Ordinary Differential Equations Course Code: 21M03CC UNIT - IV

Dr. A. Tamilselvan Professor and Chair School of Mathematical Sciences

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024, Tamil Nadu, India

Q halitative Properties of
Solutions
N, Kinx

$$f(o) = 0$$
 $(f(o) = 1$ $ditting optimized
 $f'(o) = 1$ $f'(o) = 0$
 $f'(o) = 1$ $f'(o) = 0$
 $f'(o) = 0$ $f'(o) = 0$
 $f(o) = 0$ $f'(o) = 0$
 $f'(o) = 0$ $f'($$

pf: Let x₁ and x₂ be the Kuccentive 2005 of
J₁(x). That is y₁(x₁) = y₁(x₂) = 0.
Then y₂(x₁) ≠ 0 and y₁(x₂) ≠ 0.
for if y₂(x₁) = y₂(x₂) = 0, then the wronokian
W(y₁,y₂) = y₁y₂ - y₁'y₂ would be zero there,
which is a contradiction to the fact that
y₁ and y₂ are cinearly independent.
Claim(i): y₂(x) vanishes between x₁ and x₂
sufform y₂(x) does not vanish between x₁ and x₂
sufform y₂(x) does not vanish between x₁ and x₂
f is contradiction
$$f(x) = \frac{y_1(x)}{y_2(x)}$$
 of is cont
Convider the function $f(x) = \frac{y_1(x)}{y_2(x)}$ of (a, b) and
f(a) and y₂ are
(i) continuous on [x₁, x₂]
(ii) vanishes at x₁ and x₂
Hence by Rolle's theorem $\phi'(x) = 0$ at
Some point in (x₁, x₂).
But $\phi'(x) = \frac{y_2(x)y_1'(x) - y_1(x)y_2'(x)}{y_2'(x)} = \frac{-W(y_1, y_2)}{y_2'(x)}$
 $\neq 0$ (as y₁ 4 y₂ are linearly independent
 \Rightarrow y₂(x) vanishes at least once in (x₁, x₂).

claim(i):
$$y_{2}(x)$$
 vanishes exactly once between
 x_{1} and x_{2}
Suppose $y_{2}(x)$ vanishes twice in (x_{1}, x_{n})
Then by claim (1), x_{1}
 $y_{1}(x)$ would have a $y_{1}(x)$
 $y_{1}(x)$ would have a $y_{1}(x)$
 $y_{1}(x)$ would have a $y_{1}(x)$
 $y_{2}(x)$ and x_{2} are next
 $(ansecative zeros of $y_{1}(x)$
 $y_{1}(x)$ has exactly one zero in (x_{1}, x_{2}) .
Similarly $y_{1}(x)$ has exactly one zero between
the successive zeros of $y_{2}(x)$
 $final(x_{2}) = fin_{2}T = 0$
 $fin_{2}(x_{2}) = fin_{2}T = 0$
 $fin_{3}(x_{2}) = fin_{3}T = 0$
 $fin_{4}(x_{2}) = fin_{3}T = 0$
 $fin_{4}(x_{3}) = fin_{3}T = 0$
 $fin_{4}($$

Theorem 2 (Sturm comparison Theorem)
Let
$$\phi(a)$$
 and $\gamma(a)$ be nontrivial solutions
of $y'' + p(a)y = 0$ and $y'' + q(a)y = 0$ respectively
where $p(a)$ and $q(a)$ are puritive functions such
that $p(a) > q(a)$. Then between any two zeros
of $\gamma(a)$, Itere is a zero of $\phi(a)$.

Proof: Let
$$x_1$$
 and x_2 be the consecutive zeros
 $c | aim: \phi(x) | uanishus in (x_1, x_2)$
Suppose $\phi(x)$ does not vanish in (x_1, x_2) .
Since the zeros of a function \mathcal{Y} are same
as those of $-\mathcal{Y}$, we can assume that $\phi(x) > 0$
for if $\phi(x) < 0$, we can assume that $\phi(x) > 0$
 $-\phi(x)$.

However

$$dw(\phi, \psi, z) = \phi \psi'' + \phi' \psi' = \phi' \psi' - \phi'' \psi$$

$$= \phi \psi'' - \phi'' \psi$$

$$= \phi (-\beta(x)\psi) - (-\beta(x)\phi) - (-\beta(x)\phi) \psi$$

$$= \phi (-\beta(x)\psi) - (-\beta(x)\phi) -$$

 $P(x) = \frac{1}{x}$, $Q(x) = (x^2 - \beta^2)/x^2$

(Sta form)

The normal form is

$$U'' + f(x) U = 0, \text{ where } f(x) = O(x) - \frac{1}{4} f(x) - \frac{1}{4} f(x) - \frac{1}{4} f(x) - \frac{1}{4} f(x)$$

$$i_{L_{1}}^{\prime} \hat{f}(x) = \frac{2^{2} - \beta^{2}}{x^{2}} - \frac{1}{4} \left(\frac{1}{x} \right)^{2} - \frac{1}{2} \left(-\frac{1}{x^{2}} \right)$$

$$= \frac{x^{2} - \beta^{2}}{x^{2}} - \frac{1}{4x^{2}} + \frac{1}{4x^{2}}$$

$$= \frac{2^{2} - \beta^{2}}{x^{2}} + \frac{1}{4x^{2}} = 1 - \frac{\beta^{2}}{x^{2}} + \frac{1}{4x^{2}}$$

$$= 1 + \frac{1 - 4\beta^{2}}{4x^{2}}$$

: The normal form is

$$U'' + \left[1 + \frac{(-4)^2}{4x^2}\right] U = 0$$

Theorem : 3 If f(x) < 0 and $\phi(x)$ is any <u>nontrivial solution</u> of y'' + f(x) y = 0, then $\phi(x)$ has atmost one zero. Proof: Suppose $\phi(x_0) = 0$.

