

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA II
- Course Code : 21S3M08CC

UNIT - V

THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Dr. C. Durairajan

Professor

Department of Mathematics

The Fundamental Theorem of Galois Theory

A partially ordered set (poset for short) is a set *P* with a binary relation \leq satisfying all of the following.

$$(reflexivity) x \preceq x \text{ for all } x \in P$$

- (antisymmetry) $x \leq y$ and $y \leq x$ implies x = y
- (transitivity) $x \leq y$ and $y \leq z$ implies $x \leq z$

Example 1.

• The power set of a nonempty set *X* with inclusion relation,

2
$$P = \{1, 2, \dots, \}$$
 and $n \leq m$ if $n \leq m$,

$$P = \{1, 2, \cdots, \} \text{ and } n \leq m \text{ if } n \text{ divides } m,$$

$$P = \{A_1, A_2, \cdots, A_m\} \text{ and } A_i \leq A_j \text{ if } A_i \subset A_j$$

are posets.

Let (P, \preceq) be a poset. An element *m* is said to be the **least upper** bound of *a* and *b* if

 $\bullet a \preceq m \text{ and } b \preceq m$

2 if *M* is any upper bound of *a* and *b*, then $m \leq M$

Similarly, we can define the greatest lower bound.

A **lattice** is a partially ordered set (L, \preceq) in which each pair of elements $a, b \in L$ has the least upper bound $a \lor b$ and the greatest lower bound $a \land b$.

Examples

- The set of all real numbers with the usual ordering < is a lattice.
- If G is a group, let Sub(G) be the family of all the subgroups of G, and define H ≤ K if H ⊆ K. Then Sub(G) is a lattice with H ∨ K the subgroup generated by H and K, and H ∧ K = H ∩ K.
- Let E | F be a field extension, let Lat(E | F) be the family of all intermediate fields, and define B ≤ C if B ⊆ C. Then Lat(E | F) is a lattice with B ∨ C the smallest field containing B and C and B ∧ C = B ∩ C.
- Let L be the set of all integers n > 1 and define $n \preceq m$ if $n \mid m$. Then L is a lattice with $n \lor m = lcm\{n, m\}, n \land m = gcd\{n, m\}$.

The set of continuous real-valued functions on a topological space is a lattice under the pointwise order, and $(f \lor g)(x) = f(x) \lor g(x)$ and $(f \land g)(x) = f(x) \land g(x)$ for each *x*.

Lemma 2.

If L and L' are lattices and $\gamma : L \to L'$ is an order reversing bijection $[a \leq b \text{ implies } \gamma(b) \leq \gamma(a)], \text{ then } \gamma(a \lor b) = \gamma(a) \land \gamma(b) \text{ and}$ $\gamma(a \land b) = \gamma(a) \lor \gamma(b)$

Continue ...

Theorem 3 (Fundamental Theorem of Galois Theory).

Let $\mathbb{E} \mid \mathbb{F}$ *be a Galois extension with Galois group* $G = G(\mathbb{E} \mid \mathbb{F})$ *.*

• The function $\gamma : Sub(G) \to Lat(\mathbb{E} \mid \mathbb{F})$, defined by $H \mapsto \mathbb{E}^H$, is an order reversing bijection with inverse $\delta : \mathbb{B} \mapsto G(\mathbb{E} \mid \mathbb{B})$.

2
$$E^{G(\mathbb{E}|\mathbb{B})} = \mathbb{B}$$
 and $G(\mathbb{E} \mid \mathbb{E}^H) = H$.

 $G(\mathbb{E} \mid \mathbb{B} \lor C) = G(\mathbb{E} \mid \mathbb{B}) \cap G(\mathbb{E} \mid C)$

 $G(\mathbb{E} \mid \mathbb{B} \cap C) = G(\mathbb{E} \mid \mathbb{B}) \lor G(\mathbb{E} \mid C).$

S ■ | F is a Galois extension if and only if G(E | B) is a normal subgroup of G.

Applications

- A Galois extension E | F has only finitely many intermediate fields.
- A finite extension E | F is simple if and only if it has only finitely many intermediate fields.
 This is theorem is known as Steinitz Theorem.
- If E | F is a finite simple extension and B is an intermediate field, then B/F is simple.
- Every Galois extension $\mathbb{E} \mid \mathbb{F}$ is simple.
- The Galois field GF(pⁿ) has exactly one subfield of order p^d for every divisor d of n.
- If E | F is an abelian extension, i.e., a Galois extension whose Galois group G(E | F) is abelian, then every intermediate field B is a Galois extension.

