

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA II
- Course Code : 21S3M08CC

UNIT - IV

INDEPENDENCE OF CHARACTERS AND GALOIS EXTENSIONS

Dr. C. Durairajan

Professor

Department of Mathematics

 $2Q$

Characters

- A **character** of a group G in a field E is a homomorphism $\sigma: G \to \mathbb{E}^*$ where $\mathbb{E}^* = \mathbb{E} \setminus \{0\}$ is the multiplicative group of \mathbb{E} .
- A set $\{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ of characters of a group *G* in a field $\mathbb E$ is said to be an independent set if there do not exist $a_1, a_2, \cdots, a_n \in \mathbb{E}$, not all 0, with

$$
\sum a_i \sigma_i(x) = 0 \text{ for all } x \in G.
$$

つくい

Lemma 1.

Every set $\{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ *of distinct characters of a group G in a field* E *is independent.*

• This le[mm](#page-0-0)a is known as the Dedekind Lemm[a.](#page-2-0)

Continue...

- \bullet It is clear that the set $V(G, \mathbb{E})$ of all characters of a group *G* in a field E form a vector space over E under the operations defined by $(\sigma + \eta)(g) = \sigma(g) + \eta(g), (\alpha \sigma)(g) = \alpha(\sigma(g))$ for all $\alpha \in \mathbb{E}$.
- Independence of characters is linear independent subset of $V(G,\mathbb{E}).$
- Using the above lemma, we can prove

Corollary 2.

Every set $\{\sigma_1, \sigma_2, \cdots, \sigma_n\}$ *of distinct automorphisms of a field* $\mathbb E$ *is independent.*

• Let $Aut(\mathbb{E})$ be the group of all the automorphisms of a field E . Then $Aut(\mathbb{E})$ is a group under the binary operation composition.

おす者 おす語 おし者

 $2Q$

Continue ...

• If *G* is a subset of $Aut(\mathbb{E})$, then

$$
E^G = \{ \alpha \in \mathbb{E} \mid \sigma(\alpha) = \alpha \text{ for all } \sigma \in G \}
$$

is called the fixed field of *G*. It is a subfield of E.

- If $\mathbb{E} \mid \mathbb{F}$ is a field extension with Galois group $G = G(\mathbb{E} \mid \mathbb{F})$, then $\mathbb{F} \subseteq \mathbb{E}^G \subseteq \mathbb{E}$.
- In general, whether $\mathbb{F} = \mathbb{E}^G$ or not. For example, if $\mathbb{F} = \mathbb{Q}$ and $\mathbb{E} = \mathbb{Q}(\alpha)$ where α is the real cube root of 2, then $G = G(\mathbb{E} | \mathbb{F}) = G(\mathbb{O}(\alpha) | \mathbb{O}) = \{e\}$ because $\sigma(\alpha)$ is also a root of $x^3 - 2$, but E does not contain the other two complex roots of the polynomial. Hence $\mathbb{E} = \mathbb{E}^G \neq \mathbb{F}$.

Galois Extensions

It is clear that if *H*, *K* are subsets of $Aut(\mathbb{E})$ and $H \subset K$, then $\mathbb{E}^K \subset \mathbb{E}^H$.

Lemma 3. *If* $G = {\sigma_1, \sigma_2, \cdots, \sigma_n}$ *is a set of automorphisms of* E *, then* $[\mathbb{E} : \mathbb{E}^G] \geq n.$

If *G* is a subgroup if $Aut(\mathbb{E})$, then we have the following

Theorem 4.

If $G = \{ \sigma_1, \sigma_2, \cdots, \sigma_n \}$ *is a subgroup of Aut* $(\mathbb{E}),$ *then* $[\mathbb{E} : \mathbb{E}^G] = |G|$ *.*

Using the above theorems and fact about the fixed field, we prove

Corollary 5.

If G, H are finite subgroups of $Aut(\mathbb{E})$ with $\mathbb{E}^G = \mathbb{E}^H$, then $G = H$.

 $Q \cap$

Continue ...

A finite field extension $\mathbb{E} \mid \mathbb{F}$ is said to be a **Galois (or normal)** extension if $\mathbb{F} = \mathbb{E}^{G(\mathbb{E}|\mathbb{F})}$.

Theorem 6.

The following conditions are equivalent for a finite extension E | F *with Galois group* $G = G(\mathbb{E} \mid \mathbb{F})$.

- \mathbf{D} $\mathbb{F} = \mathbb{E}^G$,
- **2** every irreducible $p(x) \in \mathbb{F}[x]$ with one root in \mathbb{E} is separable and *has all its roots in* \mathbb{E} ; *that is, p(x) splits over* \mathbb{E} *,*
- \bullet **E** *is a splitting field of some separable polynomial* $f(x) \in \mathbb{F}[x]$ *.*

Given a field extension $\mathbb{E} \mid \mathbb{F}$, an **intermediate field** is a field \mathbb{B} with $\mathbb{F} \subset \mathbb{B} \subset \mathbb{E}$.

