

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA I
- Course Code : 24S2M05CC

UNIT - I

BASIC GROUP THEORY

Dr. C. Durairajan

Professor

Department of Mathematics

 $4.171 - 6$

- A binary operation \star on a set *G* is a function \star : $G \times G \rightarrow G$.
- A nonempty set G together with a binary operation \star is said to be a Group if
	- \star is associative: $(a * b) * c = a * (b * c)$ for all $a, b, c \in G$.
	- there is an identity element $e \in G$ such that

 $e * g = g = g * e$ for all $g \in G$.

• for every element $a \in G$, there is an element $b \in G$ such that $a * b = e = b * a$

つくい

Examples of Groups

- \mathbb{C} \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} under addition but N is not a group under addition and multiplication because inverse element does not exist for all elements for addition but multiplication except 1.
- $\mathbf{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ under multiplication.
- **3** $\frac{\mathbb{Z}}{n\mathbb{Z}}$ under addition.
- $\frac{\mathbb{Z}}{n\mathbb{Z}}$ ^{*} = { $a \in \frac{\mathbb{Z}}{n\mathbb{Z}}$ $\frac{\mathbb{Z}}{n\mathbb{Z}}$ | *a* is relatively prime to*n*} under multiplication.
- \bullet The set \mathbb{Z}_n of all integers modulo n form a group under addition modulo n.
- **6** The set $M_n(\mathbb{F})$ of all $n \times n$ matrices over a field \mathbb{F} under matrix addition.
- **7** General linear groups $GL_n(\mathbb{F})$
- **8** Dihedral groups D_{2n} .
- ⁹ Symmetric groups *Sn*.

イロト イ押 トイヨ トイヨト

A group G is said to an abelian group if it satisfies the commutative property.

In the above Examples, 1 to 6 are abelian groups and others are nonabelian groups.

Properties Let *G* be a group. Then

- the identity element in *G* is unique. We denote this element by *e*.
- for every $g \in G$, its inverse g^{-1} is unique.
- for any $x, y \in G$, $(x^{-1})^{-1} = x$ and $(xy)^{-1} = y^{-1}x^{-1}$.
- the cancellation laws are true;

For any $a, b, c \in G$, $ba = ca \Rightarrow b = c$ and $ab = ac \Rightarrow b = c$.

Finite Groups; Subgroups

- The order of *G*, denoted $|G|$, is the number of elements in G.
- The least positive integer n such that $x^n = e$ is called theorder of x. If such *n* does not exist, then the order of x is infinite order.
- For any positive integer *n*, there exists a group of order *n*. This group is (\mathbb{Z}_n, \oplus_n) .
- \bullet $|\mathbb{Z}_{10}| = 10$. In \mathbb{Z}_{10} , $|5| = 2$.
- A subset H of a group G is said to be a subgroup of G if H itself is a group under the operation of *G*.
- Let *G* be a group. If $H \subseteq G$, then $ab^{-1} \in H$ for all $a, b \in H$ iff *H* is a subgroup of *G*.

- Finite subgroup test: Let $H \subseteq G$ is finite. If *H* is closed under the operation of *G*, then *H* is a subgroup of *G*.
- Examples of Subgroups:
	- $n\mathbb{Z}$ is a subgroup of \mathbb{Z} for any integer *n*.
	- Let *G* be a group and let $a \in G$. Then $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}\$ is a subgroup of *G*. This subgroup is called cyclic subgroup generated by *a*.
	- Center of *G*: $Z(G) = \{a \in G \mid ax = xa \text{ for all } x \in G\}$ is a subgroup of *G*.
	- Centralizer of *a* in *G*: $C(a) = \{g \in G | ga = ag\}$ is a subgroup of *G*. This is also know as normalizer of a.

イロト イ押 トイヨ トイヨト

 Ω

Coset of *H* in *G*

Let *H* be a subgroup of a group *G*, then the set $aH = \{ah \mid h \in H\}$ is called a **left coset of** *H* in *G*.

• Properties of Cosets

For $a, b \in G$,

- \bullet *a* \in *aH*.
- $aH = bH \Leftrightarrow a^{-1}b \in H$.
- *aH* is a subgroup of $G \Leftrightarrow a \in H$.
- $aH = bH$ or $aH \cap bH = \emptyset$.
- A subgroup *H* of *G* is said to be a normal subgroup if

 $aH = Ha$ for all $a \in G$.

つくい

Continue ...

