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UNIT-1 

LINEAR MODELS 

 Models generally represented specific components in a simplified manner to which 

further treatment and analysis may be carried out which leads to the final conclusion about 

the study. It is nothing but representation of a system. Mathematical models are in the form of 

functions, involving various parameters which represent the different components that are 

required under the specific study. The mathematical model either linear or non linear models.  

Classification of Linear Models:  

 Classification of Linear Models are as follows: 

 Probabilistic Model 

 Deterministic Model 

 When the models are subject to the random fluctuations (variations) it is called 

probabilistic model. In this the linear model is highly applicable because it is simple to deal 

with the variable found a more realistic and appropriate for practical situations.   

 Example: Yi= axi+b is a linear model where a & b are constant. Parameters which is 

to be estimated using the set of sample observations Xi , Yi of size ‘n’. 

 Suppose there are n observations. In the linear model, we assume that these 

observation are the values taken by n random variable 
nYYY ,......,, 21
satisfying the following 

conditions: 

 )( iYE  is a linear combination of p unknown parameters ,,......,, 21 p  

nixxxYE pipiii ,.......2,1,......)( 2211    

where ijx ’s are known constants. 

 nYYY ,......,, 21  are uncorrelated and normality distributed with variance .)( 2iYVar  

The linear model can be rewritten by introducing independent normal random 

variable following ),,0( 2N as .,.......2,1,......2211 nixxxY ipipiii    

 These equations can be written using the matrix notations as   XY  

where Y is a 1n  vector observation, X is a pn matrix of n observations on each of 

pXXX ,......,, 21  variables,   is a 1p  vector of parameters and   is a 1n  vector of 

random error components with ),,0( 2 Nfollows  here Y is called study or dependent. 

Variables pXXX ,......,, 21  are called explanatory or independent variables and 

,,......,, 21 p  are called as regression coefficients. 



Linear Model Assumption on Error Components 

Least square estimation 

 The least square estimate of   is   XY is the value of   which minimizes the 

error sum of squares .'  

Let )()'('  XYXYS  ).''''2'(  XXYXYY   

 Minimizing S with respect to   involves 

0






S

  

and  YXXX ''    

 which is termed as normal equation. This normal equation has a unique solution given 

by 

YXXX ')'(ˆ 1  

  Assuming rank (X)=p. Note that XX
S

'
'

2







 is a positive definite matrix. So 

YXXX ')'(ˆ 1  is the value of   which minimizes  ' and is termed as ordinary least 

squares estimator of  . 

 In this ,,......,, 21 p  are estimable and consequently, all the linear parametric 

function are estimable. 

    XXXXYEXXXE ')'()(')'()ˆ( 11
 

 1211 )'()'()(')'()ˆ(   XXXXXYVarXXXVar   

 If  ˆ'ˆ' and are the estimates of  '' and  respectively, then  

 ))'('()ˆ(')ˆ'( 12   XXVarVar  

 ))'('()ˆ',ˆ'( 12   XXCov  

 ̂XY   is called the residual vector 

 0)ˆ(  XYE  

Linear model with correlated observations: 

 In the linear model   XY  with  andVarE  )(,0)( is normally 

distributed, we find  
XYE )(

 

)(YVar  

 Assuming  to be positive definite, so we can write  PP'  

where P is a non-singular matrix.  Pre-multiplying   XY   by P, we get  

 PPXPY   (or)   

  XY *

 



where  

  PandPXXPYY  ,*

 

 Note that in this model .)(0)( 2IVarandE    

Distribution of Y' : 

 In the linear model ,  XY  follows ),0( 2IN   consider a linear function Y'  

which is normally distributed with 

 XYE ')'(   

)'()'( 2  YVar  

 Then 









1,

'

'

'

'







 X
Nfollows

Y
 

 Further, 




'

)'(
2

2Y
 has a non-central chi-square distribution with one degree of 

freedom and non-centrality parameter 




'

)'(
2

2X
. 

Degrees of freedom  

 A linear function  Y'  of the observations  )0(   is said to carry one degrees of  

freedom. A set of linear functions L’Y where L is r x n matrix, is said to have M degrees of 

freedom if there exist M linearly independent functions in the set and no more. Alternatively, 

the degrees of freedom carried by the set L’Y equals rank (L). When the set L’Y are the 

estimates of ,'  the degrees of freedom of the set 'L’Y will also be called the degrees of 

freedom for the estimates of  '  . 

