Ordinary Differential Equations Course Code: 21M03CC UNIT - IV

Dr. A. Tamilselvan Professor and Chair School of Mathematical Sciences

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024, Tamil Nadu, India

KOD KAR KED KED E VOQO

Qualitative Properties of
\n n 667\n
\n n 667

\n
$$
\begin{array}{ll}\n \begin{array}{ll}\n \text{Pf}: \text{Let } x_1 \text{ and } x_2 \text{ be } t \text{ be } x_1 \text{ successive zeros of } \\
\mathcal{J}_1(x) & \text{That is } \mathcal{Y}_1(x_1) = \mathcal{Y}_1(x_2) = 0 \\
\text{Then } \mathcal{Y}_2(x_1) \neq 0 \text{ and } \mathcal{Y}_2(x_2) \neq 0,\n \end{array}
$$
\n

\n\n $\begin{array}{ll}\n \text{Here if } \mathcal{Y}_2(x_1) = \mathcal{Y}_2(x_2) = 0, \text{ then the Wronskian } \\
\mathcal{W}(3, 9x) &= \mathcal{Y}_1 \mathcal{Y}_2 - \mathcal{Y}_1 \mathcal{Y}_2 \text{ would be zero linear, } \\
\text{which is a characteristic of the function } t \text{ if the fact that } \\
\mathcal{Y}_1 \text{ and } \mathcal{Y}_2 \text{ are } \text{Cimerally index, } t \text{ and } \mathcal{X}_2\n \end{array}$ \n

\n\n $\begin{array}{ll}\n \text{Clim}(x): \mathcal{Y}_2(x): \text{arrows between } x_1 \text{ and } x_2 \\
\text{Suffence } \mathcal{Y}_2(x): \text{ does not be } \text{Vannish } b \text{ between } x_1 \text{ and } x_2\n \end{array}$ \n

\n\n $\begin{array}{ll}\n \text{Cmin}(x): \mathcal{Y}_2(x): \text{diam}(b) = \mathcal{Y}_1(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_2(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_1(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_1(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_1(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_2(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_1(x) \\
\text{Clim}(x): \text{diam}(b) = \mathcal{Y}_2(x) \\
\text{Clim}(x): \text{Clim}(x): \text{Clim}(x): \text{Clim}(x): \text{Clim}(x): \text{Clim}(x): \text{Clim}(x): \text{C$

$Cl_{n,m,n}(N)$	$Y_{L}(x)$ vanishes exactly once between x, and x.	
$Suppose$	$Y_{L}(x)$	vanimhas four in (N, L_{L})
$Y_{I}(x)$ unend have a	$Y_{I}(x)$	
$Y_{I}(x)$ unend have a	$Y_{I}(x)$	
Q_{m} between them.	$Y_{I}(x)$	

Theorem 2 (S turn Comparian Thuorem)
Let
$$
\phi(1)
$$
 and $\psi(2)$ be nontrivial solutions
of $y'' + \phi(2) = 0$ and $y'' + \hat{\gamma}(2) = 0$ subperively
where $\phi(2)$ and $\hat{\gamma}(2)$ are $\hat{\gamma}(3)$ is function such
that $\hat{\gamma}(2) = \hat{\gamma}(2)$. Then between any two zeros
of $\psi(2)$, there is a zero of $\phi(2)$.

Proof :	Let x_1 and x_2 be the consecutive zeros of $\psi(x)$.
$C(\overline{ain})$: $\phi(x)$ vanimho in (x_1, x_2)	$\phi(x_1) = 1$
$Suppose$ $\phi(x)$ does not vanish in (x_1, x_2) .	$\psi(x_1) = 1$
$Sine$ If C 2ens of C function y are same.	
as then C is a function of ax_1x_2 .	$\phi(x_1) = 0$
as then C is a function of ax_1x_2 .	$\phi(x_1) = 0$
as then C is a function of ax_1x_2 .	$\phi(x_1) = 0$
as then C is a function of ax_1x_2 .	$\phi(x_1) = 0$
as then C is a function of ax_1x_2 .	$\phi(x_1) = 0$

$$
\therefore \text{ we have}
$$
\n
$$
W(\phi(\tau), \psi(\tau) : \tau) = \phi(\tau) \psi'(\tau) - \phi'(\tau) \psi(\tau)
$$
\n
$$
= \phi(\tau) \psi'(\tau) \geq 0
$$
\n
$$
W(\phi(\tau), \psi(\tau) : \tau) = \phi(\tau) \psi'(\tau) - \phi'(\tau) \psi(\tau)
$$
\n
$$
= \phi(\tau) \psi'(\tau) \leq 0 \quad (*)
$$

$$
\frac{1}{d\tau} \int \frac{1}{d\tau} \int e^{i\theta} \frac{1}{\tau} e^{i\theta} \frac{1}{\tau} \int e^{i\theta} \frac{1}{\tau} e^{i\theta} \frac{1}{\tau} \frac{1}{\tau} \frac{1}{\tau} e^{i\theta} \frac{1}{\tau} \frac
$$

