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Distribution Theory

UNIT - |
What is Statistics?

Statistics is a way to get information from data.

Statistics
Data Information
Data: Facts, especiallv numerical Information: Knowledge
facts, collected together for communicated conceming
reference or information. some particular fact.

Probability Distributions
Probabilistic Experiment

A probabilistic experiment is some occurrence such as the tossing of coins, rolling
dice, or observation of rainfall on a particular day where a complex natural background leads
to a chance outcome.

Sample Space

The set of possible outcomes of a probabilistic experiment is called the sample, event,
or possibility space. For example, if two coins are tossed, the sample space is the set of
possible results HH, HT, TH, and TT, where H indicates a head and T a tail.

Random Variable

A random variable is a function that maps events defined on a sample space into a set
of values. Several different random variables may be defined in relation to a given
experiment. Thus, in the case of tossing two coins the number of heads observed is one
random variable, the number of tails is another, and the number of double heads is another.
The random variable “number of heads” associates the number 0 with the event TT, the
number 1 with the events TH and HT, and the number 2 with the event HH.

In other words, a random variable is a function X:S—R, where S is the sample space
of the random experiment under consideration.

NOTE: By convention, we use a capital letter, say X, to denote a random variable, and use
the corresponding lower-case letter x to denote the realization (values) of the random
variable.



Discrete Random Variable

If a sample space contains a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers (countable), it is called a discrete sample
space. A random variable is called a discrete random variable if its set of possible outcomes
is countable.

Continuous Random Variable

If a sample space contains an infinite number of possibilities equal to the number of
points on a line segment, it is called a continuous sample space. When a random variable can
take on values on a continuous scale, it is called a continuous random variable.

Variate

A variate is a generalization of the idea of a random variable and has similar
probabilistic properties but is defined without reference to a particular type of probabilistic
experiment. A variate is the set of all random variables that obey a given probabilistic law.
The number of heads and the number of tails observed in independent coin tossing
experiments are elements of the same variate since the probabilistic factors governing the
numerical part of their outcome are identical.

A multivariate is a vector or a set of elements, each of which is a variate. A matrix
variate is a matrix or two-dimensional array of elements, each of which is a variate. In
general, dependencies may exist between these elements.
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Heads

Sample space
Random Number

A random number associated with a given variate is a number generated at a
realization of any random variable that is an element of that variate.

Range

Let X denote a variate and let _X be the set of all (real number) values that the variate
can take. The set X is the range of X. As an illustration (illustrations are in terms of random
variables) consider the experiment of tossing two coins and noting the number of heads. The
range of this random variable is the set {0, 1, 2} heads, since the result may show zero, one,
or two heads. (An alternative common usage of the term range refers to the largest minus the
smallest of a set of variate values.)



Quantile

For a general variate X let x (a real number) denote a general element of the range _X.
We refer to x as the quantile of X. In the coin tossing experiment referred to previously,
x €40, 1, 2} heads; that is, x is a member of the set {0, 1, 2} heads.

Probability Statement

Let X = X mean “the value realized by the variate X is x.” Let Pr[X > x] mean “the
probability that the value realized by the variate X is less than or equal to x.”

Probability Domain

Let « (a real number between 0 and 1) denote probability. Let _a X be the set of all
values (of probability) that Pr[X > x] can take. For a continuous variate, _a X is the line

segment [0, 1]; for a discrete variate it will be a subset of that segment. Thus _a X is the
probability domain of the variate X.

In examples we shall use the symbol X to denote a random variable. Let X be the
number of heads observed when two coins are tossed. We then have

1

Pr{X <0] = 2
Pr[X <1] :g

- 4
PrlX <2]=1

and hence Rt§ = (3, 3. 1).

Discrete Probability Distributions

The probability distribution of a discrete random variable X lists the values and their
probabilities.