Sum of squares  

 If  Y'  is a linear function of observations, then the projection of Y on  '  is  the 

vector ..
'

'




Y
The square of this projection is called the sum of squares (SS) due to Y'  is 

given by 




'

'Y
. Since Y'  has one degree of freedom, so the SS due Y'  to has one degree 

of freedom.   

 The sum of squares and the degrees of freedom arising out of the mutually orthogonal 

sets of functions can be added together to give the sum of squares and degrees of freedom for 

the set of all the function together and  vice versa. 

 Let nXXX ,......,, 21  has a multivariate normal distribution with mean vector  and 

positive definite covariance matrix . Let the two quadratic forms. 



 XAX ,'  is distribution 1

2 nwith  degrees of freedom and non-centrality parameter 

.' 2  A  then XAX 1'  and XAX 2'  are iid .021 AA  

LINEAR AND ORTHOGONAL CONTRAST 

 Two vector X and Y are said to be orthogonal if X’Y = Y’X = 0. The null vector is 

orthogonal to every vector X and is the only such vector. 

Linear Combination 

 If  mxxx ,......,, 21 are m vector and mkkk ,......,, 21  are m scalars, then i

m

i

i xkt 



1

 is 

called the linear combination of mxxx ,......,, 21 . 

Linear Independence 

 If mXXX ,......,, 21  are m vector then they are said to be linearly independent if there 

exist scalars mkkk ,......,, 21  such that .,.....,2,100
1

miallforkXk ii

m

i

i 


 if there exist 

mkkk ,......,, 21  with at least one ik  to be nonzero, such that 0
1




i

m

i

i xk  than mxxx ,......,, 21  are 

said to be linearly dependent. 

 Any set of vectors containing the null vector is linearly dependent.  

 Any set of non-null pair-wise orthogonal vectors is linearly independent.  

 If m > 1 vectors are linearly dependent, it is always possible to express at least one of 

them as a linear combination of the others. 

Linear function 

 Let )',......,,( 21 mkkkK   be a 1m vector of scalars and mxxxX ,......,, 21  be a 

1m vector of variables, then i

m

i

i ykYK 



1

'  is called a linear function or linear form. The 

vector K is called the coefficient vector. 

Contrast 

 The linear function i

m

i

i xkXK 



1

'  is called a contrast in mxxx ,......,, 21  if 0
1




m

i

ik . 

 For example, the linear functions 
32

,32, 3

2

1

32121

x
x

x
xxxxx   are contrasts. 



 A linear function K’X is a contrast if it is orthogonal to a linear function 


m

i

ix
1

 or to 

the linear function .
1

1





m

i

ix
m

x  

 Contrasts jxxxxxx  13121 ,...,,  are linearly independent for all j = 1,2,3,……,m. 

 Every contrast in nxxx ,.....,, 21  can be written as a linear combination of (m-1) 

contrasts mxxxxxx  13121 ,.......,, . 

Gauss Markov Generalization 

 If the linear parametric function 'L  is estimator ̂'L  where ̂  is a solution of 

YXXX 'ˆ'   is the best linear unbiased estimator of 'L in the sense of having minimum 

variance in the class of all linear and unbiased estimators of 'L . 

Estimator of 
2  based on least squares estimation 

 Consider an estimator of 2  as, 

 

)ˆ()'ˆ(
1

ˆ 2  XyXy
pn




  

 

]')'([]'')'([
1 11 yXXXXyyXXXXy

pn

 


  

 

yXXXXIXXXXIy
pn

]')'(][')'(['
1 11  


  

 

yXXXXIy
pn

]')'(['
1 1


   

 where the hat matrix yXXXXI ]')'([ 1  is an idempotent matrix with its trace as  

 ')'(])'([ 11 XXXtrXtrIXXXItr    

XXXXtrXn ')'( 1 (using the result tr (AB) = tr (BA)) 

ptrIn   pn   

 Note that using haveweyCovwithAtrAyyE ,)(),()'(    

     ]')'([)ˆ( 1
2

2 XXXXItr
pn

E 





  2  

 and so 
2  is an unbiased estimator of 

2 . 



Estimator of   based on least squares estimation: 

 Let nyyy ,......,, 21  be a sample of observations on .,......,, 21 nYYY  the least-squares 

estimate of   is the value ̂  of   for which the sum of squares due to errors, i.e., 

)()'('
1

22  XyXyS
n

i

i 


 XXyXyy '''2'   

is minimum where )'.,......,,( 21 nyyyy   differentiating S2 with respect to   and substituting 

it to be zero, the normal equations are obtained as  

yXXXoryXXX
d

dS
'')(0'2'2

2

 


 

 If X has full rank p, then (X’X) has a unique inverse and the unique least squares 

estimate of   is  

yXXX ')'(ˆ 1  

which is the best linear unbiased estimator of  in the sense of having minimum variance in 

the class of linear and unbiased estimator. If the rank of X is not full, then generalized inverse 

is used for finding the inverse of (X’X). 

