 
GB with Ampex helical scan format

 Transfer rates from few to 10s of MB/s

 Currently the cheapest storage medium 

 Tapes are cheap, but cost of drives is very high

 Very slow access time in comparison to magnetic disks and optical 
disks

  limited to sequential access.

 Some formats (Accelis) provide faster seek (10s of seconds) at cost 
of lower capacity

 Used mainly for backup, for storage of infrequently used 
information, and as an off-line medium for transferring information 
from one system to another.

 Tape jukeboxes used for very large capacity storage

 (terabyte (1012 bytes) to petabye (1015 bytes)



Storage Access

 A database file is partitioned into fixed-length 

storage units called blocks.  Blocks are units of 

both storage allocation and data transfer.

 Database system seeks to minimize the number of 

block transfers between the disk and memory.  

We can reduce the number of disk accesses by 

keeping as many blocks as possible in main 

memory.

 Buffer – portion of main memory available to store 

copies of disk blocks.

 Buffer manager – subsystem responsible for 

allocating buffer space in main memory.



Buffer Manager

 Programs call on the buffer manager when they need a 

block from disk.

1. If the block is already in the buffer, the requesting program is 

given the address of the block in main memory

2. If the block is not in the buffer,

1.  the buffer manager allocates space in the buffer for the block, 

replacing (throwing out) some other block, if required, to make 

space for the new block.

2. The block that is thrown out is written back to disk only if it was 

modified since the most recent time that it was written to/fetched 

from the disk.

3. Once space is allocated in the buffer, the buffer manager reads 

the block from the disk to the buffer, and passes the address of 

the block in main memory to requester. 



File Organization

 The database is stored as a collection of files.  

Each file is a sequence of records.  A record is a 
sequence of fields.

 One approach:

 assume record size is fixed

 each file has records of one particular type only 

 different files are used for different relations

This case is easiest to implement; will consider variable 

length records

later.



Fixed-Length Records
 Simple approach:

 Store record i starting from byte n  (i – 1), where n is the size of 

each record.

 Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

 Deletion of record I: 

alternatives:

 move records i + 1, . . ., n 

to i, . . . , n – 1

 move record n to i

 do not move records, but 

link all free records on a

free list



Free Lists
 Store the address of the first deleted record in the file header.

 Use this first record to store the address of the second deleted 
record, and so on

 Can think of these stored addresses as pointers since they “point” to 
the location of a record.

 More space efficient representation:  reuse space for normal 
attributes of free records to store pointers.  (No pointers stored in in-
use records.)



Variable-Length Records
 Variable-length records arise in database systems in 

several ways:

 Storage of multiple record types in a file.

 Record types that allow variable lengths for one or more 

fields.

 Record types that allow repeating fields (used in some 

older data models).

 Byte string representation

 Attach an end-of-record (⊥) control character to the 
end of each record

 Difficulty with deletion

 Difficulty with growth



Variable-Length Records: Slotted Page Structure

 Slotted page header contains:

 number of record entries

 end of free space in the block

 location and size of each record

 Records can be moved around within a page to keep 

them contiguous with no empty space between them; 

entry in the header must be updated.

 Pointers should not point directly to record — instead 
they should point to the entry for the record in header.



Variable-Length Records (Cont.)
 Fixed-length representation: 

 reserved space

 pointers

 Reserved space – can use fixed-length records of a 
known maximum length; unused space in shorter 
records filled with a null or end-of-record symbol.



Pointer Method

 Pointer method 

 A variable-length record is represented by a list of fixed-length 
records, chained together via pointers.

 Can be used even if the maximum record length is not known



Pointer Method (Cont.)
 Disadvantage to pointer structure; space is 

wasted in all records except the first in a a chain.

 Solution is to allow two kinds of block in file:

 Anchor block – contains the first records of chain

 Overflow block – contains records other than those 

that are the first records of chairs.



