

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024 Tamil Nadu, India

- Programme : M. Sc. Mathematics
- Course Title : ALGEBRA II
- Course Code : 21S3M08CC

UNIT - V

THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Dr. C. Durairajan

Professor

Department of Mathematics

 $2Q$

The Fundamental Theorem of Galois Theory

A partially ordered set (poset for short) is a set *P* with a binary relation \prec satisfying all of the following.

• (reflexivity)
$$
x \preceq x
$$
 for all $x \in P$

- 2 (antisymmetry) $x \le y$ and $y \le x$ implies $x = y$
- **3** (transitivity) $x \prec y$ and $y \prec z$ implies $x \prec z$

Example 1.

1 The power set of a nonempty set *X* with inclusion relation,

$$
P = \{1, 2, \cdots, \} \text{ and } n \preceq m \text{ if } n \leq m,
$$

$$
P = \{1, 2, \cdots, \} \text{ and } n \leq m \text{ if } n \text{ divides } m,
$$

$$
\bullet \ \ P = \{A_1, A_2, \cdots, A_m\} \text{ and } A_i \preceq A_j \text{ if } A_i \subset A_j
$$

are posets.

Let (P, \preceq) be a poset. An element *m* is said to be the **least upper** bound of *a* and *b* if

1 $a \prec m$ and $b \prec m$

2 if *M* is any upper bound of *a* and *b*, then $m \prec M$

Similarly, we can define the greatest lower bound.

A lattice is a partially ordered set (L, \preceq) in which each pair of

elements $a, b \in L$ has the least upper bound $a \vee b$ and the greatest lower bound $a \wedge b$.

Examples

- \bullet The set of all real numbers with the usual ordering \lt is a lattice.
- ² If G is a group, let Sub(G) be the family of all the subgroups of G, and define $H \prec K$ if $H \subset K$. Then Sub(G) is a lattice with *H* ∨ *K* the subgroup generated by H and K, and $H \wedge K = H \cap K$.
- \bullet Let $\mathbb{E} \mid \mathbb{F}$ be a field extension, let *Lat*($\mathbb{E} \mid \mathbb{F}$) be the family of all intermediate fields, and define $B \prec C$ if $B \subset C$. Then $Lat(\mathbb{E} | \mathbb{F})$ is a lattice with $B \vee C$ the smallest field containing *B* and *C* and $B \wedge C = B \cap C$.
- \triangle Let L be the set of all integers $n > 1$ and define $n \leq m$ if $n \mid m$. Then L is a lattice with $n \vee m = lcm\{n, m\}$, $n \wedge m = gcd\{n, m\}$.

The set of continuous real-valued functions on a topological space is a lattice under the pointwise order, and $(f \vee g)(x) = f(x) \vee g(x)$ and $(f \wedge g)(x) = f(x) \wedge g(x)$ for each *x*.

Lemma 2.

If L and L′ *are lattices and* γ : *L* → *L* ′ *is an order reversing bijection* $[a \prec b \text{ implies } \gamma(b) \prec \gamma(a)]$, then $\gamma(a \lor b) = \gamma(a) \land \gamma(b)$ and $\gamma(a \wedge b) = \gamma(a) \vee \gamma(b)$

Continue ...

Theorem 3 (Fundamental Theorem of Galois Theory).

Let $\mathbb{E} \mid \mathbb{F}$ *be a Galois extension with Galois group* $G = G(\mathbb{E} \mid \mathbb{F})$ *.*

1 *The function* $\gamma : Sub(G) \to \text{Lat}(\mathbb{E} \mid \mathbb{F})$, *defined by* $H \mapsto \mathbb{E}^H$, *is an order reversing bijection with inverse* $\delta : \mathbb{B} \mapsto G(\mathbb{E} \mid \mathbb{B})$.

$$
\mathbf{P}^{G(\mathbb{E}|\mathbb{B})} = \mathbb{B} \text{ and } G(\mathbb{E} \mid \mathbb{E}^H) = H.
$$

3 $\mathbb{E}^{H \vee K} = \mathbb{E}^{H} \cap \mathbb{E}^{K}, \mathbb{E}^{H \cap K} = \mathbb{E}^{H} \vee \mathbb{E}^{K}$ and