- If H is a normal subgroup of a group G, then the collection $\frac{G}{H} = \{aH \mid a \in G\}$ of all cosets of H in G from a group under the operation defined by $aHbH = abH$ for all $aH, bH \in \frac{G}{H}$ $\frac{G}{H}$. This group is called a factor group of G or quotient group of G.
- \bullet If a subgroup H of a group G is a normal subgroup, then the following conditions are equivalent

•
$$
ghg^{-1} \in H
$$
 for all $g \in G, h \in H$.

$$
gHg^{-1} = H \text{ for all } g \in G.
$$

- \bullet *gH* = *Hg* for all *g* \in *G*. That is every right coset of H is a left coset.
- ⁴ H is the kernel of a homomorphism of G to some other group

つくい

Lagrange's Theorem

If *G* is a finite group and *H* is a subgroup of *G*, then |*H*| divides $|G|$.

- Note that the converse of Lagrange's theorem need not be true. For example the group *A*⁴ of order 12 has no subgroup of order 6. But the coverse of this theorem is true for any finite abelian group.
- If G is a finite group and H is a subgroup of G, then the number of cosets of H in G is $\frac{\#(G)}{\#(H)}$. That is, $\#(\frac{G}{H}) = \frac{\#(G)}{\#(H)}$.
- If G is a finite group, then $a^{\#(G)} = e$ for all $a \in G$ and hence the order of each element of the group divides the order of the group.

Cyclic Groups and its Properties

Orbit-Stabilizer Theorem

Let *G* be a finite group of Permutations of a set *S*. Then, for any $i \in S$, $\#(G) = \#(orb_G(i)) \#(stab_G(i))$ where $orb_G(i) = \{\phi(i) | \phi \in G\}$ and $stab_G(i) = \{\phi \in G | \phi(i) = i\}.$

- \bullet In a group *G*, there is an element *a* in *G* such that $G = \{a^n | n \in \mathbb{Z}\}\.$ Then *G* is called a **cyclic group** and *a* is called a generator of *G*.
- If G is an infinite cyclic group, then there are exactly two generators.
- If G is a finite group of order n, then there are $\phi(n)$, the Euler ϕ -function, generators where $\phi(n) = \#\{i \mid (i, n) = 1\& 1 \leq i \leq n\}.$ K ロ > K 個 > K 差 > K 差 > → 差

 QQ

Cyclic Groups and its Properties

- Note that if a is a generator of a cyclic group, then its inverse is also a generator.
- 1, 3, 5, 7 in \mathbb{Z}_8 are generators of \mathbb{Z}_8 . That is, $\mathbb{Z}_8 = 1 \geq -3 \geq -5 \geq -27$
- Let G be a cyclic group generated by a. Then
	- ¹ every cyclic group is an abelian group.
	- ² every subgroup of a cyclic group is cyclic
	- ³ if G is a cyclic group of order n generated by *a*, then for every positive divisor *k* of *n*, there is a unique subgroup of order *k*. In fact, the k order subgroup of G is $\langle a^m \rangle$ where $\frac{n}{k}$.

 Ω

Permutation Groups

%subsectionPermutation Groups

Permutation group of a set *S*

A set of all bijective functions from *S* into *S* forms a group under composition of function. Its elements are called Permutations. This permutation group is denoted as *A*(*S*).

If $\#S = n$, then there are *n*! bijections from *S* into *S*. The *A*(*S*) is denoted as *Sn*.

Example

Let $S = \{x_1, x_2, x_3, x_4, x_5\}$, then a bijective function

 $x_1 \longmapsto x_3; x_2 \longmapsto x_4; x_3 \longmapsto x_1; x_4 \longmapsto x_5; x_5 \longmapsto x_2;$

K ロ ト K 倒 ト K

 2990

can be written as a product of cycles $(x_1, x_3)(x_2, x_4, x_5)$.

Continue ...

- Two cycles (x_1, x_2, \dots, x_r) and (y_1, y_2, \dots, y_s) are distinct if there is a map $a \mapsto b$ in (x_1, x_2, \dots, x_r) but not in $(y_1, y_2, \cdots, y_s).$
- Every permutation can be written as a cycle or a product of disjoint cycles.
- A cycle (a_1, \ldots, a_m) is called a cycle of length *m* or *m*-cycle. For example, (1, 2, 4) is a 3-cycle *S*4.
- A cycle of length 2 is called a transposition.
- Every cycle can be written as a product of transpositions and hence every permutation can be written as a product of transpositions.

イロトメ 倒 トメ 君 トメ 君 トー

Example

$$
(x_1, x_2, \cdots, x_r) = (x_1, x_2)(x_1, x_3)(x_1, x_4) \cdots (x_1, x_r)
$$

- A permutation is said to be even(odd) if it can be written as a product of even(odd) number of transpositions.
- The order of a Permutation of a finite set is the least common multiple of the lengths of its disjoint cycle.

4 0 8

REFERENCES

M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.

F 螶

F F F F F F

- David S. Dummit and Richard M. Foote,Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Joseph Gallian, Contemporary Abstract Algebra , 9th Edition
- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
- John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.

4 0 8

SACRA

モミメ