

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA II
- Course Code : 21S3M08CC

UNIT - III

CLASSICAL FORMULAS AND SPLITTING FIELDS

Dr. C. Durairajan

Professor

Department of Mathematics

 $2Q$

The Galois Groups

If $\mathbb E$ is a field, then an **automorphism of** $\mathbb E$ is an isomorphism of $\mathbb E$ with itself. If $\mathbb{E} \mid \mathbb{F}$ is a field extension, then an **automorphism** σ of \mathbb{E} **fixes F** pointwise if $\sigma(c) = c$ for every $c \in \mathbb{F}$.

Lemma 1.

Let $f(x) \in \mathbb{F}[x]$ *and let* $\mathbb{E} | \mathbb{F}$ *be an extension field of* \mathbb{F} *. If* $\sigma : \mathbb{E} \to \mathbb{E}$ *is an automorphism fixing* $\mathbb F$ *pointwise and if* $\alpha \in \mathbb E$ *is a root of* $f(x)$, *then* $\sigma(\alpha)$ *is also a root of f(x).*

Let $\mathbb{E} \mid \mathbb{F}$ be a field extension. Then

 $G(\mathbb{E} | \mathbb{F}) = \{$ automorphisms σ of \mathbb{E} fixing \mathbb{F} pointwise $\}$

is a group under the binary operation of composition. This group is called the **Galois group** of $\mathbb{E} \mid \mathbb{F}$. If $f(x) \in \mathbb{F}[x]$ has splitting field \mathbb{E} , then the **Galois group of** $f(x)$ is $G(\mathbb{E} \mid \mathbb{F})$. 299

Continue ...

Theorem 2.

If $f(x) \in \mathbb{F}[x]$ *has n distinct roots in its splitting field* \mathbb{E} , *then* $G(\mathbb{E} \mid \mathbb{F})$ *is isomorphic to a subgroup of the symmetric group Sⁿ and so its order is a divisor of n*!.

Theorem 3.

If $f(x) \in \mathbb{F}[x]$ *is a separable polynomial and if* $\mathbb{E} \mid \mathbb{F}$ *is its splitting field, then* $|G(\mathbb{E} | \mathbb{F})| = [\mathbb{E} : \mathbb{F}]$.

Lemma 4.

Let $\mathbb{F} \subset \mathbb{B} \subset \mathbb{E}$ *be a tower of fields with* $\mathbb{B} \mid \mathbb{F}$ *the splitting field of some polynomial* $f(x) \in \mathbb{F}[x]$. *If* $\sigma \in G(\mathbb{E} \mid \mathbb{F})$, *then* $\sigma_{|B} \in G(\mathbb{B} \mid \mathbb{F})$ *where* $\sigma_{|B}$ *is the* σ *restricted to B.*

Continue ...

Theorem 5.

Let $\mathbb{F} \subset \mathbb{B} \subset \mathbb{E}$ *be a tower of fields with* $\mathbb{B} \mid \mathbb{F}$ *the splitting field of some polynomial* $f(x) \in \mathbb{F}[x]$ *and* $\mathbb{E} | \mathbb{F}$ *the splitting field of some* $g(x) \in F[x]$. *Then* $G(\mathbb{E} \mid \mathbb{B})$ *is a normal subgroup of* $G(\mathbb{E} \mid \mathbb{F})$ *and* $G(\mathbb{E}|\mathbb{F})$ $\frac{G(\mathbb{E}|\mathbb{F})}{G(\mathbb{E}|\mathbb{B})}\cong G(\mathbb{B} \mid \mathbb{F}).$

Lemma 6.

- **1** If $C = \langle a \rangle$ is a cyclic group of order n and generator a, then has *a unique subgroup of order d for each divisor d of n and this subgroup is cyclic.*
- ² *C is a cyclic group of order n iff for every divisor d of n*, *C has at most one cyclic subgroup of order d*.

The Galois Group

Theorem 7.

If $\mathbb F$ *is a field with multiplicative group* $\mathbb F^* = \mathbb F \setminus \{0\},$ *then every finite* subgroup *G* of \mathbb{F} [∗] is cyclic.

For every finite field \mathbb{F} , \mathbb{F}^* is a finite subgroup of itself. Therefore, we have

Corollary 8. If \mathbb{F} *is a finite field with multiplicative group* $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$ *, then* \mathbb{F}^* *is*

cyclic.

If F is a finite field of characteristic *p*, then an element $\alpha \in \mathbb{F}$ is called a **primitive element** if $\mathbb{F} = \mathbb{Z}_p(\alpha)$.

Roots of Unity

The following theorem gives us the existence of irreducible polynomial of any positive degree *n* over $\mathbb{Z}_n[x]$.

Lemma 9.

If α *is a primitive element of* $GF(p^n)$ *, then* α *is a root of an irreducible polynomial in* $\mathbb{Z}_p[x]$ *of degree n.*

Theorem 10.

 $G(GF(p^n) | GF(P)) \cong \mathbb{Z}_n$ *with generator* $u \mapsto u^p$.

