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Unit-V
BAYESIAN ESTIMATION

Bayesian estimation is a statistical method that helps someone deal with conditional
probability. It is done by using prior evidence to estimate an unknown population parameter.

Bayesian statistics is based on the idea that any unknown quantity, such as a
parameter, a hypothesis, or a prediction, can be described by a probability distribution that
reflects our degree of belief about it. This probability distribution is called the posterior
distribution, and it is updated whenever we observe new data using Bayes' theorem.

Objective Bayesian statistics

Non-informative priors are the workhorse of objective Bayesian statistics.

In general, the prior reflects the statistician's subjective beliefs, as well as knowledge
accumulated before observing the data. However, there are many cases in which not only we
have little prior knowledge, but we would also like not to rely on subjective beliefs.

= We aim to publish our analyses in a scientific journal;
= We are presenting results to a regulator or to another public body.

Uninformative priors are used to make Bayesian inferences as objective as possible.

What is prior?

Prior probability is the likelihood of an event occurring before we see the evidence
(data). In Bayesian Inference, the prior is our first estimate of probability based on what we
know now, before additional evidence (new data) becomes available.

The parameter as a random variable

So far we have seen the frequentist approach to statistical inference
i.e. inferential statements about @ are interpreted in terms of repeat sampling.

In contrast, the Bayesian approach treats ¢ as a random variable taking
values in ©.

The investigator's information and beliefs about the possible values for 8,
before any observation of data, are summarised by a prior distribution =(#).

When data X =x are observed, the extra information about & is combined
with the prior to obtain the posterior distribution 7(#|x) for # given X=x.


https://www.statlect.com/glossary/prior-probability
https://medium.com/@aerinykim/bayesian-inference-intuition-and-example-148fd8fb95d6

Prior and posterior distributions

@ By Bayes' theorem,

fx(x | #)m(6)
o —_—,
w(01x) = 2
where fx(x) = [ fx(x|@)x(#)dé for continuous #, and
fx(x) = Efx x| 8; ) ( ,} m the discrete case.
@ Thus
m(0x) o f(x|0)7(6) (1)

posterior oc likelihood x prior,

where the constant of proportionality is chosen to make the total mass of the
posterior distribution equal to one.

@ In practice we use (1) and often we can recognise the family for 7(6 | x).

Bayesian approach to point estimation

@ Let L(#, a) be the loss incurred in estimating the value of a parameter to be a
when the true value is 6.

@ Common loss functions are quadratic loss L(f, 3) = (f — a)?, absolute error
loss L(#, a) = |# — a|, but we can have others.

@ When our e5timate is a, the expected posterior loss is
= [L(#,2)x(8]|x)d8.

° The Bayes estimator § minimises the expected posterior loss.

h(a) = f(a— 0)*x (0| x)dd
.af?r[mx]dﬂ' =[ﬂ'w{9|x}d9

e Sofl = [ #7(6|x)d6, the posterior mean, minimises h(a).

@ For quadratic loss

o W(a)=0if



o For absolute error loss,
Ba) = / 10 — a|=(6]x)d6 = / (a— 6)(0]x)d6 + /m(o — 2)7(6]|x)d8
» a/a (6] x)d — / 0(0|x)d0

- 00

+/ ()7r(9|x)d9—a/ (6| x)dé

Now h'(a) =0 if . -
/ (0| x)df = / 7(6]x)db.

@ This occurs when each side is 1/2 (since the two integrals must sum to 1) so
# is the posterior median.

1 Bayes Formula

For events A and B, recall that the conditional probability is

P(A|B)P(B) = P(AN B) = P(B|A)P(A),

or
_ P(B|A)P(A)
P(A|B) = PB) .

Now, if we set

A={0=8,)} and B={X=x)},

then
P{X =x|0 =6} P{# = 6y}

P{X =x}
If the appropriate densities exist, then we can write Bayes formula as
Fxje(x]6
\|e(_ | n}_ ) (60).
f fmetxlﬂ}wtﬁ'} de

to compute the posterior density fg x(t|x) as the product of the Bayes factor and the prior density.