Value of X X1 X2 X3 o Xk
Probability p1 P2 P3 o Pk

where, 0 <pi<1andpi+ p+-+pc=1
Probability Mass Function (PMF)

The set of ordered pairs (x, f (x)) is a probability function, probability mass function,
or probability distribution of the discrete random variable X if, for each possible outcome x,

i). f(x)>0,
i). ¥ ) =1,

iii). P(X =x) = f(x).
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Cumulative Distribution Function (CDF) of a Discrete Random Variable

The cumulative distribution function F(x) of a discrete random variable X with
probability mass function f(x) is

Fix)=P(X =x)
=Zf(r},l for —ee < x << oo,

F(x)

/4
/2

/4

'
—

a 1 2 3 4

Continuous Probability Distributions
Probability Density Function (PDF)

The function f (x) is a probability density function (pdf) for the continuous random
variable X, defined over the set of real numbers, if

i). £(x) =0 for all x € R.
i). [_:f{x):].

h
ii). P[a-::.!{{:b)=fﬂ (%) dx.
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NoTE. If X is a continuous random variable, then

Pla<X<b)=Pla<X <b)
=Pla<X <b)
=Pla<X <b).

This 1s NOT the case for the discrete situation.
Cumulative Distribution Function (CDF) of a Continuous Random Variable

The cumulative distribution function F(x) of a continuous random variable X with
probability density function f (x) is

Fix)=P(X <x)
=f fle) de, for —ee <x < o=
NOTE: A random variable is continuous if and only if its CDF is an everywhere continuous
function.
Problem

If the rv. X takes values 1, 2, 3 and 4 such that 2P(x=1) = 3P(x=2) =
P(x=3)=5P(x=4). Find the probability distribution and cdf of x.

Solution
Given X is a discrete random variable (i.e., the values are X=x =1, 2, 3, 4).
Let 2P(x=1) = 3P(x=2) = P(x=3) = 5P(x=4) = k

= 2P(x=l)=k:>P(x=1)=%
k
= 3P(x=2)=k:>P(x=2)=g

= P(x=3)=k=>P(x=3)=k

= SP(X:4)=k:>P(X=4):§_



Since, the total probability is 1,

E+E+k+E:1

Simplifies the above equation we get,

30
k=20
61
APx=n-X- 30 15
2 61x2 6l
bz 30 _10
3 61x3 61
30
P(x=3)=k="
(x=3) 61
peny K30 _6
5615 6l

So the probability distribution is

X=X P(x)
1 15/61
2 10/61
3 30/61
4 6/61

Which is the required probability distribution?

To find cdf:-

when x<1, F(x) =0

when x<1, F(x)=15/61

when x<2, F(x)=10/61+15/61=25/61

when x<3, F(x)=30/61+10/61+15/61=55/61
when x<4, F(x)=61/61+61/61=1.

Joint Probability Distributions

We frequently need to examine two more (discrete or continuous) random variables
simultaneously.



Joint Probability Mass Function (Joint PMF)

The function f (X, y) is a joint probability function, or probability mass function of the
discrete random variables X and Y if

i). flx,y) =0 for all (x,¥),
i). LL 7t =1.
ii). P(X =x,¥ =y) = flx,y).

For any region A in the xy plane,

Pl(x.¥)e4]= ZAEI(IJ}-

Marginal Probability Mass Function (Marginal PMF)

The marginal distributions of X alone and Y along are respectively.
gx) =} f(x.y) and h(y)=} f(x.y).
¥ x

Conditional Probability Mass Function (Conditional PMF)

Let X and Y be two discrete random variables. The conditional distribution of Y given
that X = x is

flylx)=P(¥Y =yX=x)

_PX=xY=y)
~ P(x=x)
_ flxy)

glx)

provided P(X =x) =g(x) > 0.

Similarly, the conditional distribution of X given
that ¥ =y is

flxly) =P X =x|¥ =)

_PX=xY=y)
- P¥=y)
_ flxy)

hiy)

provided P(Y =) =h(y) = 0.



Joint Probability Density Function (Joint PDF)

The function f (X, y) is a joint probability density function of the continuous random
variables X and Y if

i). flx,¥) =0 for all (x,¥),
i) [ [ sy dray=1,
i), P[(X,Y)eA]= f [f'{x,}'j dx dy, for any region
A in the xy pIam—:-.A

Marginal Probability Density Function (Marginal PDF)

The marginal distributions of X alone and Y along are respectively,

o

o= [ stx) dy

and

ho)= [ fxy) dx
Conditional Probability Density Function (Conditional PDF)

Let X and Y be two continuous random variables. The conditional distribution of
Y|IX=xis

Flfx) = f;z{;) provided g(x) > 0.