 $G(\mathbb{E} \mid \mathbb{B} \vee C) = G(\mathbb{E} \mid \mathbb{B}) \cap G(\mathbb{E} \mid C)$

 $G(\mathbb{E} | \mathbb{B} \cap C) = G(\mathbb{E} | \mathbb{B}) \vee G(\mathbb{E} | C).$

 \bullet $[\mathbb{B} : \mathbb{F}] = [G : G(\mathbb{E} \mid \mathbb{B})]$ and $[G : H] = [E^H : \mathbb{F}].$

⁵ B | F *is a Galois extension if and only if G*(E | B) *is a normal subgroup of G*.

Applications

- \bullet A Galois extension $\mathbb{E} \mid \mathbb{F}$ has only finitely many intermediate fields.
- 2 A finite extension $\mathbb{E} \mid \mathbb{F}$ is simple if and only if it has only finitely many intermediate fields.

This is theorem is known as Steinitz Theorem.

- **3** If $\mathbb{E} \mid \mathbb{F}$ is a finite simple extension and *B* is an intermediate field, then B/F is simple.
- \bullet Every Galois extension $\mathbb{E} \mid \mathbb{F}$ is simple.
- **5** The Galois field $GF(p^n)$ has exactly one subfield of order p^d for every divisor *d* of *n*.
- **6** If $\mathbb{E} \mid \mathbb{F}$ is an abelian extension, i.e., a Galois extension whose Galois group $G(\mathbb{E} | \mathbb{F})$ is abelian, then every intermediate field *B* is a Galois extension.**K ロ ト K 何 ト K ヨ ト K**

 $2Q$

Fundamental Theorem of Algebra

In 1799, the fundamental theorem of algebra was first proved by Gauss. Before proving this theorem, first let us learn a few basic concepts

- **1** If $f(x) \in \mathbb{R}[x]$ and there exist $a, b \in \mathbb{R}$ such that $f(a) > 0$ and $f(b) < 0$, then $f(x)$ has a real root.
- ² Using this, we prove every positive real number *r* has a real square root.

For this, let $f(x) = x^2 - r$, then $f(r + 1) = r^2 + r + 1 > 0$ and $f(0) = -r < 0$. Therefore, $f(x)$ has a real root. That is, *r* has a real square root.

 \bullet Every quadratic polynomial over $\mathbb C$ has a complex root. For this, let $z \in \mathbb{C}$, then the polar form of z is $z = |z| e^{i\theta}$. By the abov[e](#page-0-0), $\sqrt{|z|} \in \mathbb{R}$ $\sqrt{|z|} \in \mathbb{R}$ $\sqrt{|z|} \in \mathbb{R}$ $\sqrt{|z|} \in \mathbb{R}$ and $e^{\frac{i\theta}{2}} \in \mathbb{C}$ $e^{\frac{i\theta}{2}} \in \mathbb{C}$ $e^{\frac{i\theta}{2}} \in \mathbb{C}$ $e^{\frac{i\theta}{2}} \in \mathbb{C}$ $e^{\frac{i\theta}{2}} \in \mathbb{C}$ [.](#page-0-0) Therefore, $\sqrt{z} = \sqrt{|z|}e^{\frac{i\theta}{2}} \in \mathbb{C}$ $\sqrt{z} = \sqrt{|z|}e^{\frac{i\theta}{2}} \in \mathbb{C}$ $\sqrt{z} = \sqrt{|z|}e^{\frac{i\theta}{2}} \in \mathbb{C}$.

Fundamental Theorem of Algebra

- \bullet The field $\mathbb C$ has no extensions of degree 2. Suppose it has an extension of degree 2. Then there exists a quadratic irreducible polynomial over C, a contradiction to the above.
- \bullet Every polynomial over $\mathbb R$ having odd degree has a real root. For this, if $a + ib$, $b \ne 0$, is root, then $a - ib$ is also a root. This implies, every polynomial has even number of complex roots and hence every polynomial over $\mathbb R$ having odd degree has a real root.

 Ω

Theorem 4 (Fundamental Theorem of Algebra).

