

Dr. N. SHAKEELA

Guest Lecturer

School of Computer Science, Engineering & Applications

Bharathidasan University

Trichy-24

Query Processing is the activity performed in extracting data from the

database. In query processing, it takes various steps for fetching the

data from the database. The steps involved are:

1. Parsing and translation

2. Optimization

3. Evaluation

The query processing works in the following way:

Parsing and Translation

As query processing includes certain activities for data retrieval.

Initially, the given user queries get translated in high-level database

languages such as SQL. It gets translated into expressions that can be

further used at the physical level of the file system. After this, the

actual evaluation of the queries and a variety of query -optimizing

transformations and takes place. Thus before processing a query, a

computer system needs to translate the query into a human-readable

and understandable language. Consequently, SQL or Structured Query

Language is the best suitable choice for humans. But, it is not perfectly

suitable for the internal representation of the query to the system.

Relational algebra is well suited for the internal representation of a

query. The translation process in query processing is similar to the

parser of a query. When a user executes any query, for generating the

internal form of the query, the parser in the system checks the syntax

of the query, verifies the name of the relation in the database, the

tuple, and finally the required attribute value. The parser creates a tree

of the query, known as 'parse-tree.' Further, translate it into the form

of relational algebra. With this, it evenly replaces all the use of the

views when used in the query.

Thus, we can understand the working of a query processing in the

below-described diagram:

select emp_name from Employee where salary>10000;

Thus, to make the system understand the user query, it needs to be translated in the

form of relational algebra. We can bring this query in the relational algebra form as:

o σsalary>10000 (πsalary (Employee))

o πsalary (σsalary>10000 (Employee))

After translating the given query, we can execute each relational algebra operation by

using different algorithms. So, in this way, a query processing begins its working.

Evaluation

For this, with addition to the relational algebra translation, it is required to annotate the

translated relational algebra expression with the instructions used for specifying and

evaluating each operation. Thus, after translating the user query, the system executes a

query evaluation plan.

Query Evaluation Plan

o In order to fully evaluate a query, the system needs to construct a query evaluation plan.

o The annotations in the evaluation plan may refer to the algorithms to be used for the

particular index or the specific operations.

o Such relational algebra with annotations is referred to as Evaluation Primitives. The

evaluation primitives carry the instructions needed for the evaluation of the operation.

o Thus, a query evaluation plan defines a sequence of primitive operations used for

evaluating a query. The query evaluation plan is also referred to as the query execution

plan.

o A query execution engine is responsible for generating the output of the given query. It

takes the query execution plan, executes it, and finally makes the output for the user

query.

Optimization

o The cost of the query evaluation can vary for different types of queries. Although

the system is responsible for constructing the evaluation plan, the user does need

not to write their query efficiently.

o Usually, a database system generates an efficient query evaluation plan, which

minimizes its cost. This type of task performed by the database system and is

known as Query Optimization.

o For optimizing a query, the query optimizer should have an estimated cost

analysis of each operation. It is because the overall operation cost depends on

the memory allocations to several operations, execution costs, and so on.

Finally, after selecting an evaluation plan, the system evaluates the query and produces

the output of the query.

Measures of Query Cost

In DBMS, the cost involved in executing a query can be measured by considering the

number of different resources that are listed below;

 The number of disk accesses / the number of disk block transfers / the size of

the table

 Time taken by CPU for executing the query

The time taken by CPU is negligible in most systems when compared with the number

of disk accesses.

If we consider the number of block transfers as the main component in calculating the

cost of a query, it would include more sub-components. Those are;

Rotational latency – time taken to bring and spin the required data under the read-

write head of the disk.

Seek time – time taken to position the read-write head over the required track or
cylinder.

Sequential I/O – reading data that are stored in contiguous blocks of the disk

Random I/O – reading data that are stored in different blocks that are not contiguous.

That is, the blocks might be stored in different tracks, or different cylinders, etc.

Whether read/write? – read takes less time, write takes more.

From these sub-components, we would list the components of a more accurate
measure as follows;

 The number of seek operations performed

 The number of block read

 The number of blocks written

To get the final result, these numbers to be multiplied by the average time required

to complete the task. Hence, it can be written as follows;

Query cost = (number of seek operations X average seek
time) +

(number of blocks read X average transfer time for
reading a block) +

(number of blocks written X average transfer time
for writing a block)

Note: here, CPU cost and few other costs like cost of writing the final result are
omitted.

Selection Operation

Generally, the selection operation is performed by the file scan. File scans are the search

algorithms that are used for locating and accessing the data. It is the lowest-level operator used

in query processing.

Basic algorithms

o A1: Linear Search: In a linear search, the system scans each record to test

whether satisfying the given selection condition. For accessing the first block of a

file, it needs an initial seek. If the blocks in the file are not stored in contiguous

order, then it needs some extra seeks. However, linear search is the slowest

algorithm used for searching, but it is applicable in all types of cases. This

algorithm does not care about the nature of selection, availability of indices, or

the file sequence. But other algorithms are not applicable in all types of cases.

o A2: Binary search: IF the file is ordered on an attribute, and the selection

condition is an equality comparison on the attribute, we can use a binary search

to locate records that satisfy the selection.