P{0 =0,|X =x} =

fox(fo|x) = (

If T is a sufficient statistic and f X|g(x|§) = h{x)g(#,T(x)), then the Bayes factor

Fxje(x|6h) __h(x)g8.T(x)  _ ¢(8,T(x))
[ fxie(x|8)fe() dd [ h(x)g(d,T(x)) d8 [ g(8,T(x)) df

is a function of T'.



2 Bayes Action

Recall that given a loss function £ and an estimator d the risk function R : © x D — R is the expected loss
for that decision.

R(8,d) = EoL(6. d(X))

and the mean risk, or Bayes risk,

r(m,d) = / f) dff = f/ B.d(x)) fx(x|0)m(0) dxdd.

The decision function that minimizes risk is called the Bayes action.

If the loss function is £1(#,a) = |# — al, then the posterior median minimizes risk and thus the Bayes

1 I'jjl’.x‘.l
= / forx (Bl2) db.

action 6 (x) satisfies

. B o> - r - -
If the loss function is La(#,a) = (# — a), then the posterior mean minimizes risk and thus the Bayes
action

Bs(x) = E[f|X = x| = / B fex(8]x) db.

For the example of a normal prior and normal observations, #;(x) = fy(x) = #(x).

Definition: Informative and non-informative prior distribution

Definition: Let p(f|m) be a prior distribution for the parameter @ of a generative model m. Then,
» the distribution is called an “informative prior”, if it biases the parameter towards particular values;
e the distribution is called a "weakly informative prior”, if it mildly influences the posterior distribution;

» the distribution is called a "non-informative prior”, if it does not influence the posterior
hyperparameters.

Types of uninformative priors

We will briefly describe below the following classes of non-informative priors:
e Bayes-Laplace uniform prior;
o Jeffreys' prior;
e Jaynes' maximum entropy prior
e Bernardo's reference prior.

What is an informative prior?

An informative prior is a probability distribution that reflects your existing knowledge or
beliefs about a parameter before observing any data. For example, if you are estimating the
proportion of voters who support a certain candidate, you might have some prior information
from polls, surveys, or historical trends that can help you shape your prior. An informative prior
can be contrasted with a non-informative prior, which is a distribution that expresses no or
minimal information about the parameter, such as a uniform or vague distribution.



What is a normal conjugate prior?

If you have a conjugate prior this means that the prior comes from the same family of
distributions and there is a closed-form solution for such problem, so the posterior distribution is
directly available. This is exactly the case when you use normal prior for mean parameter of

normal distribution.

Definition of a conjugate prior

We can now define the concept of a conjugate prior.

Definition Let @ be a parametric family. A prior z(#) belonging to @ is said to be conjugate for the
likelihood p(xj@) if and only if the posterior p(8x) belongs to @©.

e In Bayesian inference, the prior distribution of a parameter and the likelihood of the
observed data are combined to obtain the posterior distribution of the parameter.

e If the prior and the posterior belong to the same parametric family, then the prior is said
to be conjugate for the likelihood.

Prior, likelihood and posterior

In a Bayesian inference problem, we specify two distributions:

s the likelihood, that is, the distribution of the observed data x conditional on the parameter 4:

P(xp)

» the prior distribution of the parameter
»(0)

After observing the data, we use Bayes' rule to compute the posterior distribution

() = 20 PO) _ P401p(9)
Pk P(x) J,(x16)p(8)db

Bernoulli likelihood and beta priors

Remember that a Bernoulli random variable is equal to 1 with probability ¢ and to 0 with probability
l-g.