Similarly, the conditional distribution of X|¥ =y is

Fialyy =2 i;;j' provided h(y) > 0.

Problem

The joint pmf of (X, Y) is given by P(x,y) = k(2x+3y), x=0, 1, 2; y=1, 2, 3. Find all
the marginal and conditional probability distributions. Also find the probability distribution
of X +Y.

Solution

P(x,y) = k(2x+3y), x=0,1,2;y=1,2,3



The probability distribution of given function is

y |1 2 3

0 3k 6k ok
1 5k 8k 11k
2 7k 10k 13k

Since XXP(x, y) = 1.

=3k +6k +9k +5k +8k + 11k + 7k + 10k + 13k =1 = k=1/72
Therefore, the probability distribution is

N 1 2 3 Pit
A R I R
72 72 72 72
R TR
72 72 72 72
A A N e )
72 72 72 72

15 24 33

P*j —_ — —

72 72 72

The marginal probability distribution of X is

P
18/72
24172
30/72

N k| O X

The marginal probability distribution of Y is

P
15/72
24172
33/72

w| N | <

The conditional distribution of X given Y =1 is

h_B




X 0 1 2
7

Rk L

1
P, P 53 15
Similarly we can find the conditional distribution of X given Y =2

X ]
P.j
0 1
4
) 1
3
2 el
- 12
The conditional distribution of X given Y =3
X 5
Py
9
O J—
33
. 1
33
N 13
- 33
The conditional distribution of Y given X =0
Y 5
Pit
1 1
6
2 1
B 3
3 1
2
The conditional distribution of Y given X =1
. 5
Pit
1 3
24
1
o —
- 3
11



The conditional distribution of Y given X =2

P.
Y y

Pi‘
) 7

30
) 10

30
. B

30

P(X+Y)=P(X+Y=123.45)

3 3 (6 5 11y 13
A A

P(X+Y)=1.

Problem 3:
The joint pdf of a two dimensional random variable (X, Y) is given by

£(X.Y) = xy° +\‘? 0<x<2 0<y<l.
Compute
(i) P(X > 1) (i) P[Y-:%J (iif) P[X>1|Y<%](iv) P{Y<%|X>1]
) P(X<Y) ()P(X+Y< 1)..

Also
(a) Are X and Y independent?
(b) Find the conditional pdf of X given Y.
(c) Find the condition pdf of Y given X.

Solution
(1) P(X>1)=:£?[f(x.y)dxdy
12[" 5 2
[l e
=[l v x_l_x_Tde
ol” 2 24



P[X}l.‘f{%]




But P(Y t::l] =l
2 4

.'.P,(X>1|Y<l)=
\ 2

('w}P(Y-::%|X>]:J=I{I’<%.X>]:]|P(X>l}

Va5 24
24/
(o 2419
P(Y<1|X>1]=i.
2 ) 19

) PO <)=[[ Fe ) deady

PX<Y)=—2 |
480

bR
|



(i) P(X+Y<D)=[[f(x.y)dxdy

1ty
PX+Y<1)=| [f(x.y)dxdy

13
PX+Y=l)=—-.
X ) 430

Also,

(a) In order to prove X and Y are independent, we prove

fix.y) = &(x) . f(y)
2
f(X,Y)ZX}’2+% :x=0to2;y=0tol

£,(9)= [£(x.y)dy

—m

[e*]

fx{x)=§+%.ﬁix£2

Similarly, f,(y) = [f(x.y)dx

-0

8

2 2
=] Xy2+x—]dx
LAY



2 3P
:[Yz,x_ﬁ_}

’l i

2 24|

2, 1
f,(y)=2y 3

) [ x 2 1
£, (x) < £, (¥) _{EJF?Jxkzyl +§]

#f(x.y)

.. X and Y are not independent random variables.