Selection using indices:

The index-based search algorithms are known as Index scans. Such index structures are

known as access paths. These paths allow locating and accessing the data in the file.

There are following algorithms that use the index in query processing:

o A3:Primary index, equality on a key: We use the index to retrieve a single

record that satisfies the equality condition for making the selection. The equality

comparison is performed on the key attribute carrying a primary key.

o A4:Primary index, equality on nonkey: The difference between equality on key

and nonkey is that in this, we can fetch multiple records. We can fetch multiple

records through a primary key when the selection criteria specify the equality

comparison on a nonkey.

o A5:Secondary index, equality on key or nonkey: The selection that specifies an

equality condition can use the secondary index. Using secondary index strategy,

we can either retrieve a single record when equality is on key or multiple records

when the equality condition is on nonkey. When retrieving a single record, the

time cost is equal to the primary index. In the case of multiple records, they may

reside on different blocks. This results in one I/O operation per fetched record,

and each I/O operation requires a seek and a block transfer.

Selection involving comparisons:

For making any selection on the basis of a comparison in a relation, we can proceed it

either by using the linear search or binary search via indices in the following ways:

A6:Primary index, comparison: When the selection condition given by the user is a

comparison, then we use a primary ordered index, such as the primary B+-tree index. For

example, when A attribute of a relation R compared with a given value v as A>v, then

we use a primary index on A to directly retrieve the tuples. The file scan starts its search

from the beginning till the end and outputs all those tuples that satisfy the given

selection condition. For A>v, the file scan starts with the first tuple such that A>v.

For A<v we use simple file scan starting from the beginning of the file., and continuing

up to the first tuple with attribute A=v.

o A7:Secondary index, comparison: The secondary ordered index is used for

satisfying the selection operation that involves <, >, ≤, or ≥ In this, the files scan

searches the blocks of the lowest-level index.

(< ≤): In this case, it scans from the smallest value up to the given value v.

(>, ≥): In this case, it scans from the given value v up to the maximum value.

However, the use of the secondary index should be limited for selecting a few

records. It is because such an index provides pointers to point each record, so

users can easily fetch the record through the allocated pointers. Such retrieved

records may require an I/O operation as records may be stored on different

blocks of the file. So, if the number of fetched records is large, it becomes

expensive with the secondary index.

Implementation of complex selections:

Working on more complex selection involves three selection predicates known as

Conjunction, Disjunction, and Negation.

Conjunction: A conjunctive selection is the selection having the form as:

σ θ1^θ2^…^θn (r)

A conjunction is the intersection of all records that satisfies the above selection

condition.

Disjunction: A disjunctive selection is the selection having the form as:

σ θ1vθ2v…vθn (r)

A disjunction is the union of all records that satisfies the given selection condition θi.

Negation: The result of a selection σ¬θ(r) is the set of tuples of given relation r where

the selection condition evaluates to false. But nulls are not present, and this set is only

the set of tuples in relation r that are not in σθ(r).

Using these discussed selection predicates, we can implement the selection operations

by using the following algorithms:

o A8: Conjunctive selection using one index: In such type of selection operation

implementation, we initially determine if any access path is available for an

attribute. If found one, then algorithms based on the index will work better.

Further completion of the selection operation is done by testing that each

selected records satisfy the remaining simple conditions. The cost of the selected

algorithm provides the cost of this algorithm.

o A9: Conjunctive selection using Composite index: A composite index is the

one that is provided on multiple attributes. Such an index may be present for

some conjunctive selections. If the selection specifies an equality condition on

two or more attributes, and a composite index exists on these combined attribute

fields, then the index can be searched directly. Such type of index determine the

suitable index algorithms.

o A10: Conjunctive selection by the intersection of identifiers: This implementation

involves record pointers or record identifiers. It uses indices with the record pointers on

those fields which are involved in the individual selection condition. It scans each index

for pointers to tuples satisfying the individual condition. Therefore, the intersection of all

the retrieved pointers is the set of pointers to the tuples that satisfies the conjunctive

condition. The algorithm uses these pointers to fetch the actual records. However, in

absence of indices on each individual condition, it tests the retrieved records for the

other remaining conditions.

A11 : Disjunctive selection by the union of identifiers: This algorithm scans those

entire indexes for pointers to tuples that satisfy the individual condition. But only if

access paths are available on all disjunctive selection conditions. Therefore, the union of

all fetched records provides pointers sets to all those tuples which satisfy or prove the

disjunctive condition. Further, it makes use of pointers for fetching the actual records.

Somehow, if the access path is not present for anyone condition, we need to use a linear

search to find those tuples that satisfy the condition. Thus, it is good to use a linear

search for determining such tests

	Parsing and Translation
	Evaluation
	Query Evaluation Plan

	Optimization
	Measures of Query Cost
	Selection Operation
	Generally, the selection operation is performed by the file scan. File scans are the search algorithms that are used for locating and accessing the data. It is the lowest-level operator used in query processing.
	Basic algorithms

