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The Galois Groups

If E is a field, then an automorphism of E is an isomorphism of E
with itself. If E | F is a field extension, then an automorphism σ of E
fixes F pointwise if σ(c) = c for every c ∈ F.

Lemma 1.
Let f (x) ∈ F[x] and let E | F be an extension field of F. If σ : E → E
is an automorphism fixing F pointwise and if α ∈ E is a root of f (x),

then σ(α) is also a root of f (x).

Let E | F be a field extension. Then

G(E | F) = { automorphisms σ of E fixing F pointwise }

is a group under the binary operation of composition. This group is

called the Galois group of E | F. If f (x) ∈ F[x] has splitting field E,
then the Galois group of f (x) is G(E | F).
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Theorem 2.
If f (x) ∈ F[x] has n distinct roots in its splitting field E, then G(E | F)
is isomorphic to a subgroup of the symmetric group Sn and so its

order is a divisor of n!.

Theorem 3.
If f (x) ∈ F[x] is a separable polynomial and if E | F is its splitting

field, then |G(E | F)| = [E : F].

Lemma 4.
Let F ⊆ B ⊆ E be a tower of fields with B | F the splitting field of

some polynomial f (x) ∈ F[x]. If σ ∈ G(E | F), then σ|B ∈ G(B | F)
where σ|B is the σ restricted to B.
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Theorem 5.
Let F ⊆ B ⊆ E be a tower of fields with B | F the splitting field of

some polynomial f (x) ∈ F[x] and E | F the splitting field of some

g(x) ∈ F[x]. Then G(E | B) is a normal subgroup of G(E | F) and
G(E|F)
G(E|B)

∼= G(B | F).

Lemma 6.
1 If C = ⟨a⟩ is a cyclic group of order n and generator a, then has

a unique subgroup of order d for each divisor d of n and this

subgroup is cyclic.

2 C is a cyclic group of order n iff for every divisor d of n, C has at

most one cyclic subgroup of order d.



The Galois Group

Theorem 7.
If F is a field with multiplicative group F∗ = F \ {0}, then every finite

subgroup G of F∗ is cyclic.

For every finite field F , F∗ is a finite subgroup of itself. Therefore, we

have

Corollary 8.
If F is a finite field with multiplicative group F∗ = F \ {0}, then F∗ is

cyclic.

If F is a finite field of characteristic p, then an element α ∈ F is called

a primitive element if F = Zp(α).



Roots of Unity

The following theorem gives us the existence of irreducible

polynomial of any positive degree n over Zp[x].

Lemma 9.
If α is a primitive element of GF(pn), then α is a root of an

irreducible polynomial in Zp[x] of degree n.

Theorem 10.
G(GF(pn) | GF(P)) ∼= Zn with generator u 7→ up.

This generator is called the Frobenius automorphism.

Lemma 11.
Let n be a positive integer and let F be a field. If the characteristic of

F is either 0 or is a prime not dividing n, then xn − 1 has n distinct

roots in a splitting field.
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Let n be a fixed positive integer. A generator of the group of all nth

roots of unity is called a primitive root of unity. U(Zn) is the

collection of all units of Zn.

Theorem 12.
If F is a field and E = F(α) where α is a primitive nth root of unity,

then G(E | F) is isomorphic to a subgroup of U(Zn) and hence

G(E | F) is an abelian group.

Theorem 13.
Let F contain a primitive nth root of unity, and let

f (x) = xn − c ∈ F[x]. If E | F is a splitting field of f (x), then there is

an injection ϕ : G = G(E | F) → Zn. Moreover, f (x) is irreducible if

and only if ϕ is surjective.



Solvability by Radicals

1 A field extension B | F is said to be a pure extension of type m

if B = F(α) where αm ∈ F for some positive integer m.

2 A tower of fields

F = B0 ⊂ B1 ⊂ · · · ⊂ Br

is said to be a radical tower if each Bi+1/Bi is a pure extension.

In this case, we call Bt/F a radical extension of F.

3 A polynomial f (x) over F is said to be solvable by radicals over
F if there is a radical extension B | F which contains a splitting

field E of f (x) over F.



Solvable Groups

A group G is called a solvable group if it has a subnormal series

whose factor groups are all abelian, that is, if there are subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gt = {e} such that Gi is normal in Gi−1

and Gi−1
Gi

is an abelian group for i = 1, 2, · · · , t.

Example 14.
1 Every abelian group is a solvable group.

2 Let p be a prime integer. Then every finite p-group is solvable.

3 Sn is solvable for n < 5.

4 Sn is not solvable for n ≥ 5.
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1 The homomorphic image of a solvable group is solvable.

2 Let N be a normal subgroup of G. Then G is solvable iff N and G
N

are solvable.

3 If G is solvable, and H is a subgroup of G, then H is solvable.

4 If G and H are solvable, the direct product G × H is solvable.
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Lemma 15.
Let F be a field of characteristic 0, let f (x) ∈ F[x] be solvable by

radicals and let E be a splitting field of f (x) over F.

1 There is a radical tower

F = R0 ⊂ R1 ⊂ · · · ⊂ Rt

with E ⊂ Rt, with Rt a splitting field of some polynomial over F,
and with each Ri/Ri−1 is a pure extension of prime type pi.

2 If Ri/F is a radical extension as in part (i), and if F contains the

pith roots of unity for all i, then G(E | F) is a solvable group.
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Theorem 16.
Let f (x) ∈ F[x] be solvable by radicals over a field F of characteristic

0, and let E | F be its splitting field. Then G(E | F) is a solvable

group.

Using this theorem, Abel and Ruffini proved the following

Theorem 17.
There exists a quintic polynomial f (x) ∈ Q[x] that is not solvable by

radicals.

In fact, they prove that x5 − 4x + 2 is not solvable by radicals.
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