

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA II
- Course Code : 21S3M08CC

UNIT - III

CLASSICAL FORMULAS AND SPLITTING FIELDS

Dr. C. Durairajan

Professor

Department of Mathematics

The Galois Groups

If \mathbb{E} is a field, then an **automorphism of** \mathbb{E} is an isomorphism of \mathbb{E} with itself. If $\mathbb{E} \mid \mathbb{F}$ is a field extension, then an **automorphism** σ of \mathbb{E} **fixes** \mathbb{F} **pointwise** if $\sigma(c) = c$ for every $c \in \mathbb{F}$.

Lemma 1.

Let $f(x) \in \mathbb{F}[x]$ and let $\mathbb{E} \mid \mathbb{F}$ be an extension field of \mathbb{F} . If $\sigma : \mathbb{E} \to \mathbb{E}$ is an automorphism fixing \mathbb{F} pointwise and if $\alpha \in \mathbb{E}$ is a root of f(x), then $\sigma(\alpha)$ is also a root of f(x).

Let $\mathbb{E} \mid \mathbb{F}$ be a field extension. Then

 $G(\mathbb{E} \mid \mathbb{F}) = \{ \text{ automorphisms } \sigma \text{ of } \mathbb{E} \text{ fixing } \mathbb{F} \text{ pointwise } \}$

is a group under the binary operation of composition. This group is called the **Galois group** of $\mathbb{E} \mid \mathbb{F}$. If $f(x) \in \mathbb{F}[x]$ has splitting field \mathbb{E} , then the **Galois group of** f(x) is $G(\mathbb{E} \mid \mathbb{F})$.

Continue ...

Theorem 2.

If $f(x) \in \mathbb{F}[x]$ has n distinct roots in its splitting field \mathbb{E} , then $G(\mathbb{E} | \mathbb{F})$ is isomorphic to a subgroup of the symmetric group S_n and so its order is a divisor of n!.

Theorem 3.

If $f(x) \in \mathbb{F}[x]$ *is a separable polynomial and if* $\mathbb{E} \mid \mathbb{F}$ *is its splitting field, then* $|G(\mathbb{E} \mid \mathbb{F})| = [\mathbb{E} : \mathbb{F}].$

Lemma 4.

Let $\mathbb{F} \subseteq \mathbb{B} \subseteq \mathbb{E}$ be a tower of fields with $\mathbb{B} \mid \mathbb{F}$ the splitting field of some polynomial $f(x) \in \mathbb{F}[x]$. If $\sigma \in G(\mathbb{E} \mid \mathbb{F})$, then $\sigma_{|B} \in G(\mathbb{B} \mid \mathbb{F})$ where $\sigma_{|B}$ is the σ restricted to B.

Continue ...

Theorem 5.

Let $\mathbb{F} \subseteq \mathbb{B} \subseteq \mathbb{E}$ be a tower of fields with $\mathbb{B} \mid \mathbb{F}$ the splitting field of some polynomial $f(x) \in \mathbb{F}[x]$ and $\mathbb{E} \mid \mathbb{F}$ the splitting field of some $g(x) \in F[x]$. Then $G(\mathbb{E} \mid \mathbb{B})$ is a normal subgroup of $G(\mathbb{E} \mid \mathbb{F})$ and $\frac{G(\mathbb{E} \mid \mathbb{F})}{G(\mathbb{E} \mid \mathbb{B})} \cong G(\mathbb{B} \mid \mathbb{F})$.

Lemma 6.

- If C = ⟨a⟩ is a cyclic group of order n and generator a, then has a unique subgroup of order d for each divisor d of n and this subgroup is cyclic.
- C is a cyclic group of order n iff for every divisor d of n, C has at most one cyclic subgroup of order d.

The Galois Group

Theorem 7.

If \mathbb{F} is a field with multiplicative group $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$, then every finite subgroup G of \mathbb{F}^* is cyclic.

For every finite field $\mathbb F$, $\mathbb F^*$ is a finite subgroup of itself. Therefore, we have

Corollary 8. If \mathbb{F} is a finite field with multiplicative group $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$, then \mathbb{F}^* is cyclic.

If \mathbb{F} is a finite field of characteristic p, then an element $\alpha \in \mathbb{F}$ is called a **primitive element** if $\mathbb{F} = \mathbb{Z}_p(\alpha)$.

Roots of Unity

The following theorem gives us the existence of irreducible polynomial of any positive degree *n* over $\mathbb{Z}_p[x]$.

Lemma 9.

