

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA I
- Course Code : 24S2M05CC

Unit - III

GROUP ACTIONS AND SYLOW'S THEOREMS

Dr. C. Durairajan

Professor

Department of Mathematics

 Let G be a finite group of order n. If p, a prime, divides n, then there is an element in of order p.
 This theorem is known as the Cauchy's Theorem.

▲ Ξ ► ▲ Ξ ► 𝒴

$$\begin{array}{l} \mathcal{W}_{k} = \chi_{q} \cup (\cup x G) \\ \int_{inv} f_{inv} = \int_{inv} f_{inv} f$$

The non-station gr.
Showh Theorem
Let
$$Gh = n + p$$
. Let $X = H$ and $d = M$
Support G_{G} .
Detrie
 $X : X \times G \rightarrow X$
 $(H, g) = h = g^{H}g$
 $f = d(H \in X + g \in G)$
 $W \ge T = d(H \in X + g \in G)$
 $W \ge T = d(H = x + g \in G)$
 $W \ge T = d(H = x + g \in G)$
 $M \ge T = d(H = x + g \in G)$
 $M \ge T = d(H = x + g \in G)$
 $M \ge T = d(H = x + g \in G)$
 $M \ge T = d(H = x + g = H)$
 $= d(g \in G) = f^{H}g = H \setminus g = H$
 $X = h = h$
 $X = h$
 $X = h = h$
 $X = h$
 $X = h = h$
 $X = h = h$
 $X = h$

$$\begin{pmatrix} h_{1k} h_{1} & k_{1} & layert roby of G & kanny H & a a rand
Styp.
$$\begin{pmatrix} h_{1k} \\ h \end{pmatrix} = \lfloor g \in G \mid j^{2}Hg = H^{2} = \lfloor g \in G \mid Hg = gH^{2} \\ &= N(H) \\ &$$$$

< 臣 → 三臣

0

$$X_{H} = \langle H_{Y} \in X \mid g \in N(H) \downarrow$$

$$X_{H} in H Gills of Graden of H in N(H)$$

$$= \frac{1}{4}X_{H} = [\overline{\lambda}(u^{1}) : H]$$

$$Me know that A_{B} G is a b - gp, /kin #X = #X_{g}(udp)$$
Since H is a p-gp
$$\Rightarrow #X = #X_{H}(undp)$$

$$\Rightarrow [G:H] = [N(H):H] (undp)$$

$$\sum_{a \geq b (undp)} (undp)$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 豆 のへで

Sylow's Theorem

• Sylows First Theorem

Let *G* be a finite group and let *p* be a prime. If $p^k | \#(G)$, then

- G has at least one subgroup H of order p^k .
- **2** H has a normal subgroup K of order p^{k-1} .
- A subgroup of G of order p^k where p^k | #(G) but p^{k+1} ∤ #(G) is called a Sylow p-subgroup.
- Sylows Second theorem

Any two Sylow p-groups are conjugate. That is, if H and K are two Sylow p-groups, then $H = gKg^{-1}$ for some $g \in G$.

• Sylow's Third Theorem

Let $|G| = p^k m, p \nmid m$. The number of Sylow *p*-subgroups of *G* is equal to 1 modulo *p* and divides #(G).

• If p is a prime and $p^k | \#(G)$, then the number of subgroups of G

Since
$$H \ge N(H) \Rightarrow \frac{N(H)}{H}$$
 is a granp
Since $\frac{1}{2} \left[\frac{1}{2} (1(H); H) \Rightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{N(H)}{H} \right]$
Af Cachy's Hensen, then exists a subp K'
 $F_{+} \left(\frac{N(H)}{H} \right)$ with $\frac{1}{2} (k) = \frac{1}{2}$
 $N(ET, eveny Arby of $\frac{N(H)}{H}$ is $\frac{1}{K}$ down Kin
some subge of N(H) Containent H.
Some $\frac{1}{2} (k) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

Jt
$$O(N) = 24 = \frac{2}{\sqrt{3}}$$

 $(1,2,\frac{2}{\sqrt{2}},\frac{1}{\sqrt{2$

2. A Part of Sharn Therem
shtruch: Any two Sylos p-subgrow an Grigget
R.H. dt P, and P, be two Sylos p-subgroot
a frict pp G
det x =
$$\langle P,g | g \in GL_1$$
, then $\# X = [G: P_1]$
Detine
 $x : X \times P_1 \rightarrow X$
by $x (P,g, y) = P_1(gy) \in X$
Frindl $P_1 \in X$ and P_2
 $x = (P,g, y) = P_1(gy) \in X$
 $frindl P_1 \in X$ and P_2
 $V = T \# X = [G: P_1] = (\# G)$
 $V = T \# X = [G: P_1] = (\# G)$
 $V = T \# X = [G: P_1] = (\# G)$
 $V = T \# X = [G: P_1] = (\# G)$
 $V = T \# X = [G: P_1] = (\# G)$
 $V = T \# X = [G: P_1] = (\# G)$
 $X_1 = LX = (A = 3 = 3)$
 $X = 2P_2 | P_3 = P_1$
 $X = g^{T} P_2 g \leq P_1$