(b) Conditional pdf of X given Y is given by

ey =D
¥y

XE

2
+_
_Xy 8

1
2 -
Y +3

3 Bx 2+:»(2
=5

(c) Conditional pdf of Y given X is given by

f(x.y)
f,(®)

X2

2
+_
Ay
2
X X
_+_
3 8

fly[x)=

3 8Ky2+x2

8 x x'
_+_
3 8

3}:}72+x2

f(v|x)=3. .
=) 8x + 3x°



Standard Distributions
Binomial Distribution - James Bernoulli in 1700
Definition

A random variable X which takes two values 0 and 1 with probabilities g and p
respectively. i.e., P(X=1) = p; P(X=0) = q is called a Bernoulli variate and its said have a
Bernoulli distribution.

If the experiment is repeated n-times independently with two possible outcomes, then
they are called Bernoulli trials.

An experiment consisting of a repeated n number of Bernoulli trails is called
Bernoulli experiment.

Binomial Experiment
A binomial distribution can be used under the following condition:

(1)  Any trail with two possible outcomes that is any trail result in a success or
failure.
(i)  The number of trials n is finite and independent, when n is number of trial.
(iii)  a probability of success is the same in each trial. i.e., p is the constant.

Definition

A random variable X is said to have a binomial distribution, if its pmf is given by

nC, P*q"*,x=012..n

. where g=1-p
0 .otherwise

P(X=x)={

It is denoted by B(n, p), where n and p are parameters
Applications of Binomial Distribution

1. The quality control measures and sampling process in industries to classify the items
are defective or non-defective.

2. Medical applications as a success or failure of a surgery and cure or non cure of a
patient.

3. Military application as a hit a target or miss a target
Derivation of mean and variance of B (n, p)

By the definition of mathematical expectation,



E(X)=§xp{x) =§xnc;p‘q"‘*

=np) n-1C, p g
x=1

=np(q+p)™  (bybinomial expansion)
=op(l)  (gfp=1)

Mean = E(x) = np
Var(x) = E(x) - [E)]’
E(x2) = S x2P(x)

x=0

E[X(X 1) +x]p(x)

Il
|| [‘«’]l:

(X Dp(x) + ZXP{X)

= Zx(x 1)nC, p*q"™™ +np (From (1))
x=0

o~y (21
—%x{x l)lx(x—)

-2 n-x

n—2C,_,p° . p"q¢"™ +np.

=n(n-1)p*> n-2C_,p"q"™ +np

=0
=n(-1)p(q+p)+np
=n(@m-1)p’ +np
E(XE) =np (np + q)
Var (x) = E(x') - [E®)]’
=np (np + q) — (np)’
_ 22 22
=np +tnpq-np
Var (x) = npq.

MGF of mean and variance

By the definition of MGF,



M, (1) = E[e"]

= 2 e"p(x)
0

= 2, fpe'fig>
x=(0

=nC, [pe' )Oq" +nCy (pe' )lq"'l +...+nC, (pe')"q”_"
=q" +nCl(pe')r1H +...+(pe'r
M, ()= (g +pe'f

Differentiate with respect to t, we get

d .
M= =1 +pe')* pe'

d _
Putt =0, aMx(t) =n(q+p)* " pe’
Mean =np =

M, () =n(q-+pey™ L pe’

eyl g
:”P(quPe €

a4 ( e -2
PMKO) = np‘gq+pet) let 4 ef(n— 1).((1 + p-et]u .p-etI‘

2
%Mx ®]cco =np{1+ (0 ~1)p)

np+n’p? —np? =}
- var(x) = — (1
=np+n’p’ —np’ - (np)’

Var (x) =npq



Definition of Moments

Moments about origin z, is defined as the expectations of the powers of the r.v X. That

isi; = E(x"). Similarly, the central momentsabout mean is defined as py = E(x-p)".

