

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024

Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA I
- Course Code : 24S2M05CC

Unit - II

ISOMORPHISMS AND DIRECT PRODUCT

Dr. C. Durairajan

Professor

Department of Mathematics

Group Homomorphisms

A map φ from a group (G, *) into a group (G', Δ) is a homomorphism if

$$\phi(a \star b) = \phi(a)\Delta\phi(b)$$
 for all $a, b \in G$.

Example

- For any groups G and G', there is always at least one homomorphism:
 φ : G → G' defined by φ(g) = e' for all g ∈ G where e' is the identity in G'. We call it the trivial homomorphism or zero-homomorphism.
- Let G be a group. Then the identity map is a group homomorphism.This homomorphism is called the identity homomorphism.

- Let r ∈ Z and let φ_r : Z → Z be defined by φ_r(n) = rn for all n ∈ Z. Then φ is a homomorphism.
- Let φ : Z₂ × Z₄ → Z₂ be defined by
 φ(x, y) = x for all x ∈ Z₂, y ∈ Z₄. Then φ is a homomorphism.
- Let G be a group and g ∈ G. Then the map φ : Z → G defined by φ(n) = gⁿ for all n ∈ Z is a homomorphism.

< ∃ >

Properties of Homomorphisms

- Let ϕ be a homomorphism of a group G into a group G'. Then
 - If e is the identity element in G, then \u03c6(e) is the identity element e' in G'.
 - 2 If $a \in G$, then $\phi(a^{-1}) = \phi(a)^{-1}$.
 - **③** If H is a subgroup of G, then $\phi(H)$ is a subgroup of G'.
 - If K' is a subgroup of G', then $\phi^{-1}(K')$ is a subgroup of G.
- Let φ be a homomorphism of a group G into a group G'. Then the kernel of φ is defined by Ker(φ) = {g ∈ G | φ(g) = e'}.
- If φ : G → G' is a group homomorphism, then Ker(φ) is a normal subgroup of G.
- im(f) is a subgroup of G'.
- A group homomorphism $\phi: G \longrightarrow G'$ is a one-to-one map if and only if $Ker(\phi) = \{e\}$

Isomorphisms of Groups

 A homomorphism φ : G → G' is said to be an isomorphism if it is both one-to-one and onto. It is denoted by G ≅ G'.

• Fundamental Theorem of Homomorphism

Let $\phi: G \longrightarrow G'$ be a homomorphism. Then $\frac{G}{Ker\phi} \cong \phi(G)$.

- If $\phi: G \to G'$ is an isomorphism, then
 - the identity $e \in G, e' \in G', \phi(e) = e'$.
 - $\phi(a^n) = (\phi(a))^n$ for all $a \in G, n \in \mathbb{Z}$.
 - for any $a, b \in G$, a, b commute $\Leftrightarrow \phi(a), \phi(b)$ commute.
 - $G = \langle a \rangle \Leftrightarrow G' = \langle \phi(a) \rangle$.
 - $|a| = |\phi(a)|$ for all $a \in G$.
 - If G is finite, then G, G' have exactly the same no. of elements of every order.

(4 個) (4 回) (4 回) (5

isomorphism ...

If $\phi: G \to G'$ is an isomorphism, then

- G is cyclic \Leftrightarrow G' is cyclic.
- *G* is Abelian \Leftrightarrow *G'* is Abelian.
- $\phi(Z(G)) = Z(G').$
- If H, H' is a Subgroups of G, G' respectively. Then
 φ(H), φ⁻¹(H') is a Subgroups of G', G respectively.
- Are the Homomorphisms:
 - Let $r \in \mathbb{Z}$ and let $\phi_r : \mathbb{Z} \longrightarrow \mathbb{Z}$ be defined by $\phi_r(n) = rn$ for all $n \in \mathbb{Z}$. Then ϕ is a homomorphism.
 - 2 Let $\phi : \mathbb{Z}_2 \times \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2$ be defined by

 $\phi(x, y) = x$ for all $x \in \mathbb{Z}_2, y \in \mathbb{Z}_4$. Then ϕ is a homomorphism.

(4 個) (4 回) (4 回) (5

• are they isomorphisms?