Fundamental Theorem of Algebra

In 1799, the fundamental theorem of algebra was first proved by Gauss. Before proving this theorem, first let us learn a few basic concepts

- If $f(x) \in \mathbb{R}[x]$ and there exist $a, b \in \mathbb{R}$ such that f(a) > 0 and f(b) < 0, then f(x) has a real root.
- Using this, we prove every positive real number *r* has a real square root.

For this, let $f(x) = x^2 - r$, then $f(r+1) = r^2 + r + 1 > 0$ and f(0) = -r < 0. Therefore, f(x) has a real root. That is, r has a real square root.

Severy quadratic polynomial over C has a complex root.
 For this, let z ∈ C, then the polar form of z is z = |z| e^{iθ}. By the above, √|z| ∈ R and e^{iθ/2} ∈ C. Therefore, √z = √|z|e^{iθ/2} ∈ C.

Fundamental Theorem of Algebra

- The field C has no extensions of degree 2.
 Suppose it has an extension of degree 2. Then there exists a quadratic irreducible polynomial over C, a contradiction to the above.
- Every polynomial over R having odd degree has a real root.
 For this, if a + ib, b ≠ 0, is root, then a ib is also a root. This implies, every polynomial has even number of complex roots and hence every polynomial over R having odd degree has a real root.

Theorem 4 (Fundamental Theorem of Algebra).

Every nonconstant $f(x) \in \mathbb{C}[x]$ *has a complex root.*

Repeatedly using this theorem, we prove

Corollary 5.

Every $f(x) \in \mathbb{C}[X]$ of degree $n \ge 1$ splits over \mathbb{C} , that is, $f(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$ where $c, \alpha_1, \cdots, \alpha_n \in \mathbb{C}$.

If $\alpha = a + ib$ is a complex root of f(x), then $\overline{\alpha} = a - ib$ is also a root of f(x). Therefore, $(x - \alpha)(x - \overline{\alpha}) \in \mathbb{R}$ is a factor of f(x). Thus, every polynomial of degree greater than 1 over \mathbb{C} is written as a product of quadratic or linear factors over \mathbb{R} .

Galois's Great Theorem

Lemma 6.

Let $\mathbb{E} \mid \mathbb{F}$ be a splitting field of $f(x) \in \mathbb{F}[x]$ with Galois group $G = G(\mathbb{E} \mid \mathbb{F})$. If \mathbb{F}^*/\mathbb{F} is an extension and $\mathbb{E}^*/\mathbb{F}^*$ is a splitting field of f(x) containing \mathbb{E} , then restriction $\sigma \mapsto \sigma_{\mid \mathbb{E}}$ is an infective homomorphism

$$G(\mathbb{E}^*/\mathbb{F}^*) \to G(\mathbb{E} \mid \mathbb{F}).$$

Definition 7.

If $\mathbb{E} \mid \mathbb{F}$ is a Galois extension and a $\alpha \in \mathbb{E}^* = \mathbb{E} \setminus \{0\}$, define its **norm** $N(\alpha)$ by

$$N(\alpha) = \prod_{\sigma \in G(\mathbb{E}|\mathbb{F})} \sigma(\alpha)$$

Theorem 8 (Hilbert's Theorem).

Let $\mathbb{E} \mid \mathbb{F}$ be a Galois extension whose Galois group $G = G(\mathbb{E} \mid \mathbb{F})$ is cyclic of order *n* and let σ be a generator of *G*. Then $N(\alpha) = 1$ if and only if there exists $\beta \in \mathbb{E}^*$ with $\alpha = \beta \sigma(\beta^{-1})$

Corollary 9.

Let $\mathbb{E} \mid \mathbb{F}$ be a Galois extension of prime degree p. If \mathbb{F} has a primitive *pth root of unity, then* $E = F(\beta)$ *, where* $\beta^p \in F$ *, and so* $\mathbb{E} \mid \mathbb{F}$ *is a pure extension.*

Theorem 10 (Galois).

Let \mathbb{F} be a field of characteristic 0, and let $\mathbb{E} \mid \mathbb{F}$ be a Galois extension. Then $G = G(\mathbb{E} \mid \mathbb{F})$ is a solvable group if and only if \mathbb{E} can be imbedded in a radical extension of F. Therefore, the Galois group of $f(x) \in \mathbb{F}[x]$, where \mathbb{F} is a field of characteristic 0, is a solvable group if and only if f(x) is solvable by radicals.

Corollary 11.

If \mathbb{F} is a field of characteristic 0, then every polynomial in $\mathbb{F}[x]$ of degree $n \leq 4$ is solvable by radicals.

REFERENCES

- M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- David S. Dummit and Richard M. Foote, Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
 - I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
 - Ian Stewart, Galois Theory, Chapman and Hall, 1973.
 - Joseph Gallian, Contemporary Abstract Algebra, 9th Edition
- Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.

- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.
- John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.