Organization of Records in 

Files

 Heap – a record can be placed anywhere in the file 
where there is space

 Sequential – store records in sequential order, based 
on the value of the search key of each record

 Hashing – a hash function computed on some 
attribute of each record; the result specifies in which 
block of the file the record should be placed

 Records of each relation may be stored in a 
separate file. In a  clustering file organization 
records of several different relations can be stored in 
the same file

 Motivation: store related records on the same block to 
minimize I/O



Sequential File Organization
 Suitable for applications that require sequential 

processing of the entire file 

 The records in the file are ordered by a search-key



Sequential File 

Organization (Cont.)

 Deletion – use pointer chains

 Insertion –locate the position 
where the record is to be 
inserted

 if there is free space insert there 

 if no free space, insert the record 
in an overflow block

 In either case, pointer chain must 
be updated

 Need to reorganize the file
 from time to time to restore
 sequential order



Clustering File Organization
 Simple file structure stores each relation in a separate file 

 Can instead store several relations in one file using a 
clustering file organization

 E.g., clustering organization of customer and depositor:

good for queries involving depositor     customer, and for 

queries involving one single customer and his accounts

bad for queries involving only customer

results in variable size records



Data Dictionary Storage

 Information about relations

 names of relations

 names and types of attributes of each relation

 names and definitions of views

 integrity constraints

 User and accounting information, including passwords

 Statistical and descriptive data

 number of tuples in each relation

 Physical file organization information

 How relation is stored (sequential/hash/…)

 Physical location of relation 

 operating system file name or 

 disk addresses of blocks containing records of the relation 

 Information about indices (Chapter 12) 

Data dictionary (also called system catalog) stores metadata:  that 
is, data about data, such as



Data Dictionary Storage (Cont.)
 Catalog structure:  can use either

 specialized data structures designed for efficient access 

 a set of relations, with existing system features used to ensure 
efficient access

The latter alternative is usually preferred

 A possible catalog representation:

 

Relation-metadata = (relation-name, number-of-attributes, 

                                   storage-organization, location)

Attribute-metadata = (attribute-name, relation-name, domain-type, 

 position, length)

User-metadata = (user-name, encrypted-password, group)

Index-metadata = (index-name, relation-name, index-type, 

 index-attributes)

View-metadata = (view-name, definition) 



DATABASE SYSTEM ARCHITECTURES

• Centralized Systems

• Client--Server Systems

• Parallel Systems

• Distributed Systems

• Network Types



CENTRALIZED SYSTEMS

• Run on a single computer system and do not interact with other 

computer systems.

• General-purpose computer system: one to a few CPUs and a 

number of device controllers that are connected through a 

common bus that provides access to shared memory.

• Single-user system (e.g., personal computer or workstation): 

desk-top unit, single user, usually has only one CPU  and one or 

two hard disks; the OS may support only one user.

• Multi-user system: more disks, more memory, multiple CPUs, 

and a multi-user OS. Serve a large number of users who are 

connected to the system vie terminals. Often called server 

systems.



A CENTRALIZED COMPUTER 
SYSTEM



CLIENT-SERVER SYSTEMS

• Server systems satisfy requests generated at m client systems, whose 

general structure is shown below:



CLIENT-SERVER SYSTEMS 
(CONT.)

• Database functionality can be divided into:

• Back-end: manages access structures, query evaluation and 

optimization, concurrency control and recovery.

• Front-end: consists of tools such as forms, report-writers, and 

graphical user interface facilities.

• The interface between the front-end and the back-end is 

through SQL or through an application program interface.



CLIENT-SERVER SYSTEMS 
(CONT.)

• Advantages of replacing mainframes with networks of 

workstations or personal computers connected to back-end 

server machines:

• better functionality for the cost

• flexibility in locating resources and expanding facilities

• better user interfaces

• easier maintenance

• Server systems can be broadly categorized into two kinds:

• transaction servers which are widely used in relational 

database systems, and

• data servers, used in object-oriented database systems



TRANSACTION SERVERS

• Also called query server systems or SQL server systems; 

clients send requests to the server system where the 

transactions are executed, and results are shipped back to the 

client.

• Requests specified in SQL, and communicated to the server 

through a remote procedure call (RPC) mechanism.

• Transactional RPC allows many RPC calls to collectively form a 

transaction.

