

Bharathidasan University

Tiruchirappalli - 620 024 Tamil Nadu, India

Programme: M.Sc., Mathematics

Course Title : Differential Geometry COurse Code : 21M13CC

Unit I Level Sets and Vector fields

Dr. V. Piramanantham

Professor Department of Mathematics

(3)

Definition

Given a function $f : U \to \mathbb{R}$, where $U \subset \mathbb{R}^{n+1}$, its **level sets** are the sets $f^{-1}(c)$ defined, for each real number c, by

$$f^{-1}(c) = \{(x_1, x_2, \cdots, x_{n+1}) \in U : f(x_1, x_2, \cdots, x_{n+1}) = c\}$$

Remark

Then the numebr *c* is called the height of the level set, and $f^{-1}(c)$ is called the level set at theight *c*.

Remark

Since $f^{-1}(c)$ is the solution set of the equation $f(x_1, x - 2, \dots, x_{n+1}) = c$, the level set $f^{-1}(c)$ is often described as "the set $f(x_1, x - 2, \dots, x_{n+1}) = c$."

Definition

The **graph** of a function $f: U \to \mathbb{R}$ is the subset of \mathbb{R}^{n+2} defined by

graph(f) = {
$$(x_1, x_2, \cdots, x_{n+2}) \in \mathbb{R}^{n+2} : (x_1, x_2, \cdots, x_{n+1}) \in U$$

and $x_{n+2} = f(x_1, x_2, \cdots, x_{n+1})$ }

イロト イポト イヨト イヨト 二日

Remark

1. For $c \ge 0$, the level set of *f* at height *c* is just the set of all points in the domanin of *f* over which the graph is at distance *c*. 2. For c < 0, the level set of *f* at height *c* is just the set of all points in the domanin of *f* under which the graph is at distance -c.

Example

consider the function f; $\mathbb{R}^{n+1} \to \mathbb{R}$ defined by $f(x_1, x_2, \dots, x_{n+1}) = x_1^2 + \dots + x_{n+1}^2$. The level sets $f^{-1}(c)$ are empty for c < 0, consist of a single point (the origin) if c = 0, and for c > 0 consist of two points if n = 0, circle centered at the origin with radius \sqrt{c} if n = 1, spheres centered at the origin with radius \sqrt{c} if n = 2, etc.

(日)

Example

Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2 + y^2 + z^2$. Then the level sets for the values of *c* are as follows:

Value of c	Level set
<i>c</i> < 0	empty set
<i>c</i> = 0	{(0,0)}
<i>c</i> > 0	sphere of radius \sqrt{c} with center at origin

< D > < P > < P >

Figure: Level set of $(x, y, z) = x^2 + y^2 + z^2$ at c = 4

э

Example

Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2 + y^2 - z^2$. Then the level sets for the values of *c* are as follows:

Figure: Level set of $f(x, y, z) = x^2 + y^2 - z^2$ at c = 0

イロト イポト イヨト イヨト 二日

Hyperpoloid of one sheet in \mathbb{R}^3

Figure: Level set of $f(x, y, z) = x^2 + y^2 - z^2$ at c = 1

(ロ) (部) (注) (注) (注)

Hyperpoloid of two sheet in \mathbb{R}^3

Figure: Level set of $f(x, y, z) = x^2 + y^2 + z^2$ at c = -1

(ロ) (部) (E) (E) (E)

Definition (Vector)

A vector at a point $p \in \mathbb{R}^{n+1}$ is a piar $\overrightarrow{v} = (p, v)$ where $v \in \mathbb{R}^{n+1}$.

Definition

A vector field \overrightarrow{X} on an open set $U \subset \mathbb{R}^{n+1}$ is a function assignes to each point of U a vector at that point. A vector filed is represented by $\overrightarrow{X}(p) = (p, X(p))$ for some function $X : U \to \mathbb{R}^{n+1}$.

Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X(p) = (1,0)

10	- 🔶	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	_
0	-	+	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	
	_	_	-	4	-	-	_	-	-		-	_	-	-	_	_	_	_	-	
	_	_	_	1	_	_	_	1	_		_	_	1	_	_	_	_	_	1	
					_										_					
				1															1	
-5		Τ.	Τ.	τ	Τ.	Τ.	Ξ.	Ξ.	Ξ.		1	Ξ.	Τ.	Τ.	Ξ.	Τ.	Τ.	Τ.	T	
				-															-	
			Τ.	Τ.	Ξ.	Ξ.		Ξ.				Ξ.	Ξ.	Ξ.					Τ.	
	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	1
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-10	-10	-	-	-	÷.,	, - ` . 5	-	-	-		-	-	-	-	5	-	-	-	-	10

Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X(p) = (1, 1)

Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X(p) = (p, p)

Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X(p) = (p, -p)

Example

Department of Mathematics

Example $\overline{X} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $X((x, y)) = ((x, \overline{y}), (y, \overline{x}))$

Example $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by X((x, y)) = ((x, y), (-y, -x))

