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Ring Homomorphisms

A ring homomorphism ϕ : R → S is a mapping from rings R to S
that preserves the two ring operations, namely

1 ϕ(a + b) = ϕ(a) + ϕ(b) and
2 ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ R.

Example
1 For any rings R and R‘, there is always at least one homomorphism:

ϕ : R −→ R‘ defined by ϕ(r) = 0 for all r ∈ R, where 0 is the additve

identity of R‘. We call it the trivial homomorphism or

zero-homomorphism.

2 Let r ∈ Z and let ϕr : Z −→ Z be defined by ϕr(n) = rn for all n ∈ Z.
Then ϕ is not a ring homomorphism ϕr(mn) = rmn but

ϕr(m)ϕr(n) = rmrn.
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Examples

The functions ϕ : R[x] → R defined by ϕ(f (x)) = f (1) and

ϕ : C → C defined by ϕ(a + bi) = a − bi are ring

homomorphisms.

Let R be a ring and let I be an ideal. Then ϕ : R → R
I defined by

ϕ(r) = r + I for all r ∈ R is a ring homomorphism.

Let ϕ : R −→ R‘ be a ring homomorphism. Then
1 ϕ(0) = 0.
2 ϕ(r−1) = ϕ(r)−1 for all r ∈ R.
3 If S is a subring of R, then ϕ(S) is a subring of R‘.
4 Ker(ϕ) is an ideal in R.
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Isomorphisms

A ring homomorphism with one-to-one and onto is called an

isomorphism.

Note that in the above ring homomorphism ϕ : C → C defined

by ϕ(a + bi) = a − bi is an isomorphism.

Theorem
Let ϕ : R −→ R‘ be a ring isomorphism.

1 ϕ−1 is an isomorphism

2 r ∈ R is a unit(zero-divisor) iff ϕ(r) is a unit(zero-divisor),

3 R is commutative if and only if R‘ is commutative,

4 R is an integral domain if and only if S is an integral domain and

5 R is a field if and only if S is a field.
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Polynomial Rings

If R is a ring, the ring of polynomials in x with coefficients in R

is denoted R[x]. It consists of all formal sums

∞∑
n=0

aixi.

Here ai = 0 for all but finitely many values of i. That is,

R[x] = {anxn+· · ·+a1x+a0 | ai ∈ R, n is a nonnegative integer }.

R[x] is called a polynomial ring over R.
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Continue ...

Let
∑∞

i=0 aixi,
∑∞

i=0 aixi ∈ R[x], then
∞∑

i=0

aixi +

∞∑
i=0

bixi =

∞∑
i=0

(ai + bi)xi

and( ∞∑
i=0

aixi

)( ∞∑
i=0

aixi

)
=

∞∑
i=0

cixi where ck =
∑

i+j=k

aibj.

Let f (x) = anxn + · · ·+ a1x + a0. If an ̸= 0, then n is called the
degre of f (x) and is denoted by deg(f (x)). This is, if n is the

largest integer for which an an ̸= 0, we say that f (x) has degree

n. If all the coefficients of p(x) are zero, then p(x) is called the
zero polynomial, and its degree is not defined. Some author

defined its degree is 0 because it is a constant polynomial.
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Continue ...

Let R be an integral domain, then

R[x] = {anxn+· · ·+a1x+a0 | ai ∈ R, n is a nonnegative integer }
is an integral domain.

Let R be a field, then R[x] not a filed. For Example, let us take the

set R of all reals, it is a field but R[x] is not a field because

inverse of x does not exist.

Let R be a Principal Ideal Domain(PID), then R[x] need not be a

PID. For example, Z is a PID but Z[x] is not a PID because the

ideal generated by ⟨2, x⟩ is not a principal ideal.

A nonconstant polynomial over a field is said to be an irreducible

polynomial if it can not be written as a product of two

polynomials of degree greater than 0. For example, x2 + 1 is

irreducible over R but not irreducible over C because

x2 + 1 = (x − i)(x − i) over C.Dr. C. Durairajan Algebra - I



Continue ...

Let F be a field, then

1 deg(f (x)g(x)) = deg(f (x)) + deg(g(x)) for all f (x), g(x) ∈ F[x]
are not equal to 0.

2 deg(f (x)g(x)) ≥ deg(f (x)) for all f (x), g(x) ∈ F[x] with

g(x) ̸= 0.