 If 'L  is a linear parametric function where )'.....,,( ,21 pL   is a non-null vector, 

then the least squares estimate of 'L  is .ˆ'L  

Linear Estimation Functions 

 A linear parametric function  '  of the parameter is said to be an estimable 

parametric function or estimable if there exists a linear function of random variables Y' of 

Y where )',......,,( 21 nYYYY   such that 

 ')'( yE  

with )',.....,( 21 n  and )',........,,( ,21    being vectors of known scalars. 

Gauss-Markov Theorem 

 The Gauss-Markov theorem establishes that the generalized least-squares (GLS) 

estimator of   given by ,')'(ˆ 111 yXXX    is Best Linear Unbiased Estimator 

(BLUE). By best  , we mean that ̂  minimizes the variance for any linear combination of 

the estimated coefficients,  ˆ' . We note that 

]')'[()ˆ( 111 yXXXE   )(')'( 111 yEXXX    

XXXX 111 ')'(    .  

 Thus ̂  is an unbiased estimator of  . 



 The covariance matrix of ̂  is given by  

 ']')'[()(]')'[()ˆ( 111111   XXXyVXXXVar   

 ]')'[(]')'[( 111111   XXXXXX  

 ])'([]')'[( 111111   XXXXXX  

 
11 )'(  XX  

 Thus, 

 )ˆ(')ˆ'( VarVar  .])'[(' 11   XX  

 Let 
~

 be another unbiased estimator of   that is a linear combination of the data. 

Our goal, then, is to show that  11 )(')
~

'(  XXVar  with at least one  such that 

.)'(')
~

'( 11   XXVar we first note that we can write any other estimator of   that is a 

linear combination of the data as  

*

0

111 ]')'[(
~

byBXXX    

where B is np   matrix and 
*

0b  is a 1p  vector of constants that appropriately adjusts the GLS 

estimator to from the alternative estimate. Then  

)]')'([()ˆ( 0

111 byBXXXEE   ))(]')'([( *

0

111 byEBXXX  
 

*

0

111 ]')'[( bXBBXXX  
 

*

0

111 ')'[( bBXXXXX     

.*

0bBX    

 Consequently, 
~

 is unbiased if and only if both 
*

0b = 0 and BX = 0. The covariance matrix 

of 
~

 is 

)]')'([()ˆ( 111 yBXXXVarVar    

]'')'[()(]')'[( 111111 BXXXyVBXXX    

]'')'([]')'[( 111111 BXXXBXXX    

]')'([]')'[( 111111 BXXXBXXX    

]')'[( 11 BBXX  
 

 Because BX =0, which implies that (BX)’=X’B’=0. Then  

 
 )ˆ(')ˆ'( VarVar   

 ]')'[(' 11 BBXX  
 

 ]'')'[(' 11 BBXX    

    .'')ˆ'(  BBVar   

 We note that   is a positive definite matrix. Consequently, there exists some non-

singular matrix K such that  = K’K as a result, ''' KBBKBB   is at least positive semi 

definite matrix; hence .0''   BB  next note that we can define .' KB

 As a result, 




 
p

i

iBB
1

2''   



 Which must be strictly greater than 0 for some 0  unless B=0. Thus, the GLS 

estimate of   is the best linear unbiased estimator. 

Test for Linear Hypothesis 

 Let nYYY ,......,, 21  be a sequence of n independent random variables associated with 

responses. Then we can write it as 

pjnixYE
p

j

ijji ,.......2,1,,.......2,1,)(
1




  

2)( iYVar  

 This is the linear model in the expectation from where ,,......,, 21 p are the 

unknown parameters and ijx  ‘s are the known values of independent covariates 

.,......,, 21 pXXX  

 Alternatively, the linear model can be expressed as 

pjnixY i

p

j

ijji ,.......2,1,,.......2,1,
1




  

where ,i ’s are identically and independently distributed random error component with mean 

0 and variance 2 , i.e.,  

).(0),()(0)( 2 jiCovandVarE jiii    

 In matrix notations, the linear model can be expressed as 

  XY  

where 1)',......,,( 21  naisYYYY n  vector of observations on the response variable, 

 The matrix 





























npnn

p

p

p

XXX

XXX

XXX

XXX

X

.....