Suppose that we observe a realization x of the Bernoulli variable and we want to carry out some

Bayesian inference on the unknown parameter g.


https://www.statlect.com/fundamentals-of-statistics/Bayesian-inference

The likelihood has exponential form:

p(xlg)
= Laepang'(1-¢

1«;:1{!1}}( )( -q)

= 1.;:@1}}311’[1]“( )"“]ﬂ“ 4}')]

ST Y R )]

= h(x)exp[8" T(x) - 4(8)]
= p(x8)
where 10133 IS an indicator function equal to 1 if x € {0.1} and to 0 otherwise, and

o -n( 12

Tix)y=x
A(f) = In[1 + exp(#)]
Alx) = Lzepay:

)l—x

The natural family of conjugate priors contains priors of the form

p(8) o exp[fy — vA(8)]
= exp[fx — vio[l + exp(F)]]

Since @ is an increasing function of ¢ and
q
h(l q)
il
1-q (l—q)l

l-g+g
al-g) aqg(l-q)

%I%
" u%lsrL

we can apply the formula for the density of an increasing function:

20) = o 12 vt - ) | L

q(l—-4q)
=( ) « _Q)VQ(I D)

=q:rl(1_q)—xl

Thus, the natural family of conjugate priors contains priors that assign to ¢ a Beta distribution with
parameters y and v- .
According to the general formula derived above for natural families, the posterior distribution of @ is

P(x) oc exp[87(x + T(X)) - (v + 1)4(6)]
= expf(x +x)~ (v+ 1)4(6)]

which implies (by the same argument just used for the prior) that the posterior distribution of ¢ is
plgpx) o g7 (1 - gyl

that is, a Beta distribution with parameters y+x and v-xy+1-x.



Bayes factor for testing Hypothesis

Bayes factors represent an informative alternative to P-values for reporting outcomes
of hypothesis tests. They provide direct measures of the relative support that data provide to
competing hypotheses and are able to quantify support for true null hypotheses

Bayesian hypothesis testing is then often done via the Bayes factor BF,,, the
predictive updating factor which measures the change in relative beliefs about hypothesis H,
relative to hypothesis H, given the data x:

p(zlH) P(Hz) P(Ho)
p(x|Hy)  P(Hylz) P(H)

M ——
BFy(x) Posterior odds Prior odds

The Bayes factor BF,, therefore quantifies the evidence by indicating how much more likely
the observed data are under the rival models. Note that the Bayes factor critically depends on
the prior distributions assigned to the parameters in each of the models, as the parameter
values determine the models’ predictions. _
values determine the models’ predictions. It can also be rewritten as the ratio of posterior and
prior odds. Bayesian parameter estimation for an unknown parameter 0 in general is achieved
by considering the posterior distribution p(f|x) of the parameter after observing the data x:

p(fz) = )

where p(x|0) is the likelihood function, p(8) the prior, and in most realistic settings, the
marginal likelihood p(x) in the denumerator cannot be calculated in closed form or is
prohibitively effortful to compute. Therefore, Markov-Chain-Monte-Carlo (MCMC) algorithms
have been developed in the last decades, alleviating the requirement of computing p(x) from
practitioners, because most MCMC algorithms only need a function proportional to the
posterior to work, so that

p(6|z) o p(x|6) - p(6) (3)

Bayes factors represent the ratio of the marginal probability assigned to data by competing
hypotheses and, when combined with prior odds assigned between hypotheses, yield an

estimate of the posterior odds that each hypothesis is true. That is,

posterior odds = Bayes factor x prior odds,

or, mare precisely,

P(H,|x) — my (z)
P(Hp|x) mg(z)

P(H,)
P(Hy) "




Here, P(H;|x) denotes the posterior probability of hypothesis H;given data x; AH;) denotes the
prior probability assigned to H, and m;(x) denotes the marginal probability (or probability

density function) assigned to the data under hypothesis H, for /= 0 (null) or i = 1 (alternative).

The marginal density of the data under the alternative hypothesis is given by

mi(x) = [, f(x|6)m:(8)d8,

where f(x|#) denotes the sampling density of the data given an unknown parameter &. In null
hypothesis significance tests (NHSTs), the marginal density of the data under the null
hypothesis, mg(x), is simply the sampling density of the data assumed under the null
hypothesis. That is, if Hy : & = &, then mq(x) = f(x|8g). The function m (&) represents the prior
density for the parameter of interest 8 under the alternative hypothesis, i.e., the alternative
prior density.