Then
$$\varphi'(x_0) \neq 0$$
.
for, if $\varphi'(x_0) \ge 0$ [For $\varphi(x) \ge 0$, by uniqueness
theorem
Let $\varphi'(x_0) \ge 0$.

Then for
$$a > x_0$$
, $\phi(a) > 0$.
Hence $\phi''(a) = -g(a)\phi(a)$
 $\Rightarrow 0$
Thus $\phi(a)$ is a monotonic function and hence
it has no zero for $x > x_0$.
N $\phi(a)$ has no zero for $x < x_0$.
A similar argument helds for $\phi'(a_0) < 0$.

Hence cp(r) has atmost one zero.

0

Contractions
OHO CONVERSION
(95(MOICC - Linear Algebra
(95(MOICC - Real Analytic) I
(95(MOICC - Real Analytic) I
(95(MOICC - Real Analytic) I
(95(MOICC - Ordinary Differential
Equations
(95(MOICC - Theory GINumbers
(95(MOICC - Graph Theory
Recall
$$y' + p(x)y' + Q(x)y = 0 \rightarrow SHL$$
 form
 $U'' + p(x)y' + Q(x)y = 0 \rightarrow SHL$ form
 $U'' + p(x)u = 0 \rightarrow hormal form$
where $p(x) = Q(x) - \frac{1}{4}p(x) = 0 \rightarrow formal form$
where $p(x) = Q(x) - \frac{1}{4}p(x) = 0$, $p(x) = 0$
 $Ex U'' + U = 0$, $minx Cox$
do not conversion $U'' + q(x)U = 0$, $p(x) > 0$
 $Ex U'' + U = 0$, $minx Cox$
 $do not overlinet: U' + q(x)U = 0$, $p(x) < 0$
 $Ex U'' + U = 0$, $p(x) < 0$
 $Ex U'' + U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$, $p(x) < 0$
 $Ex U'' + Q(x)U = 0$, $p(x) < 0$, $p(x) < 0$, $p(x) <$

Sturm Scharzling theorem,
J. 92

$$y'_{1}p(x)y = 0$$

 $y'_{1}p(x)y = 0$
 $y'_{1}p(x)y = 0$
 $y'_{1}p(x)y = 0$
 $y''_{1}p(x)y = 0$
 $y''_{1}p(x) = 0$
 y''_{1}

Theorem: Let
$$\varphi(x)$$
 be any nontrivial solution
of $y'' + \beta(x)y \ge 0$, where $\beta(x) > 0$, $4 \ge 0$.
If $\int \beta(x) dx = \infty$, then $\varphi(x)$ has infinitely
many zeros on its polynove maxis.
Proof: Claim: $\varphi(x)$ has infinitely many zeros
on $(0, n)$.
Subpoor, $\varphi(x)$ vanishes atmost a finite
number of times for $0 \le x \le n$.
Therefore a point No >1 excipts with the
property that $\varphi(x) + 0$, $4 \ge 7 \ge \infty$.
Will $\varphi(x) = -\frac{\varphi'(x)}{\varphi(x)}$ for $x > x_0$.
Put $U(x) = -\frac{\varphi'(x)}{\varphi(x)}$ for $x > x_0$
 $\varphi(x) > 0 + x \ge x_0$
 $\varphi(x) = -\frac{\varphi'(x)}{\varphi(x)}$ for $x > x_0$

$$\Rightarrow \int_{\infty}^{n} d(o(n)) = \int_{\infty}^{n} f(n) dx + \int_{\infty}^{n} (g(n))^{n} dx$$

$$\Rightarrow \int_{\infty}^{n} d(o(n)) = \int_{\infty}^{n} f(n) dx + \int_{\infty}^{n} (f(n))^{n} dx$$

$$\Rightarrow \int_{\infty}^{n} d(n) + \int_{\infty}^{n} f(n) dx + \int_{\infty}^{n} (f(n))^{n} dx$$

$$\Rightarrow \int_{\infty}^{n} d(n) + \int_{\infty}^{n} f(n) dx + \int_{\infty}^{n} (f(n))^{n} dx$$

$$\Rightarrow \int_{\infty}^{n} d(n) + \int_{\infty}^{n} f(n) dx + \int_{\infty}^{n} (f(n))^{n} dx$$

$$\Rightarrow f(n) + f(n) + \int_{\infty}^{n} f(n) dx + \int_{\infty}^{n} (f(n))^{n} dx$$

$$f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) > 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by arbumpton})$$

$$= f(n) < 0 \quad (: f(n) < 0 \text{ by ar$$

$$c_{cbe_{in}} = \lambda > 0, \ samp \quad \lambda = \kappa^{2}$$

$$Then \quad y'' + \kappa^{2} y = 0$$

$$\Rightarrow \quad y(x) = c_{1} cdS \, kz + c_{2} hindz$$

$$\Rightarrow \quad y(o) = 0$$

$$\Rightarrow \quad y(o) = c_{1} (1) + (2(0))$$

$$\Rightarrow \quad y(o) = c_{1} (1) + (2(0))$$

$$\Rightarrow \quad y(o) = c_{1} (1) + (2(0))$$

$$\Rightarrow \quad y(i) = c_{2} hindif$$

$$\Rightarrow \quad y(i) = c_{1} hindif$$

$$\Rightarrow \quad y(i) = c_{2} hindif$$

$$\Rightarrow \quad y(i) = c_{1} hindif$$

$$\Rightarrow \quad y(i) = c_{2} hindif$$

$$\Rightarrow$$

1

÷

•