.....

.....

.....

21

33231

22221

11211

 is a pn  matrix of n observation on p independent 

covariates ,,......,, 21 pXXX  

 
)',......,,( 21 p   is a 1p  vector of unknown regression parameters (or regression 

coefficients) ,,......,, 21 p  associated with ,,......,, 21 pXXX  respectively and 

)',......,,( 21 n   is a 1n  vector of random errors or disturbances. 

 We assume that 0)( E , the covariance matrix pXrankIEV p  )(,)'()( 2  in 

the context of analysis of variance and design of experiments, the matrix X is termed as the design 

matrix; 



 Unknown ,,......,, 21 p  are termed as effects. 

 The covariates ,,......,, 21 pXXX are counter variables or indicator variables where ijx  

counts the number of times the effect j  occurs in the ith observation ix . 

 Note that in the linear regression model, the covariates are usually continuous 

variables. 

 When some of the covariates are counter variables, and is used in the analysis of 

covariance. 

Relationship between the Regression Model and Analysis of Variance Model  

 The same linear model is used in the linear regression analysis as well as in the 

analysis of variance. So it is important to understand the role of a linear model in the context 

of linear regression analysis and analysis of variance. 

 Consider the multiple linear model 

.............22110   ppXXXY  

 In the case of analysis of variance model,   

 the one-way classification considers only one covariate, 

 two-way classification model considers two covariates, 

 three-way classification model considers three covariates and so on. 

 If  , and   denote the effects associated with the covariates X, Z and W which are 

the counter variables, then in  

 One-Way model :   XY  

 Two-way model :   ZXY  

 Three-way model :   WZXY  and so on. 

The regression parameters  ’s can be fixed or random 

 If all  ’s are 's are unknown constants, they are called as parameters of the model 

and the model is  If all  called as a fixed effect model or model I. The objective, in this case, 

is to make inferences  .about the parameters and the error variance 2 . 

 If for some j, 1ijx for ni ,.....2,1 then j  is termed an additive constant. In this 

case, j occurs with every observation and so it is also called a general mean effect. 

 If all  ’s are observable random variables expect the additive constant, then the 

linear model is termed as random effect model, model II or variance components model. The 

objective, in this case, is to make inferences about the variances of  ’s i.e., 

p 2

2

2

1

2 ........,,  and error variance  
2  and / or certain functions of them. 



 If some parameters are fixed and some are random variables, then the model is called 

a mixed effect model or model III. In the mixed effect model, at least one j is constant and 

at least one j  is a random variable. The objective is to make inference about the fixed effect 

variance of random effects and error variance 2 . 

Best Linear Unbiased Estimates (BLUE) 

 The unbiased minimum variance linear estimate Y' of an estimable function  '  is 

called the best linear unbiased estimate of  ' . 

 Suppose YandY 21 ''   are the BLUE of  '

2

'

1 and  respectively. Then 

Yaa )'( 2211    is the BLUE of  )'( 2211 aa  . 

 If  '  is estimable, its best estimate is  ˆ' where ̂  is any solution of the equations 

.'' YXXX   

Design of Experiment  

 Design of experiment means how to design an experiment in the sense that how the 

observations or measurements should be obtained to answer a query in a valid, efficient and 

economical way. The designing of experiment and the analysis of obtained data are 

inseparable. If the experiment is designed properly keeping in mind the question, then the 

data generated is valid and proper analysis of data provides the valid statistical inferences. If 

the experiment is not well designed, the validity of the statistical inferences is questionable 

and may be invalid. It is important to understand first the basic terminologies used in the 

experimental design.  

 Experiment: A way of getting an answer to a question which the experimenter wants 

to know. An experiment is a device or a means of getting an answer to the problem under 

consideration. Experiment can be classified into two categories; 

 i) Absolute experiment: Absolute experiments consist in determining the absolute 

value of some characteristics like,  

 a) Obtaining average intelligence quotient (I.Q) of a group of people.  

 b) Finding the correlation co-efficient between two variables in a bivariate 

distribution etc.  

 ii) Comparative experiment: Comparative experiments are designed to Compare the 

effect of two or more objects on some population characteristics.  

 Example:   Comparison of different fertilizers. 

   Different kinds of verities of a crop. 

