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Characters

A character of a group G in a field E is a homomorphism

σ : G → E∗ where E∗ = E \ {0} is the multiplicative group of E.

A set {σ1, σ2, · · · , σn} of characters of a group G in a field E is

said to be an independent set if there do not exist

a1, a2, · · · , an ∈ E, not all 0, with∑
aiσi(x) = 0 for all x ∈ G.

Lemma 1.
Every set {σ1, σ2, · · · , σn} of distinct characters of a group G in a

field E is independent.

This lemma is known as the Dedekind Lemma.



Continue...

It is clear that the set V(G,E) of all characters of a group G in a

field E form a vector space over E under the operations defined

by (σ + η)(g) = σ(g) + η(g), (ασ)(g) = α(σ(g)) for all α ∈ E.

Independence of characters is linear independent subset of

V(G,E).

Using the above lemma, we can prove

Corollary 2.
Every set {σ1, σ2, · · · , σn} of distinct automorphisms of a field E is

independent.

Let Aut(E) be the group of all the automorphisms of a field E.

Then Aut(E) is a group under the binary operation composition.
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If G is a subset of Aut(E), then

EG = {α ∈ E | σ(α) = α for all σ ∈ G}

is called the fixed field of G. It is a subfield of E.

If E | F is a field extension with Galois group G = G(E | F),
then F ⊆ EG ⊆ E.

In general, whether F = EG or not. For example, if F = Q and

E = Q(α) where α is the real cube root of 2, then

G = G(E | F) = G(Q(α) | Q) = {e} because σ(α) is also a root

of x3 − 2, but E does not contain the other two complex roots of

the polynomial. Hence E = EG ̸= F.



Galois Extensions

It is clear that if H,K are subsets of Aut(E) and H ⊂ K, then

EK ⊂ EH.

Lemma 3.
If G = {σ1, σ2, · · · , σn} is a set of automorphisms of E, then

[E : EG] ≥ n.

If G is a subgroup if Aut(E), then we have the following

Theorem 4.
If G = {σ1, σ2, · · · , σn} is a subgroup of Aut(E), then [E : EG] = |G|.

Using the above theorems and fact about the fixed field, we prove

Corollary 5.

If G,H are finite subgroups of Aut(E) with EG = EH, then G = H.



Continue ...

A finite field extension E | F is said to be a Galois (or normal)
extension if F = EG(E|F).

Theorem 6.
The following conditions are equivalent for a finite extension E | F
with Galois group G = G(E | F).

1 F = EG,

2 every irreducible p(x) ∈ F[x] with one root in E is separable and

has all its roots in E; that is, p(x) splits over E,

3 E is a splitting field of some separable polynomial f (x) ∈ F[x].

Given a field extension E | F, an intermediate field is a field B with

F ⊆ B ⊆ E.
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Using he above theorem, we can prove that if E | F is a Galois

extension, then E is a Galois extension over any intermediate

field.

Let E | F be a Galois extension and let B and C be intermediate

fields. If there exists an isomorphism B → C fixing F, then C is

called a conjugate of B.

Theorem 7.
Let E | F be a Galois extension, and let B be an intermediate field.
The following conditions are equivalent.

1 B has no conjugates (other than B itself).

2 If σ ∈ G(E | F), then σ|B ∈ G(B | F).

3 B | F is a Galois extension.



Examples

1 Let f (x) = x3 − 2 ∈ Q[x]. Then a splitting field for f (x) is

E = Q(α, ω) where α = 3
√

2 and ω is primitive cube root of

unity. Since E | Q is a splitting field of a separable polynomial

and Q is a perfect field, E | Q is a Galois extension.

2 If g(x) = x3 − 3x2 + 3x − 3, then g(x) is irreducible in Q[x], by

Eisenstein’s criterion, but it has a root β = 1 + α in E. It follows

that g(x) splits in E[x].

3 The intermediate field B = Q(ω) is a Galois extension over Q,

for it is a splitting field of x3 − 1. We know that G(E | Q) ∼= S3.

It follows that σ(B) = B for every σ ∈ G(G(E | Q). On the

other hand, if C = Q(α), then Q(α2) is a conjugate of C

andQ(α2) ̸= C.



Examples

1 Let F be a field of characteristic ̸= 2 and E | F be a field

extension with [E : F] = 2. Then there exists α ∈ E but not in F.
Since [E : F] = 2, E = F(α). Then there exist an irreducible

polynomial f (x) over F with α as a root and hence all roots are in

E. Therefore, E | F is a Galois extension.
2 The Galois extensions need not be transitive that is, if

F ⊆ B ⊆ E and E | B,B | F are Galois, then E | F need not be

Galois. For example, let α be a square root of 2 and β be a fourth

root of 2. Clearly Q(α) is a splitting field of x2 − 2 over Q and

Q(β) is a splitting field of x4 − α over Q(α), therefore

Q(β) | Q(α) and Q(α) | Q are Galois extensions but Q(β) | Q
is not a Galois extension because Q(β) has a root β of

x4 − 2 ∈ Q[x] but not containing other two complex roots.
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