• Open Database Connectivity (ODBC) is a C language application 

program interface standard from Microsoft for connecting to a 

server, sending SQL requests, and receiving results.

• JDBC standard similar to ODBC, for Java



TRANSACTION SERVER PROCESS 
STRUCTURE

• A typical transaction server consists of multiple processes accessing data 

in shared memory.

• Server processes

• These receive user queries (transactions), execute them and send results back

• Processes may be multithreaded, allowing a single process to execute several 

user queries concurrently

• Typically multiple multithreaded server processes

• Lock manager process

• More on this later

• Database writer process 

• Output modified buffer blocks to disks continually



TRANSACTION SERVER PROCESSES 
(CONT.)

• Log writer process

• Server processes simply add log records to log record buffer

• Log writer process outputs log records to stable storage. 

• Checkpoint process

• Performs periodic checkpoints

• Process monitor process

• Monitors other processes, and takes recovery actions if any of the 

other processes fail

• E.g. aborting any transactions being executed by a server process and 

restarting it



TRANSACTION SYSTEM PROCESSES (CONT.)



TRANSACTION SYSTEM PROCESSES 
(CONT.)

• Shared memory contains shared data 

• Buffer pool

• Lock table

• Log buffer

• Cached query plans (reused if same query submitted again)

• All database processes can access shared memory

• To ensure that no two processes are accessing the same data structure at 

the same time, databases systems implement mutual exclusion using 

either

• Operating system semaphores

• Atomic instructions such as test-and-set



TRANSACTION SYSTEM PROCESSES 
(CONT.)

• To avoid overhead of interprocess communication for lock request/grant, each 

database process operates directly on the lock table data structure (Section 

16.1.4) instead of sending requests to lock manager process

• Mutual exclusion ensured on the lock table using semaphores, or more commonly, 

atomic instructions

• If a lock can be obtained, the lock table is updated directly in shared memory

• If a lock cannot be immediately obtained, a lock request is noted in the lock table 

and the process (or thread) then waits for lock to be granted

• When a lock is released, releasing process updates lock table to record release of 

lock, as well as grant of lock to waiting requests (if any)

• Process/thread waiting for lock may either:

• Continually scan lock table to check for lock grant, or

• Use operating system semaphore mechanism to wait on a semaphore.  

• Semaphore identifier is recorded in the lock table

• When a lock is granted, the releasing process  signals the 

semaphore to tell the waiting process/thread to proceed

• Lock manager process still used for deadlock detection 



DATA SERVERS

• Used in LANs, where there is a very high speed connection 

between the clients and the server, the client machines are 

comparable in processing power to the server machine, and the 

tasks to be executed are compute intensive.

• Ship data to client machines where processing is performed, and 

then ship results back to the server machine.

• This architecture requires full back-end functionality at the clients.

• Used in many object-oriented database systems 

• Issues:

• Page-Shipping versus Item-Shipping

• Locking

• Data Caching

• Lock Caching



DATA SERVERS (CONT.)

• Page-Shipping versus Item-Shipping

• Smaller unit of shipping  more messages

• Worth prefetching related items along with requested item

• Page shipping can be thought of as a form of prefetching

• Locking

• Overhead of requesting and getting locks from server is high due 
to message delays

• Can grant locks on requested and prefetched items; with page 
shipping, transaction is granted lock on whole page.

• Locks on a prefetched item can be P{called back} by the server, 
and returned by client transaction if the prefetched item has not 
been used.  

• Locks on the page can be deescalated to locks on items in the 
page when there are lock conflicts. Locks on unused items can 
then be returned to server.



DATA SERVERS (CONT.)

• Data Caching

• Data can be cached at client even in between transactions

• But check that data is up-to-date before it is used (cache coherency)

• Check can be done when requesting lock on data item

• Lock Caching

• Locks can be retained by client system even in between transactions

• Transactions can acquire cached locks locally, without contacting 

server

• Server calls back locks from clients when it receives conflicting lock 

request.  Client returns lock once no local transaction is using it.

• Similar to deescalation, but across transactions.