 \circ

Put
$$
U(x) = U(x)U(x)
$$

\n
$$
U(x) = U(x)U(x)
$$
\n
$$
V(x) = U(x)U(x)
$$
\n<math display="block</p>

 $P(x) = \frac{1}{x}, Q(x) = (x^2 - \beta^2)/x^2$

The normal form is
\n
$$
U'' + \gamma(x)u = 0
$$
, where $\gamma(x) = \varphi(x) - \frac{1}{4} \rho(x)$
\n $- \frac{1}{2} \rho(x)$

$$
\int_{c}^{L} f(x) = \frac{2\frac{1}{x^{2}} - \frac{1}{x^{2}}}{2\pi} - \frac{1}{4} (\frac{1}{x})^{2} - \frac{1}{2} (-\frac{1}{x^{2}})
$$

$$
= \frac{2\frac{1}{x^{2}} - \frac{1}{x^{2}}}{2\pi} - \frac{1}{4} \frac{1}{x^{2}} + \frac{1}{4} \frac{1}{x^{2}}
$$

$$
= 1 - \frac{1}{x^{2}} + \frac{1}{4} \frac{1}{x^{2}}
$$

$$
= 1 + \frac{1 - 4\frac{1}{x^{2}}}{4x^{2}}
$$

$$
\therefore
$$
 The normal form (s
 $U'' + [1 + \frac{1-4p^{2}}{4a^{2}}]W = 0$

Theorem 3 If $f(x) < 0$ and $f(x)$ is any nontrivial solution of $y'' + f(a)y = 0$, then $\phi(a)$ has atmost one zero. $\overline{\varphi}$ iven $\varphi(1) \not\equiv 0$ Proof: Suppose of (20) = 0.

Then
$$
\phi'(x_0) \neq 0
$$
.
for, if $\phi'(x_0) > 0$ | $\int_{-\pi}^{x_0} (\pi) \times \phi(x_0) dx$ | $\int_{-\pi}^{x_0} (\pi) \times \phi(x_0) dx$ | $\int_{-\pi}^{x_0} (\pi) \times \phi(x_0) dx$

Then for
$$
a > a_0
$$
, $\phi(a) > 0$.

\nThen $\phi''(n) = -\frac{1}{2}(a)\phi(a)$

\nHere $\phi''(n) = -\frac{1}{2}(a)\phi(a)$

\nThus $\phi(a)$ is a monotonic function and hence

\nIt has no zero for $x > x_0$.

\nThen no zero for $x > x_0$.

\nThen no zero for $x < x_0$.

\nThus, $\phi(a)$ has no zero for $x < x_0$.

\nThus, $\phi(a)$ has no zero for $x < x_0$.

\nThus, $\phi(a)$ has no zero for $x < x_0$.

Hence c/ (2) has atmost one Zero.

 $\overline{\mathbf{C}}$

Theron: Let
$$
\phi(x)
$$
 be any nontrivial solution
\n $\int f'(x)dx = \infty$, then $\phi(x)$ be a infinite
\n $\int f'(x)dx = \infty$, then $\phi(x)$ has infinitely
\n $\int f(x)dx = \infty$, then $\phi(x)$ has infinitely
\n $\int f(x)dx = \infty$, then $\int f(x)dx$ is infinitely many zeros.
\n $\int f(x)dx = \int f(x)dx$ is infinitely many zeros.
\n $\int f(x)dx = \int f(x)dx$ is not possible to find the
\n $\int f(x)dx = \int f(x)dx = \int f(x)dx$
\n $\int f(x)dx = \int f(x)dx = \int f(x)dx$
\n $\int f(x)dx = \int f(x)dx = \int f(x)dx$
\n $\int f(x)dx = \int f(x)dx + \int f(x)dx$
\n $\int f(x)dx = \int f(x)dx + \int f(x)dx$
\n $\int f(x)dx = \int f(x)dx + \int f(x)dx$
\n $\int f(x)dx = \int f(x)dx + \int f(x)dx$

$$
\Rightarrow \int_{0}^{2} d(011) = \int_{0}^{2} f(x) dx + \int_{0}^{2} (011)^{2} dx
$$
\n
$$
\Rightarrow \int_{0}^{2} d(011) = \int_{0}^{2} f(x) dx + \int_{0}^{2} (011)^{2} dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(1) = \int_{0}^{2} f(x) dx + \int_{0}^{2} f(111)^{2} dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(1) = \int_{0}^{2} f(x) dx + \int_{0}^{2} f(111)^{2} dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(1) = \int_{0}^{2} f(x) dx + \int_{0}^{2} f(111)^{2} dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx + \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx + \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x) dx
$$
\n
$$
\Rightarrow \int_{0}^{2} f(x) dx = \int_{0}^{2} f(x
$$

Clearly,
$$
h(x) = 0
$$
, $h(x) = 0$

\nThen $y'' + x^2 y = 0$

\n
$$
\Rightarrow 9(x) = c_1 cos 6x + c_2 sin x
$$
\n
$$
\Rightarrow 9(x) = c_1 cos 6x + c_2 sin x
$$
\n
$$
\Rightarrow 9(x) = c_1 (x) + c_2 (x)
$$
\n
$$
\Rightarrow 9(x) = c_1 (x) + c_2 (x)
$$
\n
$$
\Rightarrow 9(x) = c_1 (x) + c_2 (x)
$$
\n
$$
\Rightarrow 9(x) = c_1 (x) + c_2 (x)
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c_2 sin x \text{ if } x = 0
$$
\n
$$
\Rightarrow 0 = c
$$

 $\ddot{\cdot}$

÷.

 $\ddot{}$