

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA I
- Course Code : 24S2M05CC

UNIT - IV

RING & INTEGRAL DOMAINS

Dr. C. Durairajan

Professor

Department of Mathematics

 $4.171 - 6$

- A ring *R* is a set with two binary operations $*, \Delta$ such that
	- \bigcirc $(R, *)$ is an abelian group.
	- 2 (R, Δ) is a semigroup.
	- **3** Two distributive laws.

It is denoted by $(R, *, \Delta)$.

 \bullet $(\mathbb{Z}, +, \times), (\mathbb{Z}[x], +, \times), (\mathbb{Z}_n, \oplus_n, \otimes_n)$ and $(M_2(\mathbb{Z}, +\times))$ are rings.

 \leftarrow \Box \rightarrow

 $2Q$

メ ヨ ト

$$
\frac{1}{2} \Rightarrow \frac{1
$$

A non-gus all a f-cysyF in 2nd b-k a
\nunit
$$
h_1^1 = 3
$$
 nm-syas all b-k a ab = 1
\n $Msh:0$ unit h_1^1 exist in any of k addyth.
\n $Msh:0$ unit h_1^1 exist in any of k addyth.
\n θ In a way R. bya-dixway, with any m
\nmay at each x.
\n h_1 an any real not forhom a solution
\nor initial h_2
\n h_2 is the sum of h_1 and h_2
\n θ I in (Z, 1, 1) is the sum of h_1 and h_2
\n θ I in (2, 1, 1, 1, 1, 1)
\n h_2 is the sum of h_1 and h_3
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (Z, 0, 0, 0) = 1
\n $\frac{1}{2}$ In (

Ann. u_n	l. n	l. n																									
\n $\frac{u_n}{\sqrt{2\pi n}}$ \n	\n $\$																										

∢重き

D.

 $E = 990$

Table: In $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = 1$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = 1$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: $z_n = \{0, 1, 2, \ldots, n\}$
Line: <math< th=""></math<>

Ideals and Factor Rings

- A commutative ring with unity is said to be an **integral domain** if it has no zero-divisors.
- $\bullet \mathbb{Z}, 2\mathbb{Z}, \mathbb{Z}_7$ are integral domains but \mathbb{Z}_4 is not because $2 \otimes_4 2 = 0$.
- Let *D* be an integral domain. Then there exists a field *F*(the field of quotients of *D*) that contains a subring isomorphic to *D*.
- A finite integral domain is a field.
- \bullet The characteristic of a ring R is the least positive integer n such that $na = 0$ for all $a \in R$. If such n does not exist, then the characteristic of the ring is 0.

For example, the characteristic of \mathbb{Z}_n is n but the characteristic of $\mathbb Z$ is 0. The characteristic of an integral domain is either 0 or a prime integer. 4 ロ) 4 何) 4 ヨ) 4 ヨ)

Continue ...

- A nonempty subset *A* of a ring *R* is an ideal if
	- \bigcirc *a* − *b*, *ab* ∈ *A* for all *a*, *b* ∈ *A* and

2 *ar*,
$$
ra \in A
$$
 for all $a \in A$ and $r \in R$.

Example

- The prime ideals of $\mathbb Z$ are $(0), (2), (3), (5), \cdots$. These are all maximal except (0).
- If $A = \mathbb{Z}[x]$, the polynomial ring in one variable over \mathbb{Z} and p is a prime number, then $(0), (p), (x), (p, x) = \{ap + bx \mid a, b \in A\}$ are all prime ideals of A. Only maximal ideal in these is (p, x) .

 Ω

• Let a be an element of a ring R, then $aR = \{ar \mid r \in R\}$ is an ideal. This ideal is generated by a.

Continue . . .

¹ An ideal generated by a single element of the ring is called a Principal ideal lf the ring. In a ring, every ideal is a principal ideal, then the ring is called the Principal Ideal ring. If it is an integral domain, then it is calleda Principal Ideal domain(PID).

Example

 \mathbb{Z} and $\mathbb{F}[x]$ are PID where \mathbb{F} is a field.

2 Let *A* be a subring of *R*. Then the set $\{r + A \mid r \in R\}$ of cosets forms a ring under $(s + A) + (t + A) = s + t + A$ and $(s + A)(t + A) = st + A$ iff *A* is an ideal of *R*

イロト イ押 トイヨ トイヨト

$$
\bullet \ \frac{2\mathbb{Z}}{6\mathbb{Z}} = \{0 + 6\mathbb{Z}, 2 + 6\mathbb{Z}, 4 + 6\mathbb{Z}\}.
$$

Continue . . .

- A proper ideal *A* of a commutative ring *R* is said to be a prime ideal if for $a, b \in R$, $ab \in A$ implies $a \in A$ or $b \in A$.
- A proper ideal *A* of a commutative ring *R* is said to be a maximal ideal if there is no ideal in between *A* and *R*.
- 2Z, 3Z are prime ideal but 4Z, 6Z are not because $2.2 = 4 \in 4\mathbb{Z}$ but 2 \notin 4 $\mathbb Z$ and 3.3 = 6 \in 6 $\mathbb Z$ but 3 \notin 6 $\mathbb Z$
- Let *R* be a commutative ring with unity and let *A* be an ideal of *R*. Then
	- ¹ Every maximal ideal is a prime ideal.
	- **2** $\frac{R}{A}$ is an integral domain iff *A* is a prime ideal.
	- **3** $\frac{R}{A}$ is an field iff *A* is a maximal ideal.

K ロ ト K 何 ト K ヨ ト

 QQ

9	1	manifold of R
R	R	

$$
4x + 9y + 9z = \frac{p}{p} - x/x
$$
\n
$$
(9x)^{(1)} + 9 = 19x - 6y - 6y - 6z = 1
$$
\n
$$
3x + 9z = 9
$$
\n
$$
3x + 9
$$

1. In a Cambridge ring with relatively, any manifold add

\n6 a point add.

\n6 a point add.

\n7. The equation of the following equations:

\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x - 1}{x - 1}
$$
\n
$$
x = \frac{3x
$$

Since
$$
\langle 2 \rangle = \langle 2 \rangle
$$

\n \Rightarrow $\log A = \langle 2 \rangle$
\n $\log A = \frac{2}{3}$
\n $\log A = \frac{2}{3}$
\n $\Rightarrow \frac{(\angle x)}{(\angle x)}$
\n $\Rightarrow \frac{(\angle x$

$$
\frac{75 \times 1000}{1000} + \frac{1000}{1000} + \frac{1000}{1000
$$

Using unit in a divisor of 1 or divides 1.

\nLet us be an inf in D

\nwhich

\nand a f(x) = 1

\nSo all
$$
x = 1
$$

\nSo all $x = 2$

\nSo all $x = 3$

\nSo all $x = 4$

\nSo all $x = 3$

\nSo all $x = 4$

\

A non-yes, non-tell an integral domain D is said to be on inclusible elt. if it combe written as a podent
of two non-wit alts. is, a =bc => action b quite $\overline{7}$ in in elt in \mathbb{Z}

 $7 = (-1)(-7)$. All prime integra in Z are producible elter

 $=$ \leftarrow $-$

◆ロト ◆母ト ◆暑ト ◆

重▶ 重 のなめ

REFERENCES

M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.

F 螶

F F F F F F

- David S. Dummit and Richard M. Foote,Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Joseph Gallian, Contemporary Abstract Algebra , 9th Edition
- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
- John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.

4 0 8

メイヨメ

イヨト