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The Fundamental Theorem of Galois Theory

A partially ordered set ( poset for short) is a set P with a binary

relation ⪯ satisfying all of the following.

1 (reflexivity) x ⪯ x for all x ∈ P

2 (antisymmetry) x ⪯ y and y ⪯ x implies x = y

3 (transitivity) x ⪯ y and y ⪯ z implies x ⪯ z

Example 1.
1 The power set of a nonempty set X with inclusion relation,

2 P = {1, 2, · · · , } and n ⪯ m if n ≤ m,

3 P = {1, 2, · · · , } and n ⪯ m if n divides m,

4 P = {A1,A2, · · · ,Am} and Ai ⪯ Aj if Ai ⊂ Aj

are posets.



Continue ...

Let (P,⪯) be a poset. An element m is said to be the least upper
bound of a and b if

1 a ⪯ m and b ⪯ m

2 if M is any upper bound of a and b, then m ⪯ M

Similarly, we can define the greatest lower bound.

A lattice is a partially ordered set (L,⪯) in which each pair of

elements a, b ∈ L has the least upper bound a ∨ b and the greatest

lower bound a ∧ b.



Examples

1 The set of all real numbers with the usual ordering < is a lattice.

2 If G is a group, let Sub(G) be the family of all the subgroups of

G, and define H ⪯ K if H ⊆ K. Then Sub(G) is a lattice with

H ∨ K the subgroup generated by H and K, and H ∧ K = H ∩ K.

3 Let E | F be a field extension, let Lat(E | F) be the family of all

intermediate fields, and define B ⪯ C if B ⊆ C. Then Lat(E | F)
is a lattice with B ∨ C the smallest field containing B and C and

B ∧ C = B ∩ C.

4 Let L be the set of all integers n > 1 and define n ⪯ m if n | m.

Then L is a lattice with n ∨ m = lcm{n,m}, n ∧ m = gcd{n,m}.



Continue ...

The set of continuous real-valued functions on a topological space is a

lattice under the pointwise order, and (f ∨ g)(x) = f (x) ∨ g(x) and

(f ∧ g)(x) = f (x) ∧ g(x) for each x.

Lemma 2.
If L and L′ are lattices and γ : L → L′ is an order reversing bijection

[a ⪯ b implies γ(b) ⪯ γ(a)], then γ(a ∨ b) = γ(a) ∧ γ(b) and

γ(a ∧ b) = γ(a) ∨ γ(b)



Continue ...

Theorem 3 (Fundamental Theorem of Galois Theory).
Let E | F be a Galois extension with Galois group G = G(E | F).

1 The function γ : Sub(G) → Lat(E | F), defined by H 7→ EH, is

an order reversing bijection with inverse δ : B 7→ G(E | B).

2 EG(E|B) = B and G(E | EH) = H.

3 EH∨K = EH ∩ EK ,EH∩K = EH ∨ EK and

G(E | B ∨ C) = G(E | B) ∩ G(E | C)

G(E | B ∩ C) = G(E | B) ∨ G(E | C).

4 [B : F] = [G : G(E | B)] and [G : H] = [EH : F].

5 B | F is a Galois extension if and only if G(E | B) is a normal

subgroup of G.



Applications

1 A Galois extension E | F has only finitely many intermediate

fields.
2 A finite extension E | F is simple if and only if it has only

finitely many intermediate fields.

This is theorem is known as Steinitz Theorem.
3 If E | F is a finite simple extension and B is an intermediate field,

then B/F is simple.
4 Every Galois extension E | F is simple.
5 The Galois field GF(pn) has exactly one subfield of order pd for

every divisor d of n.
6 If E | F is an abelian extension, i.e., a Galois extension whose

Galois group G(E | F) is abelian, then every intermediate field B

is a Galois extension.



Fundamental Theorem of Algebra

In 1799, the fundamental theorem of algebra was first proved by

Gauss. Before proving this theorem, first let us learn a few basic

concepts

1 If f (x) ∈ R[x] and there exist a, b ∈ R such that f (a) > 0 and

f (b) < 0, then f (x) has a real root.
2 Using this, we prove every positive real number r has a real

square root.

For this, let f (x) = x2 − r, then f (r + 1) = r2 + r + 1 > 0 and

f (0) = −r < 0. Therefore, f (x) has a real root. That is, r has a

real square root.
3 Every quadratic polynomial over C has a complex root.

For this, let z ∈ C, then the polar form of z is z = |z| eiθ. By the

above,
√

|z| ∈ R and e
iθ
2 ∈ C. Therefore,

√
z =

√
|z|e

iθ
2 ∈ C.



Fundamental Theorem of Algebra

1 The field C has no extensions of degree 2.

Suppose it has an extension of degree 2. Then there exists a

quadratic irreducible polynomial over C, a contradiction to the

above.

2 Every polynomial over R having odd degree has a real root.

For this, if a + ib, b ̸= 0, is root, then a − ib is also a root. This

implies, every polynomial has even number of complex roots and

hence every polynomial over R having odd degree has a real root.

Theorem 4 (Fundamental Theorem of Algebra).
Every nonconstant f (x) ∈ C[x] has a complex root.

Repeatedly using this theorem, we prove



Fundamental Theorem of Algebra

Corollary 5.
Every f (x) ∈ C[X] of degree n ≥ 1 splits over C, that is,

f (x) = c(x − α1) · · · (x − αn) where c, α1, · · · , αn ∈ C.

If α = a + ib is a complex root of f (x), then α = a − ib is also a root

of f (x). Therefore, (x − α)(x − α) ∈ R is a factor of f (x). Thus, every

polynomial of degree greater than 1 over C is written as a product of

quadratic or linear factors over R.



Galois’s Great Theorem

Lemma 6.
Let E | F be a splitting field of f (x) ∈ F[x] with Galois group

G = G(E | F). If F∗/F is an extension and E∗/F∗ is a splitting field

of f (x) containing E, then restriction σ 7→ σ|E is an infective

homomorphism

G(E∗/F∗) → G(E | F).

Definition 7.
If E | F is a Galois extension and a α ∈ E∗ = E \ {0}, define its

norm N(α) by

N(α) =
∏

σ∈G(E|F)

σ(α)



Galois’s Great Theorem

Theorem 8 (Hilbert’s Theorem).
Let E | F be a Galois extension whose Galois group G = G(E | F) is

cyclic of order n and let σ be a generator of G. Then N(α) = 1 if and

only if there exists β ∈ E∗ with α = βσ(β−1)

Corollary 9.
Let E | F be a Galois extension of prime degree p. If F has a primitive

pth root of unity, then E = F(β), where βp ∈ F, and so E | F is a pure

extension.



Galois’s Great Theorem

Theorem 10 (Galois).
Let F be a field of characteristic 0, and let E | F be a Galois

extension. Then G = G(E | F) is a solvable group if and only if E can

be imbedded in a radical extension of F.

Therefore, the Galois group of f (x) ∈ F[x], where F is a field of

characteristic 0, is a solvable group if and only if f (x) is solvable by

radicals.

Corollary 11.
If F is a field of characteristic 0, then every polynomial in F[x] of

degree n ≤ 4 is solvable by radicals.
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