PARALLEL SYSTEMS

• Parallel database systems consist of multiple processors and 

multiple disks connected by a fast interconnection network.

• A coarse-grain parallel machine consists of a small number of 

powerful processors

• A massively parallel or fine grain parallel machine utilizes 

thousands of smaller processors.

• Two main performance measures:

• throughput --- the number of tasks that can be completed in a 

given time interval

• response time --- the amount of time it takes to complete a single 

task from the time it is submitted



SPEED-UP AND SCALE-UP

• Speedup: a fixed-sized problem executing on a small system is 

given to a system which is N-times larger.

• Measured by:

speedup = small system elapsed time

                  large system elapsed time

• Speedup is linear if equation equals N.

• Scaleup: increase the size of both the problem and the system

• N-times larger system used to perform N-times larger job

• Measured by:

scaleup = small system small problem elapsed time

                   big system big problem elapsed time 

• Scale up is linear if equation equals 1.



SPEEDUP

Speedup

SPEED-UP AND SCALE-UP



SCALEUP

Scaleup

SPEED-UP AND SCALE-UP



BATCH AND TRANSACTION 
SCALEUP

• Batch scaleup:

• A single large job; typical of most database queries and scientific 

simulation.

• Use an N-times larger computer on N-times larger problem.

• Transaction scaleup:

• Numerous small queries submitted by independent users to a 

shared database; typical transaction processing and timesharing 

systems.

• N-times as many users submitting requests (hence, N-times as 

many requests) to an N-times larger database, on an N-times 

larger computer.

• Well-suited to parallel execution.



FACTORS LIMITING SPEEDUP 
AND SCALEUP

Speedup and scaleup are often sublinear due to:

• Startup costs: Cost of starting up multiple processes may 

dominate computation time, if the degree of parallelism is high.

• Interference:  Processes accessing shared resources 

(e.g.,system bus, disks, or locks) compete with each other, thus 

spending time waiting on other processes, rather than 

performing useful work.

• Skew: Increasing the degree of parallelism increases the 

variance in service times of parallely executing tasks.  Overall 

execution time determined by slowest of parallely executing 

tasks.



INTERCONNECTION NETWORK 
ARCHITECTURES

• Bus. System components send data on and receive data from a 
single communication bus;

• Does not scale well with increasing parallelism.

• Mesh. Components are arranged as nodes in a grid, and each 
component is connected to all adjacent components

• Communication links grow with growing number of components, 
and so scales better.  

• But may require 2n hops to send message to a node (or n with 
wraparound connections at edge of grid).

• Hypercube.  Components are numbered in binary;  
components are connected to one another if their binary 
representations differ in exactly one bit.

• n components are connected to log(n) other components and can 
reach each other via at most log(n) links; reduces communication 
delays.



INTERCONNECTION 
ARCHITECTURES



PARALLEL DATABASE 
ARCHITECTURES

• Shared memory -- processors share a common memory

• Shared disk -- processors share a common disk

• Shared nothing -- processors share neither a common memory 

nor common disk

• Hierarchical -- hybrid of the above architectures



PARALLEL DATABASE 
ARCHITECTURES



SHARED MEMORY

• Processors and disks have access to a common memory, 

typically via a bus or through an interconnection network.

• Extremely efficient communication between processors — data 

in shared memory can be accessed by any processor without 

having to move it using software.

• Downside – architecture is not scalable beyond 32 or 64 

processors since the bus or the interconnection network 

becomes a bottleneck

• Widely used for lower degrees of parallelism (4 to 8).



SHARED DISK

• All processors can directly access all disks via an interconnection 

network, but the processors have private memories.

• The memory bus is not a bottleneck

• Architecture provides a degree of fault-tolerance — if a processor 

fails, the other processors can take over its tasks since the database is 

resident on disks that are accessible from all processors.

• Examples:  IBM Sysplex and DEC clusters (now part of Compaq) 

running Rdb (now Oracle Rdb) were early commercial users 

• Downside: bottleneck now occurs at interconnection to the disk 

subsystem.

• Shared-disk systems can scale to a somewhat larger number of 

processors, but communication between processors is slower.



