

Bharathidasan University

Tiruchirappalli - 620 024 Tamil Nadu, India

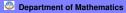
Programme: M.Sc., Mathematics

Course Title :Measure Theory and Integrations COurse Code : 21M11CC

Properties of Lebesgue outermeasure

Dr. V. Piramanantham

Professor Department of Mathematics



Theorem

Prove that m* is countably sub-additive.

Proof.

Let $\{E_n\}$ be a countable collection of subsets of \mathbb{R} . $m^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} m^*(E_n)$. Let $E = \bigcup_{n=1}^{\infty} E_n$. Then ∞

$$m^*(E) \leq \sum_{n=1} m^*(E_n).$$

Let $\epsilon > 0$ be given, for each $n, \exists (I_{nk})_{k=1}^{\infty}$ of the form [a, b) such that $E_n \subseteq \bigcup_{k=1}^{\infty} I_{nk}$.

< ロ > < 同 > < 回 > < 回 > .

and

$$\sum_{k=1}^{\infty} l(I_{nk}) \leq m^*(E_n) + \epsilon |2^n.$$

Now,

$$\bigcup_{k=1}^{\infty} (\bigcup_{k=1}^{\infty} I_{nk}) \supseteq \bigcup_{k=1}^{\infty} E_n = E.$$
$$\Rightarrow E \subseteq \bigcup_{n,k=1}^{\infty} I_{nk}.$$

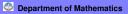
By the definition of outer measure m^* ,

э

ヘロア ヘロア ヘビア・

$$m^{*}(E) \leq \sum_{n,k=1}^{\infty} l(I_{nk})$$

= $\sum_{n=1}^{\infty} (\sum_{k=1}^{\infty} l(I_{nk}))$
= $\sum_{n=1}^{\infty} [m^{*}(E_{n}) + \epsilon | 2^{n}]$
= $\sum_{n=1}^{\infty} m^{*}(E_{n}) + \sum_{n=1}^{\infty} \epsilon | 2^{n}$
= $\sum_{n=1}^{\infty} m^{*}(E_{n}) + \epsilon$



æ

Therefore

$$m^*(E) \leq \sum_{n=1}^{\infty} m^*(E_n) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, $m^*(E) \leq \sum_{n=1}^{\infty} m^*(E_n)$.

Theorem

Let $E \subseteq \mathbb{R}$. and ϵ be given. Then there exists an open set $U \in \mathbb{R}$ such that $E \subseteq U$ and $m^*(U) \leq m^*(E) + \epsilon$.

Proof.

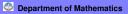
By the definition of m^* , there exist $(I_k)_{k=1}^{\infty}$ such that $E \subseteq \bigcup_{k=1}^{\infty}$, and $\sum_{k=1}^{\infty} I(I_k) \leq m^*(E) + \epsilon$. Let $I_k = [a_k, b_k)$. Then $I'_k = (a_k - \epsilon | 2^{k+1}, b_k)$

Clearly
$$l_k \subseteq l'_k$$
 and
 $l(l'_k) = l(l_k) + \epsilon |2^{k+1}.$
 $m^*(\bigcup l'_k) \le \sum_{k=1}^{\infty} l(l'_k)$
 $= \sum_{k=1}^{\infty} \{l(l_k) + \epsilon | 2^{k+1}\}$
 $= \sum_{k=1}^{\infty} l(l_k) + \epsilon |2.$
Let $U = \bigcup_{k=1}^{\infty} l'_k.$ Then $E \subseteq U = \bigcup_{k=1}^{\infty} l'_k.$
 $\Rightarrow m^*(U) \le m^*(E) + \epsilon.$

æ

・ロン ・回 と ・ ヨン ・ ヨン

If
$$k \subset I$$
 and K is compact $\Rightarrow m^*(k) = I(I) - m(I|k)$.
 $E \subseteq \mathbb{R}, k \subseteq E$.
 $m_0(E) = sup\{m(K)|K \subseteq E\}$.
 $I_k = [a, b)$
 $m^*(E) = inf\{\sum_{k=1}^{\infty} I(I_k) | E \subseteq \bigcup I_k\}$.
 $m_c^*(E) = inf\{\sum I(I_k) | E \subseteq \bigcup I_k\}, I_k = [a, b]$.
 $m_{oc}^*(E) = inf\{\sum I(I_k) | E \subseteq \bigcup I_k\}, I_k = (a, b]$.
 $m_o^*(E) = inf\{\sum I(I_k) | E \subseteq I_k\}, I_k = (a, b)$.
 $m_m^*(E) \leq m^*(E)$.
 $m^* = m_m^* = m_o^* = m_o^* = m_c^*$.



æ

<ロト <回 > < 三 > < 三 > -

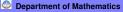
Let $\epsilon > 0$, Claim

$$m_o^*(E) \leq m_m^*(E).$$

We prove

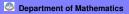
$$m_o^*(E) \leq m_m^*(E) + \epsilon,$$

for all $\epsilon > 0$, $m_m^*(E) + \epsilon$ is not a l.b. there exist I_k such that $E \subseteq \bigcup I_k$ of any type with a_k, b_k as end points such that $E \subseteq \bigcup I_k$ and $\sum_{k=1}^{\infty} I(I_k) \le m^*(E) + \epsilon$. For each k, define an open interval I'_k such that $I'_k \supseteq I_k$.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{split} l(l'_k) &= l(l_k) + \epsilon | 2^k \\ l'_k &= (c_k, d_k) \\ E \subseteq \bigcup_{k=1}^{\infty} l'_k \\ m_o^*(E) &\leq \sum_{k=1}^{\infty} l(l'_k) = \sum_{k=1}^{\infty} \{l(l_k) + \epsilon | 2^k\} \\ &= \sum_{k=1}^{\infty} l(l_k) + \epsilon \\ &\leq m_m^*(E) + 2\epsilon. \end{split}$$



æ

If $E \subseteq \mathbb{R}$ is a countable set $m^*(E) = 0$. $E = \{a_1, a_2, \cdots, \}$

$$0 \le m^*(E) = m^*(\bigcup_{n=1}^{\infty} \{a_n\})$$
$$\le \sum_{n=1}^{\infty} m^*(\{a_n\})$$
$$= \sum_{n=1}^{\infty} l(\{a_n\})$$
$$= 0.$$

Therefore

$$m^{*}(E) = 0.$$

э