E

$$\begin{array}{l} \Rightarrow P_{1} = \int_{1}^{2} P_{1} g \quad since \ \# P_{1} = \# P_{2} = \# \int_{1}^{2} P_{2} \\ \vdots \\ \vdots \\ P_{1} \quad oud P_{1} \quad out \quad Gony ug dt \\ \vdots \\ Ang \quad hoo \quad Sylves p \quad Subpt \quad ac \quad Gony gg dt \\ \hline Sub \quad Padt \quad \notin \quad Sylves p \quad Subpt \quad ac \quad Gony gg dt \\ \hline Sub \quad Padt \quad \notin \quad Sylves p \quad Subpt \quad ac \quad Gony gg dt \\ \hline Sub \quad Ta \quad v_{2} \quad \notin \quad Sylves p \quad Subpt \quad ac \quad Gony gg dt \\ \hline Sub \quad Ta \quad v_{2} \quad \notin \quad Sylves p \quad Subpt \quad ac \quad Gony gg dt \\ \hline Sub \quad Ta \quad v_{2} \quad \notin \quad Sylves p \quad Subpt \quad ac \quad Gony gg dt \\ \hline T \quad Sub \quad Ta \quad v_{2} \quad \notin \quad Sylves p \quad Subpt \quad Sub \quad Sub$$

$$\Rightarrow P \leq N(T)$$
N(H) = (3ch) $\frac{1}{2} h_{3} = h$

Since $\Gamma \leq N(T) \in P$, $T \Rightarrow 4 h_{2} h_{2} h_{3} h_{3} h_{3} h_{3} h_{4} h_{4$

$$\Rightarrow \# X = \# X_{G} (wnd p) - 0$$
Conversion

$$X_{G} = L p \in X | p_{g} = p + g \in G \setminus 1$$

$$= \langle p \in X | p_{g} = p + y \in G \setminus 1$$

$$= \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$X_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot P$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

$$x_{G} = \langle p_{g} | g = (r + p_{g} | g \in G \setminus 1 = conjuta clon q \cdot Q$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 豆 - ∽٩.0~

$$\frac{1}{3} = \frac{1}{3} + \frac{1}$$

く置き

≣ ୬**୯**୯

▲ 王 → ▲ 王 → のへ(?)

Since it a transform of p
H = 2 + 0;
$$K = < b$$

Let $c = ab \in G$
 $a \in b^{2}$
 $a = a^{2}b^{2} = (a^{2})^{2} (b^{2})^{2} = b^{2} = b^{2} = a^{2}$
 $a \in b^{2} = a^{2} b^{2} = a^{2} (b^{2})^{2} = b^{2} = b^{2}$
 $a = a^{2} b^{2} = a^{2} (b^{2})^{2} = b^{2} = b^{2}$
 $a = a^{2} b^{2} = a^{2} (b^{2})^{2} = b^{2} = b^{2}$
 $a = a^{2} b^{2} = a^{2} (b^{2})^{2} = b^{2} (b^{2})^{2} = b^{2} (b^{2})^{2}$
 $a = a^{2} b^{2} = a^{2} (b^{2})^{2} = b^{2} (b^{2})^{2} (b^{2})^{2} = b^{2} (b^{2})^{2} (b^{2})^{2} = b^{2} (b^{2})^{2} (b^{2})^{2} = b^{2} (b^{2})^{2} (b^{2})^{2} (b^{2})^{2} = b^{2} (b^{2})^{2} (b^{2})^$

OrgeHork, zeh, ytk

<□▶ <@▶ <불▷ <분▷ 분 - 위역()

- A group G is said to be a **simple group** if it has not nontrivial normal subgroups.
- Let G be a group of order *pq* where p and q are distinct primes. Then
 - **()** If $q \equiv 1 \pmod{p}$, then G has a normal Sylow p-subgroup.
 - O is not simple.

So If $p \equiv 1 \pmod{q}$ and $q \equiv 1 \pmod{p}$, then G is a cyclic group.

|伊 ト イ ヨ ト イ ヨ ト 一 ヨ

- The only groups of order 255 is \mathbb{Z}_{255} .
- There are exactly 4 groups of order 66 namely, $\mathbb{Z}_{66}, D_{33}, D_{11} \oplus \mathbb{Z}_3$ and $D_3 \oplus \mathbb{Z}_{11}$.

REFERENCES

M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.

.

- David S. Dummit and Richard M. Foote, **Abstract Algebra**, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Joseph Gallian, Contemporary Abstract Algebra , 9th Edition
- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
- John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.

★ Ξ ► ★ Ξ ►