SHARED NOTHING

• Node consists of a processor, memory, and one or more disks. 

Processors at one node  communicate with another processor at 

another node using an interconnection network. A node functions 

as the server for the data on the disk or disks the node owns.

• Examples: Teradata, Tandem, Oracle-n CUBE

• Data accessed from local disks (and local memory accesses)  do 

not pass through interconnection network, thereby minimizing the 

interference of resource sharing.

• Shared-nothing multiprocessors can be scaled up to thousands of 

processors without interference.

• Main drawback: cost of communication and non-local disk access; 

sending data involves software interaction at both ends.



HIERARCHICAL

• Combines characteristics of shared-memory, shared-disk, and 

shared-nothing architectures.

• Top level is a shared-nothing architecture –  nodes connected by 

an interconnection network, and do not share disks or memory with 

each other.

• Each node of the system could be a shared-memory system with a 

few processors.

• Alternatively, each node could be a shared-disk system, and each 

of the systems sharing a set of disks could be a shared-memory 

system.

• Reduce the complexity of programming such systems by 

distributed virtual-memory architectures

• Also called non-uniform memory architecture (NUMA)



DISTRIBUTED SYSTEMS

• Data spread over multiple machines (also referred 

to as sites or nodes.

• Network interconnects the machines

• Data shared by users on multiple machines



DISTRIBUTED DATABASES

• Homogeneous distributed databases

• Same software/schema on all sites, data may be partitioned among sites

• Goal: provide a view of a single database, hiding details of distribution

• Heterogeneous distributed databases

• Different software/schema on different sites

• Goal: integrate existing databases to provide useful functionality

• Differentiate between local and global transactions

• A local transaction accesses data in the single site at which the transaction was 

initiated.

• A global transaction either accesses data in a site different from the one at 

which the transaction was initiated or accesses data in several different sites.



TRADE-OFFS IN DISTRIBUTED 
SYSTEMS

• Sharing data – users at one site able to access the data residing 

at some other sites.

• Autonomy – each site is able to retain a degree of control over 

data stored locally.

• Higher system availability through redundancy — data can be 

replicated at remote sites, and system can function even if a site 

fails.

• Disadvantage: added complexity required to ensure proper 

coordination among sites.

• Software development cost.

• Greater potential for bugs.

• Increased processing overhead.



IMPLEMENTATION ISSUES FOR DISTRIBUTED 

DATABASES 

• Atomicity needed even for transactions that update data at 
multiple site
• Transaction cannot be committed at one site and aborted at another  

• The two-phase commit protocol (2PC) used to ensure atomicity
• Basic idea:  each site executes transaction till just before commit, and 

the leaves final decision to a coordinator

• Each site must follow decision of coordinator: even if there is a failure 
while waiting for coordinators decision

• To do so, updates of transaction are logged to stable storage and 
transaction is recorded as “waiting”

• More details in Sectin 19.4.1

• 2PC is not always appropriate:  other transaction models based on 
persistent messaging, and workflows, are also used 

• Distributed concurrency control (and deadlock detection) 
required

• Replication of data items required for improving data availability

• Details of above in Chapter 19



NETWORK TYPES

• Local-area networks (LANs) – composed of processors that are 

distributed over small geographical areas, such as a single 

building or a few adjacent buildings. 

• Wide-area networks (WANs) – composed of processors 

distributed over a large geographical area.

• Discontinuous connection – WANs, such as those based on 

periodic dial-up (using, e.g., UUCP), that are connected only for 

part of the time.

• Continuous connection – WANs, such as the Internet, where 

hosts are connected to the network at all times.



NETWORKS TYPES (CONT.)

• WANs with continuous connection are needed for 

implementing distributed database systems

• Groupware applications such as Lotus notes can work on WANs 

with discontinuous connection:

• Data is replicated.

• Updates are propagated to replicas periodically.

• No global locking is possible, and copies of data may be 

independently updated.

• Non-serializable executions can thus result. Conflicting updates 

may have to be detected, and resolved in an application 

dependent manner.   



END OF 
DATABASE SYSTEMS
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