Recurrence relation for the central moments of a B(n, p)

. th .
By the definition of k™ order central moment py is given by

iy =E(x - )F =E(x - np)"

n
=3 (x—np)*nC,p """
x=0

1=

(x —np)*nC,p*(1-p)" ™
0

X

=

nC, (x—np) p*(1-p)™

=

e

Differentiate with respect to p, we get

i - ‘ c ) _ ke xpe (1_ n—x—1 1 1— )™= x-1 - oY A(x— LT }

aivﬂk =Y nC, \(x—mp)* (p*(n—x)1-p)™" (D +(1-p)"".0p™ ) + p*(1- p)" " k(x —np)*" (-n)
z=l

After simplification. we get,

dp,

=-—nkyy_; + = My 1
dp Pq

Cdu _
Hg+1 =Pq '—;+ nkjy g |

The first four raw moments (or) moment about origin of B(n, P)
By the definition of moments about origin u, = E(x")

To find the first four raw moments:

Putr=1



u =E(x")

= > xp(x)

n
x=0

=>xnC,p*q"*

x=0
= npzn _ lcxpx—lqrr—x
x=0

=np (q+p)™’

= np

uy =E(x?)

x*p(x)
0

ér&(x—l)p(}m Zx p(x)

;fi‘Mn

=n(n-1)p’ ¥ n-2C, ,p* *q" = +np

x=2
=n (n-1)P* (q+p)*” +np
u =E(x°)

xp(x)

dur

= z“:[x{x —D(x-2)+3x(x-1)+x]nC_p*qg™™

x=0
= n(n - ])(ﬂ - 2)}5'3 ZH — 301__3 px—3qn—x + 3?1(}1 — ])p2 Z n— wx_sz—lqn—x +np
x=0 =

i3 =n(n-D(n—-2)p’ +3n(n—Dp’ +np



iy = E(x*)

= i[x{x -DE-2)(x-3)+6x(x-D(x-2)+Tx(x-1)+x] nC p*q"*

x=0

= i X(x -D(x-2)(x-3)nC,p*q" " + 6% X(x -1)(x—2)nC,p*q" "

x=0 x=0
n n
+7¥ x(x-DnC_p*q" ™ + ¥ x nC,p*q"™
x=0 x=0

=1 (n-1) (n-2) (n-3)p*(p+q)™ *+6n(n-1)(n-2)p* (p+q)™ +7n(n-1)p’*(p+q)™ +np
Hy =n(n-1)n-2)n- 3)p* +6n(n—-1)n-2)p° + 7n(n—1p® +np.
Additive property of B(n, p) or Reproductive property

Statement:

If X~B(n1. p) and Y~B(no. p). then X+Y ~B(ni+ny. p) where X and Y are independent.
Proof
We know that, the MGF of B(n. p) =(q+pe")*

. The MGF of X ~B(ny. p) =(q+pe')'!.

Also the MGF of Y~B(na. P) = (q+pe")"?.
We know that, If X and Y are independent r.vs, then

Moy (t) = My (t} My (T}

= (q+pe")’1.(q+pe")™
=(q+pe)’1

. Myoy O=(q+pe")" !
Which is the MGF of B(ni+my. p)
Note:
If X1, X2,..., Xk are independent binomial variates with parameters (ni,p), (nz,p),...,

(nk,p) respectively, then Xi+Xo+...+Xx is also a binomial variate with parameter
(n1tnz+...+nk, p).



Mode of Binomial distribution
Definition
The value of x at which p(x) obtains maximum is called mode of the distribution.
Let X be a binomial random variable. Then
P(X=x)=p(x)=nCxp" q :x=0.1.2...n
The mode of the binomial distribution is defined by mg and it is given by
p (mg-1) = p (mp) = p (mg+1)

Consider.
p(mo-1) = p (mp)

mp-1 _n-{my-1) _- . n—m
‘mg—tP 0 g 0T =nCy, pTgt T

(n—myg)'mg! q.
(n-my+1)!(m,—1)! p~

_ M P
n-mg+1 q

mg= p(n+1)
Consider,

Plmg)=2p(mo+1)

mg _n-my .

nCppp 'q =nCpy P

mp+1l  n-(mg+1)
q

- (n—my —1)!(m, +1)!
(n—my)!{mg)!

[

P
q

my =np—q



from (1) and (2)
np —q < mp< p (n+1)
For checking:
whenn=10,p=1/2.q=":
4.5 = mg=5.5.
Characteristic function and Cumulative function or cumulative generating function
The characteristic function is defined
0, (1) = E[e™]
Cumulative generating function is defined by
Ky () =log M, ()
Characteristic function of B(n.p)
By the definition of characteristic function,

0,(t) = E[e]

e™p(x)

el

0

w
Il

X _D—-X

e'™nC, p*q

I
s

0

w
Il

0. () =(q+pe™)".



