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Group Homomorphisms

A map ϕ from a group (G, ⋆) into a group (G′,∆) is a

homomorphism if

ϕ(a ⋆ b) = ϕ(a)∆ϕ(b) for all a, b ∈ G.

Example
1 For any groups G and G’, there is always at least one homomorphism:

ϕ : G −→ G′ defined by ϕ(g) = e′ for all g ∈ G where e’ is the

identity in G’. We call it the trivial homomorphism or
zero-homomorphism.

2 Let G be a group. Then the identity map is a group homomorphism.

This homomorphism is called the identity homomorphism.
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Continue ...

Let r ∈ Z and let ϕr : Z −→ Z be defined by

ϕr(n) = rn for all n ∈ Z. Then ϕ is a homomorphism.

Let ϕ : Z2 × Z4 −→ Z2 be defined by

ϕ(x, y) = x for all x ∈ Z2, y ∈ Z4. Then ϕ is a homomorphism.

Let G be a group and g ∈ G. Then the map ϕ : Z → G defined

by ϕ(n) = gn for all n ∈ Z is a homomorphism.
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Properties of Homomorphisms

Let ϕ be a homomorphism of a group G into a group G’. Then
1 If e is the identity element in G, then ϕ(e) is the identity element

e’ in G’.
2 If a ∈ G, then ϕ(a−1) = ϕ(a)−1.

3 If H is a subgroup of G, then ϕ(H) is a subgroup of G’.
4 If K’ is a subgroup of G’, then ϕ−1(K′) is a subgroup of G.

Let ϕ be a homomorphism of a group G into a group G’. Then

the kernel of ϕ is defined by Ker(ϕ) = {g ∈ G | ϕ(g) = e′}.
If ϕ : G −→ G′ is a group homomorphism, then Ker(ϕ) is a

normal subgroup of G.

im(f ) is a subgroup of G′.

A group homomorphism ϕ : G −→ G′ is a one-to-one map if and

only if Ker(ϕ) = {e}
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Isomorphisms of Groups

A homomorphism ϕ : G → G′ is said to be an isomorphism if it

is both one-to-one and onto. It is denoted by G ∼= G′.

Fundamental Theorem of Homomorphism
Let ϕ : G −→ G′ be a homomorphism. Then G

Kerϕ
∼= ϕ(G).

If ϕ : G → G′ is an isomorphism, then

the identity e ∈ G, e′ ∈ G′, ϕ(e) = e′.

ϕ(an) = (ϕ(a))n for all a ∈ G, n ∈ Z.
for any a, b ∈ G, a, b commute ⇔ ϕ(a), ϕ(b) commute.

G =< a >⇔ G′ =< ϕ(a) > .

|a| = |ϕ(a)| for all a ∈ G.

If G is finite, then G,G′ have exactly the same no. of elements of

every order.
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isomorphism ...

If ϕ : G → G′ is an isomorphism, then

G is cyclic ⇔ G′ is cyclic.

G is Abelian ⇔ G′ is Abelian.

ϕ(Z(G)) = Z(G′).

If H,H′ is a Subgroups of G,G′ respectively. Then

ϕ(H), ϕ−1(H′) is a Subgroups of G′,G respectively.

Are the Homomorphisms:
1 Let r ∈ Z and let ϕr : Z −→ Z be defined by

ϕr(n) = rn for all n ∈ Z. Then ϕ is a homomorphism.
2 Let ϕ : Z2 × Z4 −→ Z2 be defined by

ϕ(x, y) = x for all x ∈ Z2, y ∈ Z4. Then ϕ is a homomorphism.

are they isomorphisms?
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Continue ...

An isomorphism from a group onto itself is said to be an

automorphism.

Aut(G) = {ϕ : G → G | ϕ is an isomorphism } and Inn(G) =

{ϕa : G → G | ϕa(x) = axa−1 for all x ∈ G and a ∈ G}.
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External Direct Products

Let (G1, ∗1), (G2, ∗2), . . . , (Gn, ∗n) be a finite collection of

groups. Then the External direct product of G1, . . . ,Gn is

G = G1 ⊕ · · · ⊕ Gn = {(g1, . . . , gn)|gi ∈ Gi} is group under the

operation defined by

(x1, . . . , xn)(y1, . . . , yn) = (x1 ∗1 y1, · · · , xn ∗n yn)

for all (x1, . . . , xn)(y1, . . . , yn) ∈ G.

Z2 ⊕ Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

The order of an element (g1, . . . , gn) ∈ G is

lcm(o(g1), . . . , o(gn)).

Let m = n1n2 · · · nk. Then Zm ∼= Zn1 ⊕ · · · ⊕ Znk ⇔ ni and nj are

relatively prime for i ̸= j.
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Internal Direct Product

Z2 ⊕ Z30 ∼= Z6 ⊕ Z10. But Z2 ⊕ Z30 ̸∼= Z60.

Fundamental theorem of finite Abelian Groups
Every finite Abelian group is a direct product of cyclic groups of

prime power order.

Let H1,H2, . . . ,Hn be the normal subgroups of a group G. G is

said to be the Internal direct Products of H1, . . . ,×Hn if every

element g of G is written as g = h1h2 · · · hn in a unique way.

G is the Internal direct product of H and K iff H,K are normal in

G and H ∩ K = {e}.
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Internal Direct Product

Suppose that G = H1H2 · · ·Hn where each Hi is a normal
subgroup of G. Then the following conditions are equivalent

1 G is the internal direct product of the Hi.

2 H1H2 · · ·Hi−1 ∩ Hi = {e} for all i = 1, 2, · · · , n

H1H2 . . .Hn ∼= H1 ⊕ · · · ⊕ Hn.
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