Equivariance

We work in a local coordinate systemn. The second jet of L has the following coordinates induced
via the local coordinates we are using:

1) the function L;
2} the first partial derivatives of L,

aL aL

dgt’ Bt
3) the second partial derivatives of L

&L &L &L
dgidgl’  dgil’  duidw”

Also X = (v,v,a) € E(TM) has components:

The Bayes factor is the ratio of two marginal likelinoods; that is, the likelihoods of two statistical models
integrated over the prior probabilities of their parameters !
The posterior probability Pr{ M| D) of a model M given data D is given by Bayes' theorem:
Pr(D|M)Pr(M
px(anip) = ZEDIM)Pe()
Pr(D)

The key data-dependent term Pr{D| M) represents the probability that some data are produced under the
assumption of the model M; evaluating it correctly is the key to Bayesian model comparison.




5.3 The Pitman location estimator

The UMREE under squared error loss is
8(x) = do(x) — Eo[do( X ) y].

where dy(x) is an arbitrary equivariant estimator. The choice of 4y will not affect
4, it will only affect our ability to calculate Eg[dg(X )|y|. Let's try a very simple
equivariant estimator:

dglz) = ..

Note that

dolgz) = b(x + a)
=I,+a

= do(x) + a = go(x),

and so this estimator is equivariant. Now we just need to calculate the conditional

expectation:

The joint density of (X; - X,,... X, - X, , X,) = (Y1..... Y,_1, X,,) can be found

from the change of variables formula:
Pyea(U1ee oo Yno1, Tn) = Pe(T1(Y. Tn). . .. Tacr (Y. Tn). 1) |d(y. 1) /|
Now
* |d(y,xn)/dx| =1

® =1+ T, i=1,...n—1.

s0 we have
Pu_r...{yl'. “-fyn—l:-'rn} = pﬂ{yl +'1"n'l" < ln + In-In}-
Nowrecall yy =x; —x,fori=1,....n—1:
. — 8 —8.....x, —0)df
E[Xa|y] = ffI )po(T) genegd )
fpn{:cl — @, ...ty —8) dff

eru[:rl—ﬂ,...,mﬂ—ﬂ]l df




This is known as the Pitman estimator of #. Note that it is equal to the generalized
Bayes estimate under the prior measure 7(#) o 1,8 € R. Under this “prior,”

m(@)polr1 = 86,..., s —8)

w(6lz) = T#@)polas —0,....20 — 0) db
po(zr —8,...,x, — 8) .
“Tm(m—0,....0n—0)d8’
B.[0]z] = fﬁ'pn{;rl— 0,...,0, —8) dff
Jpo(xy—0.... .20 —8) dB

4.1. Pitman method

Let ti,ta,...,ta be a random sample of n observations from a population whose p.d.f is f{t;A); where >0 is a

scale parameter and t;> 0. If 1 = h(tyts,...ta) is the estimator of the scale parameter A, then A should be as

follows

= ID 12 L(ty,tz,..tn; 1) dA 6
I 33 L(tatz,...tni 3) dA

The Pitman estimator 4 is also a function of sufficient statistic. If the estimator A= h(tyt,....ta) is expressed as:
A= hi(cty, cty,....ctn) = ¢ hiti,ta,...ta) = € h (tita,.....ta) = ¢4 .Then 4 is scale invariant [17].
Now based on the above method, the likelihood function of exponential distribution is:
Lt
1 A=
Llt s N =5 2
Therefore, the Pitman estimator Apiman 0f the scale parameter A will be as follows:
it
J.;oan1+2 e- A oda
Jy e _LlLdA
E[n= Enzj t]

, = === = dl=—%dy,thenweget:

Zanan—

Lety—

. -
an y" e dy

ﬁPitman= o _
(Efl_lti}n-l-z.fn y]'H'l € }'d}'

F(n+1)
(E]" 1 tl)l'l+1

Abitman = =—Torg
(E]" 1[[)n+2

After 51mp11ﬁcat10n, we get a Pitman estimator for the parameter A as follows:

el )

n+1
Therefore, using this estimator, the Pitman Reliability function of the exponential distribution will be given by:
t

ﬁ (t)l’itman :E_m (7)

j-Pitman



One-tailed Tests

A one-tailed test may be either left-tailed or right-tailed.