• An isomorphism from a group onto itself is said to be an **automorphism.**

•
$$Aut(G) = \{\phi : G \to G \mid \phi \text{ is an isomorphism } \}$$
 and $Inn(G) = \{\phi_a : G \to G \mid \phi_a(x) = axa^{-1} \text{ for all } x \in G \text{ and } a \in G \}.$

Image: A matrix and a matrix

-≣⇒

External Direct Products

Let (G₁, *₁), (G₂, *₂), ..., (G_n, *_n) be a finite collection of groups. Then the External direct product of G₁, ..., G_n is G = G₁ ⊕ ··· ⊕ G_n = {(g₁, ..., g_n)|g_i ∈ G_i} is group under the operation defined by

$$(x_1,\ldots,x_n)(y_1,\ldots,y_n) = (x_1 *_1 y_1,\cdots,x_n *_n y_n)$$

for all $(x_1,\ldots,x_n)(y_1,\ldots,y_n) \in G$.

- $\mathbb{Z}_2 \oplus \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}.$
- The order of an element (g₁,...,g_n) ∈ G is lcm(o(g₁),...,o(g_n)).
- Let $m = n_1 n_2 \cdots n_k$. Then $\mathbb{Z}_m \cong \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k} \Leftrightarrow n_i$ and n_j are relatively prime for $i \neq j$.

- $\mathbb{Z}_2 \oplus \mathbb{Z}_{30} \cong \mathbb{Z}_6 \oplus \mathbb{Z}_{10}$. But $\mathbb{Z}_2 \oplus \mathbb{Z}_{30} \not\cong \mathbb{Z}_{60}$.
- Fundamental theorem of finite Abelian Groups Every finite Abelian group is a direct product of cyclic groups of prime power order.
- Let H₁, H₂,..., H_n be the normal subgroups of a group G. G is said to be the Internal direct Products of H₁,..., ×H_n if every element g of G is written as g = h₁h₂...h_n in a unique way.
- *G* is the Internal direct product of *H* and *K* iff *H*, *K* are normal in *G* and $H \cap K = \{e\}$.

イロト イ押ト イヨト イヨト 二日

• Suppose that $G = H_1 H_2 \cdots H_n$ where each H_i is a normal subgroup of G. Then the following conditions are equivalent

() G is the internal direct product of the H_i .

2 $H_1H_2 \cdots H_{i-1} \cap H_i = \{e\}$ for all $i = 1, 2, \cdots, n$

• $H_1H_2\ldots H_n\cong H_1\oplus\cdots\oplus H_n$.

Finite Addien Groups
*
$$HGis Addien groups$$

 $AGis Addien gr de order pn, $Kin G in a$
 $drivet product of the galic subges
 $O(H_1) \equiv \beta^{32} for i: 1, \dots, n$
 $h = H, H_2 H_3 \dots H_n$
 $h^n p^n p^n, p^n \equiv p^{n+n} p^{n+n} p^{n+n} p^{n+n}$
 $\Rightarrow n = n, n_1 + \dots + p^n \equiv p^{n+n} p^{n+n} p^{n+n}$
 $\Rightarrow H_1 \cong \mathbb{Z} p^n;$
 $\Rightarrow h_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n; \dots \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n; \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \cong \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H_1 H_2 \dots H_2 \oplus \mathbb{Z} p^n;$
 $for = H$$$

▲□▶ ▲圖▶ ★≣▶ ★≣▶ = 三 - のへで

Lt G be an abelian 3p of order p"g" Ì When p to an prime tron, nave trentigers. Then G is is amonghine (2) person abelian gos $\frac{\xi_{1}}{\#} = 72 = \frac{3}{2} \times \frac{3}{2}$ (3=3,2+1, 1+1+1) 2=2, 1+1 Gr in incomplete to any one of the Filoway grs $\mathbb{Z}_{2^3} \times \mathbb{Z}_{3^2}, \mathbb{Z}_{2^3} \times \mathbb{Z}_{3^1} \times \mathbb{Z}_{3^1}$ $\mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{l}} \times \mathbb{Z}_{3^{2}}, \overline{\mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{l}} \times \mathbb{Z}_{3^{2}} \times \mathbb{Z$ $Z_2^{\times}Z_2^{\times}Z_2^{\times}Z_3^{\times}$, $Z_2^{\times}Z_2^{\times}Z_3$ Note: Off all a be an abelian go of order m Ehen The no of non-isomerphic abelian of order is p(n), the public of n @ It o(m = p g where ph g one primes, then the me of non-isomorphic abelian go of order profin propers). (If arm = P, P. ... P, when plan didn't poins ton them me pin, p(n,), p(n,); - (p(n,) non-iconsylver solar groups of order P. P. . . . P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへで

REFERENCES

M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.

5

- David S. Dummit and Richard M. Foote, **Abstract Algebra**, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Joseph Gallian, Contemporary Abstract Algebra, 9th Edition
- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
 - Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
 - R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
 - John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.