

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA II
- Course Code : 21S3M08CC

UNIT - IV

INDEPENDENCE OF CHARACTERS AND GALOIS EXTENSIONS

Dr. C. Durairajan

Professor

Department of Mathematics

Characters

- A character of a group G in a field E is a homomorphism
 σ : G → E^{*} where E^{*} = E \ {0} is the multiplicative group of E.
- A set {σ₁, σ₂, · · · , σ_n} of characters of a group G in a field E is said to be an **independent set** if there do not exist a₁, a₂, · · · , a_n ∈ E, not all 0, with

$$\sum a_i \sigma_i(x) = 0 \text{ for all } x \in G.$$

Lemma 1.

Every set $\{\sigma_1, \sigma_2, \dots, \sigma_n\}$ of distinct characters of a group G in a field \mathbb{E} is independent.

• This lemma is known as the Dedekind Lemma.

Continue...

- It is clear that the set V(G, E) of all characters of a group G in a field E form a vector space over E under the operations defined by (σ + η)(g) = σ(g) + η(g), (ασ)(g) = α(σ(g)) for all α ∈ E.
- Independence of characters is linear independent subset of V(G, ℝ).
- Using the above lemma, we can prove

Corollary 2.

Every set $\{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ of distinct automorphisms of a field \mathbb{E} is independent.

Let Aut(E) be the group of all the automorphisms of a field E.
 Then Aut(E) is a group under the binary operation composition.

Continue ...

• If G is a subset of $Aut(\mathbb{E})$, then

$$E^G = \{ \alpha \in \mathbb{E} \mid \sigma(\alpha) = \alpha \text{ for all } \sigma \in G \}$$

is called the **fixed field** of G. It is a subfield of \mathbb{E} .

- If E | F is a field extension with Galois group G = G(E | F), then F ⊆ E^G ⊆ E.
- In general, whether F = E^G or not. For example, if F = Q and E = Q(α) where α is the real cube root of 2, then G = G(E | F) = G(Q(α) | Q) = {e} because σ(α) is also a root of x³ 2, but E does not contain the other two complex roots of the polynomial. Hence E = E^G ≠ F.

Galois Extensions

It is clear that if H, K are subsets of $Aut(\mathbb{E})$ and $H \subset K$, then $\mathbb{E}^K \subset \mathbb{E}^H$.

Lemma 3. If $G = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ is a set of automorphisms of \mathbb{E} , then $[\mathbb{E} : \mathbb{E}^G] \ge n.$

If G is a subgroup if $Aut(\mathbb{E})$, then we have the following

Theorem 4.

If $G = \{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ is a subgroup of $Aut(\mathbb{E})$, then $[\mathbb{E} : \mathbb{E}^G] = |G|$.

Using the above theorems and fact about the fixed field, we prove

Corollary 5.

If G, H are finite subgroups of $Aut(\mathbb{E})$ with $\mathbb{E}^G = \mathbb{E}^H$, then G = H.

Continue ...

A finite field extension $\mathbb{E} \mid \mathbb{F}$ is said to be a **Galois (or normal)** extension if $\mathbb{F} = \mathbb{E}^{G(\mathbb{E} \mid \mathbb{F})}$.

Theorem 6.

The following conditions are equivalent for a finite extension $\mathbb{E} \mid \mathbb{F}$ with Galois group $G = G(\mathbb{E} \mid \mathbb{F})$.

- every irreducible $p(x) \in \mathbb{F}[x]$ with one root in \mathbb{E} is separable and has all its roots in \mathbb{E} ; that is, p(x) splits over \mathbb{E} ,
- **S** \mathbb{E} is a splitting field of some separable polynomial $f(x) \in \mathbb{F}[x]$.

Given a field extension $\mathbb{E} \mid \mathbb{F}$, an **intermediate field** is a field \mathbb{B} with $\mathbb{F} \subseteq \mathbb{B} \subseteq \mathbb{E}$.

Continue ...

- Using he above theorem, we can prove that if E | F is a Galois extension, then E is a Galois extension over any intermediate field.
- Let E | F be a Galois extension and let B and C be intermediate fields. If there exists an isomorphism B → C fixing F, then C is called a conjugate of B.

Theorem 7.

Let $\mathbb{E} \mid \mathbb{F}$ be a Galois extension, and let \mathbb{B} be an intermediate field. The following conditions are equivalent.

- **1** \mathbb{B} has no conjugates (other than \mathbb{B} itself).
- 2 If $\sigma \in G(\mathbb{E} \mid \mathbb{F})$, then $\sigma_{\mid \mathbb{B}} \in G(\mathbb{B} \mid \mathbb{F})$.

3 $\mathbb{B} \mid \mathbb{F}$ is a Galois extension.

Examples

- Let f(x) = x³ 2 ∈ Q[x]. Then a splitting field for f(x) is
 E = Q(α, ω) where α = ³√2 and ω is primitive cube root of unity. Since E | Q is a splitting field of a separable polynomial and Q is a perfect field, E | Q is a Galois extension.
- If g(x) = x³ 3x² + 3x 3, then g(x) is irreducible in Q[x], by Eisenstein's criterion, but it has a root β = 1 + α in E. It follows that g(x) splits in E[x].
- The intermediate field B = Q(ω) is a Galois extension over Q, for it is a splitting field of x³ − 1. We know that G(E | Q) ≅ S₃. It follows that σ(B) = B for every σ ∈ G(G(E | Q). On the other hand, if C = Q(α), then Q(α²) is a conjugate of C andQ(α²) ≠ C.

Examples

- Let F be a field of characteristic ≠ 2 and E | F be a field extension with [E : F] = 2. Then there exists α ∈ E but not in F. Since [E : F] = 2, E = F(α). Then there exist an irreducible polynomial f(x) over F with α as a root and hence all roots are in E. Therefore, E | F is a Galois extension.
- 2 The Galois extensions need not be transitive that is, if $\mathbb{F} \subseteq \mathbb{B} \subseteq \mathbb{E}$ and $\mathbb{E} \mid \mathbb{B}, \mathbb{B} \mid \mathbb{F}$ are Galois, then $\mathbb{E} \mid \mathbb{F}$ need not be Galois. For example, let α be a square root of 2 and β be a fourth root of 2. Clearly $\mathbb{Q}(\alpha)$ is a splitting field of $x^2 - 2$ over \mathbb{Q} and $\mathbb{Q}(\beta)$ is a splitting field of $x^4 - \alpha$ over $\mathbb{Q}(\alpha)$, therefore $\mathbb{Q}(\beta) \mid \mathbb{Q}(\alpha)$ and $\mathbb{Q}(\alpha) \mid \mathbb{Q}$ are Galois extensions but $\mathbb{Q}(\beta) \mid \mathbb{Q}$ is not a Galois extension because $\mathbb{Q}(\beta)$ has a root β of $x^4 - 2 \in \mathbb{Q}[x]$ but not containing other two complex roots.

REFERENCES

- M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- David S. Dummit and Richard M. Foote, Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
 - I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
 - Ian Stewart, Galois Theory, Chapman and Hall, 1973.
 - Joseph Gallian, Contemporary Abstract Algebra, 9th Edition
- Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.

- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
- John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.