A left-tailed test is used when the alternative hypothesis states that the true value of the
parameter specified in the null hypothesis is less than the null hypothesis claims.

A right-tailed test is used when the alternative hypothesis states that the true value of the
parameter specified in the null hypothesis is greater than the null hypothesis claims

Two-tailed Tests

The main difference between one-tailed and two-tailed tests is that one-tailed tests will

only have one critical region whereas two-tailed tests will have two critical regions. If we require
a (1-a) 100% confidence interval we have to make some adjustments when using a two-tailed

test.

Advantages of One-Tailed Tests

They allow researchers to focus on a specific direction of the effect, which can be useful
when there is a clear expectation about the direction.

One-tailed tests have the potential to provide higher statistical power when the effect is
expected to occur in the specified direction.

They can be more efficient when resources are limited, as they concentrate the analysis
on a specific direction.

Limitations of One-Tailed Tests

One-tailed tests are sensitive only to changes occurring in the specified direction and may
miss important effects in the opposite direction.

They introduce a potential bias if the specified direction is chosen after observing the
data, rather than being based on a priori expectations.

Using a one-tailed test when there is no specific expectation about the direction can lead
to misleading interpretations.

Advantages of Two-Tailed Tests

Two-tailed tests allow researchers to detect any type of difference, regardless of the
direction, providing a more comprehensive analysis.

They are suitable when there is no specific expectation about the direction of the effect or
when researchers want to avoid potential biases.

Two-tailed tests provide a more conservative approach, considering both positive and
negative differences.

Limitations of Two-Tailed Tests

Two-tailed tests may have lower statistical power compared to one-tailed tests, as they
distribute the power between both directions.

They may require larger sample sizes to achieve the same level of statistical power as a
one-tailed test.

Two-tailed tests may provide less precise estimates of the effect size compared to one-
tailed tests.


https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/hypothesis-testing/critical-region-and-confidence-interval.html#Critical_Region
https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/hypothesis-testing/critical-region-and-confidence-interval.html#Confidence%20Interval

Understanding the advantages and limitations of each type of test allows researchers to
make informed decisions and select the most appropriate approach for their specific research
context.

Ome-Tailed Test i . . Ome-Tailed Test
(Left Tail) I'wo-Tailed Test (Right Tail)
H, o u, =g H, i, =, Hypy =,
H gy <y Hop, 20, Hopy =4,

Rejection

Rejection Rejection

Region

Rejection
Region
Acceptance
Region

Acceptance
Region

A sample of 100 clients of ABC is taken, and brokerage charges are calculated
with the new rates of XYZ broker. If the mean of the sample is $18.75 and the
sample standard deviation is 56, can any inference be made about the
difference in the average brokerage bill between ABC and XYZ broker?

s Hg: Null Hypothesis: mean =18
o Hj: Alternative Hypothesis: mean <> 18 (This is what we want to prove.)
» Rejectionregion: Z <= - Z, s and Z>=7, ¢ (assuming 5% significance level,

split 2.5 each on either side).
s 7 =(sample mean - mean) / (std-dev / sqrt (no. of samples)) = (18.75 - 18) /
(6/(sqrt(100)) =1.25

This calculated Z value falls between the two limits defined by: - 7, s =-1.96
and 22_5: 1.96.

a/2 = 2.5% on either side

RN

'z{”z - '1.96 za!-z = 1196

L

Rejection Region T Rejection Region
Z=1125

e One and Two-Tailed Tests are ways to identify the relationship between the
statistical variables. For checking the relationship between variables in a single
direction (Left or Right direction), we use a one-tailed test. A two-tailed test is
used to check whether the relations between variables are in any direction or not.



e One-Tailed Test: A one-tailed test is based on a unit -directional hypothesis
where the area of rejection is on only one side of the sampling distribution. It
determines whether a particular population parameter is larger or smaller than
the predefined parameter. It uses one single critical value to test the data.