Poisson Distribution - Simen Denis Poisson
Definition

A random variable X is said to follow the Poisson distribution if its probability mass
function is given by,

X
€ * x=012..=

p(X=x)=p(x)=

x!
Here the A is the parameter and A > 0.

Poisson distribution as a limiting case of Binomial distribution:

Poisson distribution as a limiting case of Binomial distribution under the following
condition:

i) The number of trial n is infinitely large. i.e, n—oo.

i) The constant probability of success p in each trail is vary small. i.e, p—0

iii) np = A is finite, where A is a positive real number.
Proof:

In the case of Binomial distribution, the probability of x success is given by,

X _Nn-X

p(X=x)=p(x)=nC,pq

~Dn-2)..n—(x-1 -x
_n(n-1n i! [n—(x )]pan

Putnp=4i: p=Aimn

q=1--
n
nm-Dm-2)..m—x-DI( AV (. A\
= o - 2o D0-Dbr—ta 0] 27, 4]
x! \n)\ n)
2 nn-1n-2 n-(x-1 "’1_}__"|ﬂ"'1_i|_
xn n n n \ n)l n
EL 01y, 2. 3y (L x=1\1(. aL AT
=— 1 1-— == 1-= L -— 1= 1=
X \ n i m n;, 1 /N ;o 11

Taking limit n —» <0, we get

e X

x!

x=0012... =

p(X=x)=p(x)=




which is the pmf of Poisson distribution.
.. Poisson distribution is the limiting case of binomial distribution.

Mean and variance of Poisson distribution

Mean. E(x)= > xp(x)
x=0

S Mean E(x) = &
Variance (x) = E(x)- [E(‘{)]z

E(x1}= ; X’ p(x)

—

® —he X
= Z[:-;[;x—ljw:-;]‘3 Y"
x=0
® —ho X © —hn X
=zx(x—l)e A _zxe A
x=0 x! x=0 x!

Var(x) = Ex%) - [E®)]
=32 +0-32
Var(x) = A

" Mean = Variance = i.



MGF of mean and variance
By the definition of MGF,

M, (t) = E[e™]

= >e™p(x)

D eat
M, () ="
To find mean and variance
By the property of MGF.
' 3 (el _
M () =" a(e")

M, (0o =" PN =2

M, (t) =7

]

()
wM, (f)= Aefe’t Y

" r et e Lot
M, (t}=}.| ele™® D et 4o D.et:|

MK (t)|r=0 = a"[.-‘—l]: ;I} + ’. — “j



2

Var (x) =1,= ILLlr —{ “1' ]
=32 +h -t

Var (x) = A

. Mean = Variance = J.

Recurrence formula for the central moments of the Poisson distribution:

For Poisson distribution with parameter A; the recurrence formula is,

y -_ .ll' -
Moy =h ——+ l.ILLr_1:|

Proof

.. th ..
By definition of r order central moment is given by
r T
L =E(x—1)

=E(x—4)"  (-E(x)=4)

[

(x - 1) p(x)

x=0

E—-‘. }_X

He = i(": — )

x=0 :‘:1.

Diftferentiate with respect to 4. we get,
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The central moment’s p., g, ps and p.:

The recurrence formula for central moments of Poisson distribution is,

. d )
|"lr+1 = A d}jI + AT |"lr—1 (*)

Also, we know that, pp=1
iy = 0.
In order to get pa. put =1 in (*),

A }d'u1+?-p
Sy =A—E+ A
dx

= hxgy +AX,
Iy =%.

In order to get p3.Putr= 2 in (*),

. du .
Sl =A—2 42k,
s - Loy
da

=.1+21(0)
My = A
In order to get pa.Putr=3 in (*),
T r% +3h 1,
=i 143005
Iy =X +332

Sow=0, m=A, u3=XA, pa=A+ 32 are the first four central moments.



