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Introduction

Galois theory is the interplay between polynomials, fields, and

groups.

The quadratic formula giving the roots of a quadratic polynomial

was essentially known by the Babylonians. By the middle of the

sixteenth century, the cubic and quartic formulas were known.

Almost three hundred years later, Abel (1824) proved, using

ideas of Lagrange and Cauchy, that there is no analogous formula

(involving only algebraic operations on the coefficients of the

polynomial) giving the roots of a quintic polynomial (actually

Ruffini (1799) outlined a proof of the same result, but his proof

had gaps and it was not accepted by his contemporaries).

Dr. C. Durairajan Algebra - II



Continue ...

In 1829, Abel gave a sufficient condition that a polynomial (of

any degree) have such a formula for its roots (this theorem is the

reason that, nowadays, commutative groups are called abelian).

Shortly thereafter, Galois (1831) invented groups, associated a

group to each polynomial, and used properties of this group to

give, for any polynomial, a necessary and sufficient condition

that there be a formula of the desired kind for its roots, thereby

completely settling the problem.
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Rings

A nonempty set R with two binary operations (usually written as

addition and multiplication) is said to be a ring if

1 (R,+) is an abelian group
2 (R,×) is a semigroup
3 two distributive laws hold

It is denoted by (R,+,×).

Example 1.
Z,Zn,Q,R,C,Mn(R), 2Z = {2n | n ∈ Z} rings with respect to usual

addition and multiplication.

Example 2.
The set R = C[0, 1] of all real valued functions on the closed interval

[0, 1] is a ring with pointwise addition and multiplication.
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A ring R is said to be a commutative ring if the second

operation satisfies the commutative property.

In Example 1 and 2, all are commutative ring except

Mn(R), n > 1. A ring with identity is a ring R that contains a

multiplicative identity element. We usually write the

multiplicative identity as 1. In the Example 1 and 2, all are ring

with identity except 2Z.
A nonzero element a in a ring R is said to be a zero-divisor or

divisor-of-zero if there exists a nonzero element b ∈ R such that

ab = 0.

Example 3.
Let n be a composite integer. Then the divisor d of n in Zn is a

zero-divisor.

A commutative ring R with identity is said to be an integral
domain if it has no zero divisors.

Example 4.
In the Example 1, all are integral domain except

Zn for n is composite integer ,Mn(R) for n > 1, 2Z = {2n | n ∈ Z}
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Continue ...

Zn for n is composite integer ,Mn(R) for n > 1 have

zero-divisors whereas 2Z = {2n | n ∈ Z} does not have

zero-divisor but it is a commutative ring with no identity.

A subset of a ring is said to be a subring if itself is a ring. A

subring I of a ring R is said to be an ideal if for ever

r ∈ R, a ∈ I, ra ∈ I.

Example 5.
Let R be a ring, then

{0} and R are ideals of R

aR = {ar | r ∈ R} is an ideal for all a ∈ R.

nZ is an ideal of Z for all n ∈ Z.
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Prime Ideals

A proper ideal P in a ring R is called a prime ideal if ab ∈ P implies

a ∈ P or b ∈ P.

Example 6.

1 ⟨x⟩ is a prime ideal in the ring Z[x]

2 In any integral domain, {0} is a prime ideal.

3 pZ is a prime ideal of Z for all prime integer p

Theorem 7.
A proper ideal P in R is a prime ideal if and only if R

P is a domain.

Using this theorem, we can prove the above example.
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Maximal Ideals

A proper ideal M in a ring R is said to be a maximal ideal if there is

no ideal J with M ⫋ J ⫋ R.

Example 8.
1 In a field, {0} is a maximal ideal

2 ⟨2, x⟩ is a maximal ideal in Z[x].

3 Let p be a prime integer. Then pZ is a maximal ideal in Z.

Theorem 9.

A proper ideal M in a ring R is a maximal ideal if and only if R
M is a

field.

Using this theorem, we can prove first problem in the above example.
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Corollary 10.
Every maximal ideal I in a commutative ring R is a prime ideal.

The converse of the above theorem need not be true. For

example, in the Example 6, ⟨x⟩ is a prime ideal in Z[x] but not a

maximal because ⟨x⟩ ⊂ ⟨2, x⟩ ⊂ Z[x].

If the ring is a principal ideal domain, then every prime ideal is a

maximal ideal. That is, in a prinicpal ideal ring, the prime ideal

and maximal ideal are the same.

A polynomial f (x) ∈ F[x] is said to be splits over F if it is a

product of linear factors in F[x].

Dr. C. Durairajan Algebra - II



Continue ...

Example 11.
1 The polynomial f (x) = x2 + 1 ∈ R[x] can not split over Q but

splits over C since x2 + 1 = (x − i)(x + i).

2 The polynomial f (x) = x2 − 2 ∈ Q[x] can not split over Q but

splits over R since x2 − 2 = (x −
√

2)(x +
√

2).

Theorem 12 (Kronecker).
Let f (x) be a polynomial over a field F[x]. There exists a field E
containing F over which f (x) splits.