This generator is called the Frobenius automorphism.

Lemma 11.

Let n be a positive integer and let F *be a field. If the characteristic of* F *is either* 0 *or is a prime not dividing n*, *then xⁿ* − 1 *has n distinct roots in a splitting field.*

Continue ...

Let *n* be a fixed positive integer. A generator of the group of all *n th* roots of unity is called a **primitive root of unity**. $U(\mathbb{Z}_n)$ is the collection of all units of Z*n*.

Theorem 12.

If **F** *is a field and* $\mathbb{E} = \mathbb{F}(\alpha)$ *where* α *is a primitive n*^{*th*} *root of unity*, *then* $G(\mathbb{E} \mid \mathbb{F})$ *is isomorphic to a subgroup of* $U(\mathbb{Z}_n)$ *and hence*

 $G(\mathbb{E} \mid \mathbb{F})$ *is an abelian group.*

Theorem 13.

Let F *contain a primitive nth root of unity, and let* $f(x) = x^n - c \in F[x]$. *If* $\mathbb E \mid \mathbb F$ *is a splitting field of* $f(x)$ *, then there is an injection* ϕ : $G = G(\mathbb{E} | \mathbb{F}) \rightarrow \mathbb{Z}_n$ *. Moreover,* $f(x)$ *is irreducible if and only if* ϕ *is surjective.*

Solvability by Radicals

- \bullet A field extension $\mathbb{B} \mid \mathbb{F}$ is said to be a **pure extension of type** *m* if $\mathbb{B} = \mathbb{F}(\alpha)$ where $\alpha^m \in \mathbb{F}$ for some positive integer *m*.
- 2 A tower of fields

$$
\mathbb{F} = \mathbb{B}_0 \subset \mathbb{B}_1 \subset \cdots \subset \mathbb{B}_r
$$

is said to be a **radical tower** if each $\mathbb{B}_{i+1}/\mathbb{B}_i$ is a pure extension. In this case, we call \mathbb{B}_t/\mathbb{F} a **radical extension of** \mathbb{F} .

 \bullet A polynomial $f(x)$ over $\mathbb F$ is said to be **solvable by radicals over** $\mathbb F$ if there is a radical extension $\mathbb B \mid \mathbb F$ which contains a splitting field $\mathbb E$ of $f(x)$ over $\mathbb F$.

A group *G* is called a solvable group if it has a subnormal series whose factor groups are all abelian, that is, if there are subgroups

G = *G*⁰ ⊇ *G*₁ ⊇ *G*₂ ⊇ · · · ≥ *G*_{*t*} = {*e*} such that *G*_{*i*} is normal in *G*_{*i*−1} and $\frac{G_{i-1}}{G_i}$ is an abelian group for $i = 1, 2, \dots, t$.

Example 14.

- **1** Every abelian group is a solvable group.
- ² Let *p* be a prime integer. Then every finite *p*-group is solvable.
- \bullet *S_n* is solvable for $n < 5$.
- \bullet *S_n* is not solvable for $n \geq 5$.
- ¹ The homomorphic image of a solvable group is solvable.
- 2 Let *N* be a normal subgroup of *G*. Then *G* is solvable iff *N* and $\frac{G}{N}$ are solvable.
- ³ If G is solvable, and H is a subgroup of G, then H is solvable.
- \triangle If G and H are solvable, the direct product G \times H is solvable.

つくい

Lemma 15.

Let \mathbb{F} *be a field of characteristic* 0, *let* $f(x) \in \mathbb{F}[x]$ *be solvable by*

radicals and let E *be a splitting field of* $f(x)$ *over* F *.*

¹ *There is a radical tower*

 $\mathbb{F} = R_0 \subset R_1 \subset \cdots \subset R_t$

with $E \subset R_t$, with R_t *a splitting field of some polynomial over* \mathbb{F} , *and with each Ri*/*Ri*−¹ *is a pure extension of prime type pⁱ* .

² *If Ri*/*F is a radical extension as in part (i), and if* F *contains the* p_i *th roots of unity for all i, then* $G(\mathbb{E} \mid \mathbb{F})$ *is a solvable group.*

Theorem 16.

Let $f(x) \in \mathbb{F}[x]$ *be solvable by radicals over a field* \mathbb{F} *of characteristic* 0, and let $\mathbb{E} \mid \mathbb{F}$ be its splitting field. Then $G(\mathbb{E} \mid \mathbb{F})$ is a solvable *group.*

Using this theorem, Abel and Ruffini proved the following

Theorem 17.

There exists a quintic polynomial $f(x) \in \mathbb{Q}[x]$ *that is not solvable by radicals.*

In fact, they prove that $x^5 - 4x + 2$ is not solvable by radicals.

REFERENCES

F F F

- M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- David S. Dummit and Richard M. Foote,Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Ian Stewart, Galois Theory, Chapman and Hall, 1973.
- Joseph Gallian, Contemporary Abstract Algebra , 9th Edition
- Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.

- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.

John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.