Every nonconstant $f(x) \in \mathbb{C}[x]$ *has a complex root.*

Repeatedly using this theorem, we prove

Corollary 5.

Every $f(x) \in \mathbb{C}[X]$ *of degree* $n > 1$ *splits over* \mathbb{C} *, that is,* $f(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$ *where c*, $\alpha_1, \cdots, \alpha_n \in \mathbb{C}$.

If $\alpha = a + ib$ is a complex root of $f(x)$, then $\overline{\alpha} = a - ib$ is also a root of $f(x)$. Therefore, $(x - \alpha)(x - \overline{\alpha}) \in \mathbb{R}$ is a factor of $f(x)$. Thus, every polynomial of degree greater than 1 over $\mathbb C$ is written as a product of quadratic or linear factors over R.

Galois's Great Theorem

Lemma 6.

Let $\mathbb{E} \mid \mathbb{F}$ *be a splitting field of* $f(x) \in \mathbb{F}[x]$ *with Galois group* $G = G(\mathbb{E} \mid \mathbb{F})$. If \mathbb{F}^*/\mathbb{F} *is an extension and* $\mathbb{E}^*/\mathbb{F}^*$ *is a splitting field of f*(*x*) *containing* \mathbb{E} *, then restriction* $\sigma \mapsto \sigma_{|\mathbb{E}}$ *is an infective homomorphism*

$$
G(\mathbb{E}^*/\mathbb{F}^*)\to G(\mathbb{E}\mid\mathbb{F}).
$$

Definition 7.

If $\mathbb{E} \mid \mathbb{F}$ is a Galois extension and a $\alpha \in \mathbb{E}^* = \mathbb{E} \setminus \{0\}$, define its norm $N(\alpha)$ by

$$
N(\alpha) = \prod_{\sigma \in G(\mathbb{E}|\mathbb{F})} \sigma(\alpha)
$$

Theorem 8 (Hilbert's Theorem).

Let $\mathbb{E} \mid \mathbb{F}$ *be a Galois extension whose Galois group* $G = G(\mathbb{E} \mid \mathbb{F})$ *is cyclic of order n and let* σ *be a generator of G. Then* $N(\alpha) = 1$ *if and only if there exists* $\beta \in \mathbb{E}^*$ *with* $\alpha = \beta \sigma(\beta^{-1})$

Corollary 9.

Let $\mathbb{E} \mid \mathbb{F}$ *be a Galois extension of prime degree p. If* \mathbb{F} *has a primitive pth root of unity, then* $E = F(\beta)$ *, where* $\beta^p \in F$ *, and so* $\mathbb{E} \mid \mathbb{F}$ *is a pure extension.*

Theorem 10 (Galois).

Let $\mathbb F$ *be a field of characteristic 0, and let* $\mathbb E \mid \mathbb F$ *be a Galois extension. Then* $G = G(\mathbb{E} | \mathbb{F})$ *is a solvable group if and only if* \mathbb{E} *can be imbedded in a radical extension of F*. *Therefore, the Galois group of* $f(x) \in \mathbb{F}[x]$ *, where* $\mathbb F$ *is a field of characteristic 0, is a solvable group if and only if f*(*x*) *is solvable by radicals.*

Corollary 11.

If \mathbb{F} *is a field of characteristic 0, then every polynomial in* $\mathbb{F}[x]$ *of degree n* ≤ 4 *is solvable by radicals.*

REFERENCES

F F F

- M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- David S. Dummit and Richard M. Foote,Abstract Algebra, 2nd Edition, Wiley Student Edition, 2008.
- I. N. Herstein, Topics in Algebra, John Wiley, 2nd Edition, 1975.
- Ian Stewart, Galois Theory, Chapman and Hall, 1973.
- Joseph Gallian, Contemporary Abstract Algebra , 9th Edition
- Joseph Rotman, Galois Theory, 2nd edition, Springer Verlag, 1990.

- C. Lanski, Concepts in Abstract Algebra, AMS Indian edition, 2010.
- Serge Lang, Algebra Revised third edition, Springer, Verlag 2002.
- R. Solomon, Abstract Algebra, AMS Indian edition, 2010.

John B. Fraleigh, A First course in Abstract Algebra, Narosa Publishing House, 2003.