3 Divison Algorithm
For every f (x), g(x) ∈ F, g(x) ̸= 0, there exist q(x), r(x) ∈ F[x]
such that f (x) = q(x)g(x) + r(x) where

r(x) = 0 or deg(r(x)) < deg(g(x)).
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Continue ...

Every ideal in it is a Principal ideal.

In fact, the ideal is generated by the least degree polynomial in it.

That is, let F be a field and I a nonzero ideal in F[x] with

g(x) ∈ F[x]. Then I = ⟨g(x)⟩ ⇔ g(x) is a nonzero Polynomial of

minimum degree in I.

Let F be a field and p(x) ∈ F[x]. Then < p(x) > is a maximal

ideal in F[x] ⇔ p(x) is irreducible over F.

Let F be a field. Then p(x) is irreducible over F iff F[x]
⟨p(x)⟩ is a

field.
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Continue ...

Z3[x]
⟨x2+1⟩ is a field because x2 + 1 is irreducible over Z3.

The content of a nonzero Polynomial

anxn + · · ·+ a1x + a0, ai ∈ Z, is the gcd(an, an−1, . . . , a1, a0).

A primitive polynomial is an element of Z[x] with content 1.

A polynomial with leading coefficient 1 is called a monic

polynomial.

Every monic polynomial over Z is a primitive polynomial. But

the converse need not be true because 3x15 − 4x + 8 is a

primitive polynomial over Z but not a monic polynomial over Z.

The product of two primitive polynomials is again a primitive

polynomial. This is due to Gauss.
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Continue ...

If a polynomial can be written as a product of two polynomials

over Q, then it can be written as a product of two polynomials

over Z.
The above two statements are due to Gauss.

Let f (x) ∈ Z[x]. If f (x) is irreducible over Z, then it is

irreducible over Z.

Let p be a prime and suppose that f (x) ∈ Z[x] with degf (x) ≥ 1.

Let f (x) be the polynomial in Zp[x] obtained from f (x) by

reducing all the coefficients of f (x) modulo p. If f (x) is

irreducible over Zp and deg f (x) = deg f (x), then f (x) is

irreducible over Q.
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Euclidean domain

Eisenstein’s Criterion
Let f (x) = anxn + · · ·+ a1x + a0 ∈ Z[x]. If there is a prime p such

that p ∤ an, p|an−1, p|an−2, · · · , p|a0 and p2 ∤ a0, then f (x) is

irreducible over Q.

Using the Eisenstein’s Criterion, we can prove
1 for any prime p, the pth cyclotomic polynomial

xp−1 + xp−2 + ·+ x2 + x1 + 1 is irreducible over Q.

2 If an integer a is a square free integer, then xn − a is irreducible

over Q.

An integral domain D is called a Euclidean domain if there is a
function d from D \ {0} to the nonnegative integers such that

1 d(a) ≤ d(ab) for all nonzero a, b in D and
2 if a, b ∈ D, b ̸= 0, then there exist elements q and r in D such that

a = bq + r where r = 0 or d(r) < d(b).
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UFD

In our previous slide, the polynomials over a field satisfy all

these conditions. Therefore, it is an Euclidean domain.

Every Euclidean domain is a principal ideal domain.

Every Euclidean domain is a unique factorization domain.

Let D be an integral domin. A nonzero and nonunit element a of
D is said to be

1 irreducible if whenever b, c ∈ D with a = bc, then b or c is a

unit.
2 prime if a|bc ⇒ a|b or a|c.

An integral domain D is said to be a unique factorization
domain(UFD) if every nonzero and nonunit element in D can be

written as a product of irreducible elements in a unique way.
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Examples

If D is a unique factorization domain, then D[x] is a unique

factorization domain. but integral domain need not be UFD. For

example, the ring Z[
√
−5] = {a + 1b

√
−5 | a, b ∈ Z} is an

integral domain but not a unique factorization domain because

46 = 2 × 23 and 46 = (1 + 3
√
−5)(1 − 3

√
−5).

The elements a, b of D are associates if a = ub where u is a unit

of D.

In a PID, irreducible elements are primes and vice versa.

ED ⊆ PD ⊆ UFD ⊆ ID.

The ring of Gaussian integers, Z[i] = {a+ bi | a, b ∈ Z} is a ED.
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