The prime field of a field F is the intersection of all the subfields of F.

Theorem 13.
If F is a field, then its prime field is isomorphic to either Q or Zp for

some prime p.
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Characteristic of a Field

1 A field has characteristic 0 if its prime field is isomorphic to Q;

it has characteristic p if its prime field is isomorphic to Zp.

2 A field of characteristic 0 has infinite number of elements.

3 The characteristic of a finite field is a prime integer.

4 It is noted that the characteristic of infinite field is either o or

some prime inter p.

5 Galois proved the existence of finite field and the following

theorem.

Theorem 14.
For every prime p and every positive integer n, there exists a field

having exactly pn elements.
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Irreducible Polynomials

A nonzero polynomial p(x) over a field F[x] is said to be an

irreducible polynomial over F if it can not be written as a

product of two polynomials of degree greater than or equal to 1.

Theorem 15.
If F is afield, then a nonzero polynomial p(x) ∈ F[x] is irreducible if

and only if the ideal (p(x)) is a prime ideal.

Since F[x] is a principal ideal domain, the prime ideal and

maximal ideal are the same. Therefore, ⟨p(x)⟩ is a maximal ideal

and hence by Theorem 9, F[x]
⟨p(x)⟩ is a field for any irreducible

polynomial p(x) ∈ F[x].
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1 Let (R1,∆1, ⋆1) and (R2,∆2, ⋆2) be two rings. A map
σ : R1 → R2 is said to be a ring homomorphism if

1 σ(x∆1y) = σ(x)∆2σ(y)

2 σ(x ⋆1 y) = σ(x) ⋆2 σ(y)

for all x, y ∈ R1.

2 In a ring, hereafter we take the first operation as +, addition, the

second operation as ×, multiplication and additive identity as 0

and mutiplicative identity as 1.

3 σ(0) = 0, σ(−x) = −σ(x)

4 If the ring homomorphism is from an integral domain into an

integral domain, then σ(1) = 1′ where1 and 1′ are identity

elements with respect to the second operations of R1 and R2,

respectively.
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If σ : R → S is a ring homomorphism, then σ∗ : R[x] → S[x], defined

by σ∗ :
∑

rixi 7→
∑

σ(ri)xi is a ring homomorphism.

Theorem 16.
Let R be a domain and F be a field, let σ : R → F be a ring map, and

let p(x) ∈ R[x]. If deg(σ∗(p)) = deg(p) and if σ∗(p(x)) is irreducible

in F[x], then p(x) is not a product of two polynomials in R[x] each of

degree less than deg(p).

A polynomial is said to be a monic polynomial if its leading

coefficient is 1.

Let f (x) = a0 + a1x + · · ·+ anxn ∈ Z[x]. Then the gcd of its

coefficients is called the content of f (x). A polynomial is said to

a primitive polynomial if the gcd of its coefficients is 1.
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From the above definition of primitive polynomial, it is clear that

every monic polynomial is primitive but primitive polynomial need

not be monic.

Example 17.

For example, x9 + 5x + 4 monic and hence primitive but

3x111 + 2x25 − 111 is primitive, not a monic.

Lemma 18 (Gauss’s Lemma).
The product of two primitive polynomials f (x) and g(x) is itself

primitive.
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Lemma 19.
Every nonzero f (x) ∈ Q[x] has a unique factorization

f (x) = c(f )f ∗(x) where c(f ) ∈ Q is positive and f ∗(x) ∈ Z[X] is

primitive.

The positive rational c(f ) of the above theorem is called the content
of f (x).

If a polynomial can not be written as a product of two polynomial of

positive degree in an algebraic structure, then there is a possibility to

write in the bigger algebraic structure containing it. But Gauss proved

Theorem 20.
If p(x) ∈ Z[X] is not a product of two polynomials in Z[x] each of

degree < deg(p), then p(x) is irreducible in Q[x].
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Cyclotomic Polynomials

The set G of all nth roots of unity form a cyclic group under

multiplication.

Its generator is called the primitive nth root of unity.

The polynomial

Φn(x) =
∏

(x − α)

where the product is running over all primitive nth root α of unity.

Since G is cyclic group of order n, the degree of Φn(x) is ϕ(n),

the Euler ϕ-function.

If p is a prime, then the pth cyclotomic polynomial is

Φp(x) = (xp − 1)/(x − 1) = xp−1 + xp−2 + · · ·+ x + 1.
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Cyclotomic Polynomials

Theorem 21 (Eisenstein Criterion).
Let f (x) = a0 + a1x + · · ·+ anxn ∈ Z[x]. If there is a prime p dividing

ai for all i < n, but with p not dividing an and p2 not dividing a0, then

f (x) is irreducible in Q[x].

Using this theorem, we can prove

The pth cyclotomic polynomial Φp(x) is irreducible in Q[x] for

every prime p.

If an integer a is not a petfect square, then xn − a is irreducible in

Q[x] for every n ≥ 2.
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