Continue ...

- Using he above theorem, we can prove that if $\mathbb{E} \mid \mathbb{F}$ is a Galois extension, then E is a Galois extension over any intermediate field.
- Let $\mathbb{E} \mid \mathbb{F}$ be a Galois extension and let \mathbb{B} and *C* be intermediate fields. If there exists an isomorphism $\mathbb{B} \to C$ fixing \mathbb{F} , then *C* is called a conjugate of B.

Theorem 7.

Let E | F *be a Galois extension, and let* B *be an intermediate field. The following conditions are equivalent.*

- ¹ B *has no conjugates (other than* B *itself).*
- 2 *If* $\sigma \in G(\mathbb{E} \mid \mathbb{F})$, then $\sigma_{\mathbb{IR}} \in G(\mathbb{B} \mid \mathbb{F})$.

³ B | F *is a Galois extension.*

Examples

- **1** Let $f(x) = x^3 2 \in \mathbb{Q}[x]$. Then a splitting field for $f(x)$ is $\mathbb{E} = \mathbb{Q}(\alpha, \omega)$ where $\alpha = \sqrt[3]{2}$ and ω is primitive cube root of unity. Since $\mathbb{E} \mid \mathbb{O}$ is a splitting field of a separable polynomial and $\mathbb Q$ is a perfect field, $\mathbb E \mid \mathbb Q$ is a Galois extension.
- 2 If $g(x) = x^3 3x^2 + 3x 3$, then $g(x)$ is irreducible in $\mathbb{Q}[x]$, by Eisenstein's criterion, but it has a root $\beta = 1 + \alpha$ in E. It follows that $g(x)$ splits in $\mathbb{E}[x]$.
- **3** The intermediate field $\mathbb{B} = \mathbb{Q}(\omega)$ is a Galois extension over \mathbb{Q} , for it is a splitting field of $x^3 - 1$. We know that $G(\mathbb{E} \mid \mathbb{Q}) \cong S_3$. It follows that $\sigma(\mathbb{B}) = \mathbb{B}$ for every $\sigma \in G(G(\mathbb{E} \mid \mathbb{Q})$. On the other hand, if $C = \mathbb{Q}(\alpha)$, then $\mathbb{Q}(\alpha^2)$ is a conjugate of *C* and $\mathbb{Q}(\alpha^2) \neq C$. イロトメ 御 トメ 君 トメ 君 トッ 君

 2990

Examples

- **1** Let F be a field of characteristic $\neq 2$ and $\mathbb{E} | \mathbb{F}$ be a field extension with $[\mathbb{E} : \mathbb{F}] = 2$. Then there exists $\alpha \in \mathbb{E}$ but not in \mathbb{F} . Since $[\mathbb{E} : \mathbb{F}] = 2$, $\mathbb{E} = \mathbb{F}(\alpha)$. Then there exist an irreducible polynomial $f(x)$ over $\mathbb F$ with α as a root and hence all roots are in $\mathbb E$. Therefore, $\mathbb E \mid \mathbb F$ is a Galois extension.
- **2** The Galois extensions need not be transitive that is, if $\mathbb{F} \subseteq \mathbb{B} \subseteq \mathbb{E}$ and $\mathbb{E} \mid \mathbb{B}, \mathbb{B} \mid \mathbb{F}$ are Galois, then $\mathbb{E} \mid \mathbb{F}$ need not be Galois. For example, let α be a square root of 2 and β be a fourth root of 2. Clearly $\mathbb{Q}(\alpha)$ is a splitting field of $x^2 - 2$ over $\mathbb Q$ and $\mathbb{Q}(\beta)$ is a splitting field of $x^4 - \alpha$ over $\mathbb{Q}(\alpha)$, therefore $\mathbb{Q}(\beta) | \mathbb{Q}(\alpha)$ and $\mathbb{Q}(\alpha) | \mathbb{Q}$ are Galois extensions but $\mathbb{Q}(\beta) | \mathbb{Q}$ is not a Galois extension because $\mathbb{Q}(\beta)$ has a root β of $x^4 - 2 \in \mathbb{Q}[x]$ $x^4 - 2 \in \mathbb{Q}[x]$ but not containing other tw[o c](#page-7-0)[om](#page-9-0)[ple](#page-8-0)x [ro](#page-0-0)[ot](#page-9-0)[s.](#page-0-0) 299

REFERENCES

F F F

- M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- David S. Dummit and Richard M. Foote,Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Ian Stewart, Galois Theory, Chapman and Hall, 1973.
- Joseph Gallian, Contemporary Abstract Algebra , 9th Edition
- Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.

- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.

John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.