

# Bharathidasan University

Tiruchirappalli - 620 024 Tamil Nadu, India

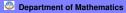
# Programme: M.Sc., Mathematics

Course Title :Measure Theory and Integration COurse Code : 21M11CC

# **Properties of Length function**

# Dr. V. Piramanantham

Professor Department of Mathematics



Let *I* be an interval with end points *a* and *b* with  $a \le b$ . Then the length of the interval *I* is

$$I(I) = \begin{cases} b - a & \text{if } -\infty < b \text{ and } a < \infty \\ \infty & \text{otherwise} \end{cases}$$



(a)

(1)  $l(\emptyset) = 0$ . (2)  $l(\{x\}) = 0$ . (3) For any  $x \in \mathbb{R}$ , l(l+x) = l(x). (4) If  $l = \bigcup_{k=1}^{n} l_k$ ,  $l_k \in \mathcal{I}$  and  $l \in \mathcal{I}$ ,  $l(l) \le \sum_{k=1}^{n} l(l_k)$ . (5) If  $l = \bigcup_{k=1}^{n} l_k$ ,  $l_k \in \mathcal{I}$ ,  $l_k \cap l_l = p$ ,  $k \ne l$  and  $l \in \mathcal{I}$ ,  $l(l) = \sum_{k=1}^{n} l(l_k)$ . (6) If  $l, J \in \mathcal{I}$  such that  $l \subseteq J$ , l(l) < l(J).

IF  $E = I_1 \cup I_2 \cup \cdots \cup I_n$ ,  $I_k \cap I_l = \emptyset$  with  $k \neq I$ . Then the measure of E is defined by

$$m(E) = I(I_1) + I(I_2) + \cdots + I(I_n).$$

A= is the collection of subsets of E of  $\mathbb{R}$  such that E is a union of finitely many disjoint intervals.

$$\mathcal{A} = \{ E \subseteq \mathbb{R}/E = \bigcup_{k=1}^{n}, \quad I_k \in \mathcal{I}, \quad I_k \cap I_l = \emptyset, \quad k \neq l \}.$$

It is clear that  $I \subseteq A$ . and

$$m: \mathcal{A} \to \mathbb{R}^*$$
  
 $m(E) = \sum_{k=1}^n l(I_k).$ 

## **Definition of Algebra and Measure**

#### Definition

A collection  $\mathcal{A}$  of subsets of  $\mathbb{R}$  is called an algebra of sets in  $\mathbb{R}$ .

(1)  $\phi, \mathbb{R} \in \mathcal{A}$ . (2) If  $E, F \in \mathcal{A}$ ,  $E|F \in \mathcal{A}$ (3) If  $E_1, E_2, \cdots, E_n \in \mathcal{A}$ , then  $\bigcup_{k=1}^n E_k \in \mathcal{A}$ .

## Definition

A measure is a set function  $m : A \to \mathbb{R}$  such that  $m(\emptyset) = 0$ ;  $m(E) \ge 0$ ; and whenever  $E_1, E_2, \dots, E_n$  are disjoint collection of set in A then

$$m\left(\bigcup_{k=1}^{n} E_{k}\right) = \sum_{k=1}^{n} m(E_{k}).$$
(1)

This property (1) is called subadditive.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ●

For any  $E_k$ ,  $E_l$  such that  $E_k \cap E_l = \emptyset$ ,  $k \neq l$ .

$$m(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m(E_k).$$
 (2)

This property (2) is called additive. Define the family

$$\mathcal{A}^* = \{ E \subseteq \mathbb{R} | E = \bigcup_{k=1}^n I_k, I_k \in \mathcal{I}.$$
(3)

For any st  $E \subseteq \mathbb{R}$ , define the inner and outer measures

$$m^{*}(E) = \inf\{\sum_{k=1}^{n} I(I_{k}) | E \subseteq \bigcup_{k=1}^{n} I_{k}\},$$

$$m_{*}(E) = \sup\{\sum_{k=1}^{n} I(I_{k}) | \bigcup_{k=1}^{n} I_{k} \subseteq E\}.$$
(5)

Department of Mathematics

If the inner measure  $m_*(E) = m^*(E)$  then *E* is called Jordan measurable set in  $\mathbb{R}$ .

 $\mathcal{M} = \{ E \subseteq \mathbb{R} : E \text{ is Jordan measurable} \}.$ 

 $m_*(E) = m(E) = m^*(E).$ 

### Definition

A set *E* is Jordan measurable iff for any  $A \subseteq \mathbb{R}$ 

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c).$$

イロト イポト イヨト イヨト 二日

countable sub-additive: If  $I = \bigcup k = 1^{\infty} I_k$ ,  $I_k \in \mathcal{I}$ ,  $I \in \mathcal{I}$ , then  $I(I) \leq \sum_{p=1}^{\infty} I(I_k),$ If  $I = \bigcup_{n=1}^{\infty}$ ,  $I_n \in \mathcal{I}$ ,  $I_n \cap I_m = \emptyset$  with  $n \neq m$  and  $I \in \mathcal{I}$ , then  $I(I) = \sum_{n=1}^{\infty} I(I_n).$ 

## Definition

A set *E* is Jordan measurable iff for any  $A \subseteq \mathbb{R}$ 

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c).$$



Let  $E \subseteq \mathbb{R}$ . Define  $m^*(E) = inf\{\sum_{k=1}^{\infty} I(I_k) | E \subseteq \bigcup_{k=1}^{\infty} I_K\}$ , then prove that  $m^*$  is called the lebesgue outer measure.

#### Theorem

(i)  $m^*(\emptyset) = 0.$ (ii)  $m^*(E) \ge 0$ , for all  $E \subseteq \mathbb{R}$ . (iii)  $m^*(\{x\}) = 0.$ 

(日)

(i) Given 
$$\epsilon > 0$$
,  $l_1 = [0, \epsilon]$ ,  $l_2 = l_3 = \cdots = \emptyset$ .  
 $m^*(\emptyset) \le \sum_{n=1}^{\infty} l(l_n) \le \epsilon$ .

 $\Rightarrow m^*(\emptyset) \leq \epsilon$ , for all  $\epsilon > 0 \Rightarrow m^*(\emptyset) = 0$ .



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

#### Proof

(ii) is trivial. (iii) For any  $\epsilon > 0$ ,  $l_1 = [x, x + \epsilon)$ ,  $l_2 = l_3 = \cdots = \emptyset$ .

$$\{x\}\subseteq \bigcup_{k=1}^{\infty}I_k.$$

$$m^*(\lbrace x\rbrace) = \sum_{k=1}^{\infty} l(l_k) = \epsilon.$$
$$m^*(\lbrace x\rbrace) \le \epsilon \Rightarrow m^*(\lbrace x\rbrace) = 0.$$

(ロ) (部) (E) (E) (E)