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Rings

A ring R is a set with two binary operations ∗,∆ such that
1 (R, ∗) is an abelian group.
2 (R,∆) is a semigroup.
3 Two distributive laws.

It is denoted by (R, ∗,∆).

(Z,+,×), (Z[x],+,×), (Zn,⊕n,⊗n)and(M2(Z,+×) are rings.
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Ideals and Factor Rings

A commutative ring with unity is said to be an integral domain
if it has no zero-divisors.

Z, 2Z,Z7 are integral domains but Z4 is not because 2 ⊗4 2 = 0.

Let D be an integral domain. Then there exists a field F(the field

of quotients of D) that contains a subring isomorphic to D.

A finite integral domain is a field.

The characteristic of a ring R is the least positive integer n such

that na = 0 for all a ∈ R. If such n does not exist, then the

characteristic of the ring is 0.

For example, the characteristic of Zn is n but the characteristic of

Z is 0. The characteristic of an integral domain is either 0 or a

prime integer.
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Continue ...

A nonempty subset A of a ring R is an ideal if
1 a − b, ab ∈ A for all a, b ∈ A and
2 ar, ra ∈ A for all a ∈ A and r ∈ R.

Example
The prime ideals of Z are (0), (2), (3), (5), · · · .
These are all maximal except (0).

If A = Z[x], the polynomial ring in one variable over Z and p is a prime

number, then (0), (p), (x), (p, x) = {ap + bx | a, b ∈ A} are all prime

ideals of A. Only maximal ideal in these is (p, x).

Let a be an element of a ring R, then aR = {ar | r ∈ R} is an ideal.

This ideal is generated by a.
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Continue . . .

1 An ideal generated by a single element of the ring is called a

Principal ideal lf the ring. In a ring, every ideal is a principal

ideal, then the ring is called the Principal Ideal ring. If it is an

integral domain, then it is calleda Principal Ideal domain(PID).

Example

Z and F[x] are PID where F is a field.

2 Let A be a subring of R. Then the set {r + A | r ∈ R} of cosets

forms a ring under

(s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A iff A

is an ideal of R

3 2Z
6Z = {0 + 6Z, 2 + 6Z, 4 + 6Z}.
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Continue . . .

A proper ideal A of a commutative ring R is said to be a prime

ideal if for a, b ∈ R, ab ∈ A implies a ∈ A or b ∈ A.

A proper ideal A of a commutative ring R is said to be a maximal

ideal if there is no ideal in between A and R.

2Z, 3Z are prime ideal but 4Z, 6Z are not because 2.2 = 4 ∈ 4Z
but 2 /∈ 4Z and 3.3 = 6 ∈ 6Z but 3 /∈ 6Z

Let R be a commutative ring with unity and let A be an ideal of
R. Then

1 Every maximal ideal is a prime ideal.
2 R

A is an integral domain iff A is a prime ideal.
3 R

A is an field iff A is a maximal ideal.
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