If α is a primitive element of $GF(p^n)$, then α is a root of an

irreducible polynomial in $\mathbb{Z}_p[x]$ *of degree n.*

Theorem 10.

 $G(GF(p^n) \mid GF(P)) \cong \mathbb{Z}_n$ with generator $u \mapsto u^p$.

This generator is called the Frobenius automorphism.

Lemma 11.

Let n be a positive integer and let \mathbb{F} be a field. If the characteristic of \mathbb{F} is either 0 or is a prime not dividing n, then $x^n - 1$ has n distinct roots in a splitting field.

Continue ...

Let *n* be a fixed positive integer. A generator of the group of all n^{th} roots of unity is called a **primitive root of unity**. $U(\mathbb{Z}_n)$ is the collection of all units of \mathbb{Z}_n .

Theorem 12.

If \mathbb{F} is a field and $\mathbb{E} = \mathbb{F}(\alpha)$ where α is a primitive n^{th} root of unity, then $G(\mathbb{E} \mid \mathbb{F})$ is isomorphic to a subgroup of $U(\mathbb{Z}_n)$ and hence $G(\mathbb{E} \mid \mathbb{F})$ is an abelian group.

Theorem 13.

Let \mathbb{F} contain a primitive nth root of unity, and let $f(x) = x^n - c \in F[x]$. If $\mathbb{E} \mid \mathbb{F}$ is a splitting field of f(x), then there is an injection $\phi : G = G(\mathbb{E} \mid \mathbb{F}) \to \mathbb{Z}_n$. Moreover, f(x) is irreducible if and only if ϕ is surjective.

Solvability by Radicals

- A field extension B | F is said to be a pure extension of type m if B = F(α) where α^m ∈ F for some positive integer m.
- A tower of fields

$$\mathbb{F} = \mathbb{B}_0 \subset \mathbb{B}_1 \subset \cdots \subset \mathbb{B}_r$$

is said to be a **radical tower** if each $\mathbb{B}_{i+1}/\mathbb{B}_i$ is a pure extension. In this case, we call \mathbb{B}_t/\mathbb{F} a **radical extension of** \mathbb{F} .

A polynomial f(x) over F is said to be solvable by radicals over
F if there is a radical extension B | F which contains a splitting field E of f(x) over F.

A group *G* is called a **solvable group** if it has a subnormal series whose factor groups are all abelian, that is, if there are subgroups $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_t = \{e\}$ such that G_i is normal in G_{i-1} and $\frac{G_{i-1}}{G_i}$ is an abelian group for $i = 1, 2, \cdots, t$.

Example 14.

- Every abelian group is a solvable group.
- Let *p* be a prime integer. Then every finite *p*-group is solvable.
- S_n is not solvable for $n \ge 5$.

- The homomorphic image of a solvable group is solvable.
- Let *N* be a normal subgroup of *G*. Then *G* is solvable iff *N* and $\frac{G}{N}$ are solvable.
- **If** G is solvable, and H is a subgroup of G, then H is solvable.
- If G and H are solvable, the direct product $G \times H$ is solvable.

Lemma 15.

Let \mathbb{F} be a field of characteristic 0, let $f(x) \in \mathbb{F}[x]$ be solvable by radicals and let \mathbb{E} be a splitting field of f(x) over \mathbb{F} .

There is a radical tower

 $\mathbb{F}=R_0\subset R_1\subset\cdots\subset R_t$

with $E \subset R_t$, with R_t a splitting field of some polynomial over \mathbb{F} , and with each R_i/R_{i-1} is a pure extension of prime type p_i .

If R_i/F is a radical extension as in part (i), and if F contains the p_ith roots of unity for all i, then G(E | F) is a solvable group.

Theorem 16.

Let $f(x) \in \mathbb{F}[x]$ be solvable by radicals over a field \mathbb{F} of characteristic 0, and let $\mathbb{E} \mid \mathbb{F}$ be its splitting field. Then $G(\mathbb{E} \mid \mathbb{F})$ is a solvable group.

Using this theorem, Abel and Ruffini proved the following

Theorem 17.

There exists a quintic polynomial $f(x) \in \mathbb{Q}[x]$ that is not solvable by radicals.

In fact, they prove that $x^5 - 4x + 2$ is not solvable by radicals.

REFERENCES

- M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- David S. Dummit and Richard M. Foote, Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
 - I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
 - Ian Stewart, Galois Theory, Chapman and Hall, 1973.
 - Joseph Gallian, Contemporary Abstract Algebra, 9th Edition
- Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.

- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
- John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.