The first four moments about origin

- th
By the definition of r order raw moments,
i, = E[}:I]

,ull = E(x)=E(x)

= iX-p(X)

Ly =A

Also. u, = E(x%)
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Also, .Ll3r =E(x%)

= S [x(x—T)(x = 2) + Bx(x = 1)+ x]

?.-x —'-ax -~

= Z\(\ Dix— 2) 23\(\ 1) er ’
x=0 x=0 x=0 \‘
=e "}t 4307 02e" 4+
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- 3{4 e AF
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-ha3yx-3 = e a2 = e MpE
e "IN
6 -1 +72 x(x-1) +
N Z}'(x )= (;. D(x-2)(x—-3)! =x=0 x(x-D(x-2)! =0 =

ny =2 +623 + 70 + 0.



Additive property:

The sum of independent Poisson variates is also a Poisson variate. i.e., X1, Xz, .... Xj
are n independent Poisson variates with parameter A1, A2, ....An. Then X1 + Xo+ ...+ Xq IS

also a Poisson variate with parameter A1 + A2 + ... + An.

Proof

We know that the MGF of Poisson distribution 1s.

ot
M, (t)=e"®
Also we know that.

M () =M,, (DM, (D). M, (1)

K| <X2+.+Ep

X

BE) L hED

=e e “T..

. (e A E D)
"M.'L'-_—.'L'_\+...—.Yﬂ (1) = e

which is the MGF of X1 + Xo+ ...+ X, with parameter A1 + A2 + ... + An.
oo X+ Xot ...+ Xi is also Poisson variate.

Examples of a Poisson distribution (Real life Problems)

Number of printing mistakes at each page of a book.
The number of road accident reported in a city per day.
The number of death in a district due to rare disease.

The number of defective articles in a pocket of 200.

A A

The number of cars passing through a time interval t.

Multinomial Distribution
Definition

Multinomial distribution is the generalization of binomial distribution. Consider k
events Ei, Ea,..., Ex. The event E1 occurs X; times, E2 occurs Xz times and so on, with the
corresponding probability p1, p2, ...pk respectively.

Let us assume that the probability of getting it event in x; times is Pi’,i=1, 2, ..., k.

Then the joint probability function of k events is given by,



pil Pyt pit

= |
Hxi!1=1
i=1
This distribution is called multinomial distribution, where (pi+p2+ ...+pk) = 1,
N = X1+X2t+ ...+ Xk.

For example, if a fair die is tossed twelve times, the probability of getting 1, 2, 3, 4,5
and 6 points exactly twice each is given by,

12! VY (1Y (V1Y (1)
X =2,X,=2,X3=2,X, =2.Xs =2 X =2)=— X[~ | | = || = || =||= ||
Py =2,%; =2.%3 =2,%, =2.%5 == S wma (6) [6){6}(6) [6](6}

=(0.00344.
MGF of Multinomial Distribution
To derive MGF, first let us consider a trail which has two outcomes Az, Ao.

Assume the outcome A; occurs x; times and Az occurs X, times then the probability of
getting A, x1 times and Az, X2 times is given by the function,

n!

p(x,.x,) = p;ip3? wherepi+p:=landn=x;+x;

x,!x,!
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:Z Jhx Xy p(AI.A )

X
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_ t1x]+12x2 X2
=Xe — PP
X

X,!x,!

(ple +p,e’? )ﬂ

Which is the MGF of p(xi:, x2). By simply extending this result the mgf for
multinomial distribution can be written as,
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From this MGF, we can find mean and variance as follows:
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=np; [(n —Dp; + l]
=n(n— l)pl-2 +1p;
Wy =n(n-Dp;” +np,

var(x) =t — ()’
=n(n- 1)13'12 +np; +(np; y

= 11p1-[ n—1p;, +1- 11pi]
=np;(1-F)
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Normal Distribution or Gaussian distribution
A random variable X is said to follow a normal distribution if its pdf is given by,

1 5

e = C — o0 X <ol
g 2T

f(x)=

Here, f(x) is a legitimate density function as the total area under the normal curve is
unity.

To prove that total probability is one,

3 P —1—|
X)dx= j e 7 dx
_Lf( o2
2
= 1 =l
= [ ——e V¥ dx
e O2T




1

V20

= dx = \Eccl‘r

dt = dx