><7

T T T T T T

One-tailed test One-tailed test

z curve (probability distribution of test statistic Z when H is true)

Total shaded area
= a = P(type I error)

Shaded area
= a = P(type 1 error) Shaded area Shaded
/\Z = al2 ea = a/2
1
!
] L 1
T T
“La 0 I “Zanr 0 a2 ]
RC_]CL(IO“ rcglon 2] —Zqa Rejection region: either
Rejection region: z = z,, TZZanOrZ= —2Z4p
(a) (b) (c)

zcurve

P-value = area in upper tail

. Upper-tailed test =1- &3

H, contains the inequality >

-

Calculated z

zcurve

P-value = area in lower tail
2. Lower-tailed test =d(2)
H, contains the inequality <




P-Value for Z test

P-value = sum of area in two tails = 2[1 — ®(Iz])]

3. Two-tailed test

H, contains the inequality #

zcurve

Calculated z, —z

Difference Between One and Two-Tailed Test

One-Tailed Test

Two-Tailed Test

A test of any statistical hypothesis, where
the  alternative  hypothesis  is one-
tailed either right-tailed or left-tailed.

A test of a statistical hypothesis, where the
alternative hypothesis is two-tailed.

For one-tailed, we use either > or < sign
for the alternative hypothesis.

For two-tailed, we use #sign for the
alternative hypothesis.

When the alternative hypothesis specifies a
direction then we use a one-tailed test.

If no direction is given then we will use a
two-tailed test.

Critical region lies entirely on either the
right side or left side of the sampling
distribution.

Critical region is given by the portion of
the area lying in both the tails of the
probability curve of the test statistic.

Here, the Entire level of significance
(a) i.e. 5% has either in the left tail or right
tail.

It splits the level of significance (@) into
half.

Rejection region is either from the left side
or right side of the sampling distribution.

Rejection region is from both sides i.e. left
and right of the sampling distribution.

It checks the relation between the variable
in a singles direction.

It checks the relation between the
variables in any direction.

It is used to check whether the one mean is
different from another mean or not.

It is used to check whether the two mean
different from one another or not.




What is a Z-score?

A Z-score numerically describes a value's relationship to the mean of a group of values
and is measured in terms of the number of standard deviations from the mean. If a Z-score is 0,
it indicates that the data point's score is identical to the mean score whereas Z-scores of 1.0 and
-1.0 would indicate values one standard deviation above or below the mean. In most large data
sets, 99% of values have a Z-score between -3 and 3, meaning they lie within three standard
deviations above and below the mean.

How to interpret z-Score?

Here is how to interpret z-scores:

e A z-score of less than O represents an element less than the mean.

e A z-score greater than O represents an element greater than the mean.

e A z-score equal to O represents an element equal to the mean.

e A z-score equal to 1 represents an element, which is 1 standard deviation greater than the
mean; a z-score equal to 2 signifies 2 standard deviations greater than the mean; etc.

e A z-score equal to -1 represents an element, which is 1 standard deviation less than the
mean; a z-score equal to -2 signifies 2 standard deviations less than the mean; etc.

e If the number of elements in the set is large, about 68% of the elements have a z-score
between -1 and 1; about 95% have a z-score between -2 and 2 and about 99% have a z-
score between -3 and 3.

Z-Score Formula

e |tisaway to compare the results from a test to a “normal” population.

e If X is a random variable from a normal distribution with mean (p) and standard
deviation (o), its Z-score may be calculated by subtracting mean from X and dividing the
whole by standard deviation.

(X-n)
o

Z

where, x = test value
u is mean and
o is SD (Standard Deviation)

For the average of a sample from a population ‘n’, the mean is p and the standard deviation is c.
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Example of Z score
Let us understand the concept with the help of a solved example:

Example: The test scores of students in a class test has a mean of 70 and with a standard
deviation of 12. What is the probable percentage of students scored more than 85?

Solution: The z score for the given data is,
Z = (85-70)/12=1.25

From the z score table, the fraction of the data within this score is 0.8944. This means
89.44 % of the students are within the test scores of 85 and hence the percentage of students who
are above the test scores of 85 = (100-89.44)% = 10.56 %.
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