   Different cultivation processes etc., 



 Experimental unit: For conducting an experiment, the experimental material is 

divided into smaller parts and each part is referred to as experimental unit. The experimental 

unit is randomly assigned to a treatment is the experimental unit. The phrase “randomly 

assigned” is very important in this definition. Example: i) In field experiments the plot of 

land is the experimental unit. In other experiments, unit may be a patient in a hospital, a lump 

of dough or a batch of seeds. 

 Treatment: Different objects or procedures which are to be compared in an 

experiment are called treatments. Example: In field experimentation different fertilizers or 

different varies of crop or different methods cultivation are the treatments. 

 Blocks: In agricultural experiments, most of the times we divide the whole 

experimental unit (field) into relatively homogeneous sub groups or strata. These strata which 

are more uniform amongst themselves than the field as a whole are known as blocks.  

 Yield: The measurement of the variable under study on different experimental units 

are termed as yields. 

 Sampling unit: The object that is measured in an experiment is called the sampling 

unit. This may be different from the experimental unit.  

 Factor: A factor is a variable defining a categorization. A factor can be fixed or 

random in nature. A factor is termed as fixed factor if all the levels of interest are included in 

the experiment. A factor is termed as random factor if all the levels of interest are not 

included in the experiment and those that are can be considered to be randomly chosen from 

all the levels of interest. 

 Replication: It is the repetition of the experimental situation by replicating the 

experimental unit. Replication means the execution of an treatments more than once. In other 

words, the repetition of treatments under investigation is known as replication. 

 Experimental error: The unexplained random part of variation in any experiment is 

termed as experimental error. An estimate of experimental error can be obtained by 

replication. Treatment design: A treatment design is the manner in which the levels of 

treatments are arranged in an experiment. 

 Precision: The reciprocal of the variance of the mean is termed as the precision. Thus 

for an experiment replicated r times is given by. 
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Where σ2 is the error variance 

per unit. 

 Efficiency of a Design Consider the designs D1 and D2 with error variances per unit  
2

1   and  2

2  and replications r1 and r2 respectively.  



 Then the variance of the difference between two treatment means is given by 
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efficiency of design D1 w.r.t. D2. 

 Uniformity Trials: The fertility of the soil does not increase or decrease uniformity 

in any direction but is distributed over the entire field in an erratic manner. Uniformity trails 

enable us to have an idea about the fertility variation of the field. By uniformity trail, we 

mean a trail in which the field (experimental material) is divided into small units (plots) and 

the same treatment is applied on each of the units and their yields are recorded. 

Objectives of Design of Experiments 

 One of the main objectives of designing an experiment is how to verify the hypothesis 

in an efficient and economical way. In the contest of the null hypothesis of equality of several 

means of normal populations having same variances, the analysis of variance technique can 

be used. Note that such techniques are based on certain statistical assumptions. If these 

assumptions are violated, the outcome of the test of hypothesis then may also be faulty and 

the analysis of data may be meaningless. So the main question is how to obtain the data such 

that the assumptions are met and the data is readily available for the application of tools like 

analysis of variance. The designing of such mechanism to obtain such data is achieved by the 

design of experiment. After obtaining the sufficient experimental unit, the treatments are 

allocated to the experimental units in a random fashion. Design of experiment provides a 

method by which the treatments are placed at random on the experimental units in such a way 

that the responses are estimated with the utmost precision possible. 

Principles of Experimental Design  

 The purpose of designing an experiment is to increase the precision of the experiment. 

In order to increase the precision, we try to reduce the experimental error. For reducing the 

experimental error, we adopt certain techniques. These techniques form the form the basic 

principles of experimental designs. The basic principles of the experimental designs are 

replication, randomization and local control. The principles of experimental design;-  

 Replication  

 Local control  

 Randomization  

 

Replication 

 Replication means the repetition of the treatments under investigation. An 

experimenter resorts to replication in order to average out the influence of the chance factors 

on different experimental units. Thus, the repetition of treatment results is more reliable 

estimate than is possible with a single observation.  



 

Advantages of replication 

 Replication serves to reduce experimental error and thus enables us to obtain more 

precise estimates of the treatment effects.  

 From statistical theory we know that the standard Error (S.E) of the mean of a sample 

size n is  
n


, where σ is the standard deviation of the population. Thus if a treatment is 

replicated r times, then the S.E of its mean effect is 
n


 , where σ² is the variance of the 

individual plot is estimated from error variance. Thus, the precision of the experiment is 

inversely proportional to the square of the Replication has an important but limited role in 

increasing the efficiency of the design.  

Randomization 

 We have seen that replication will provide an estimate of experimental error. For valid 

conclusions about our experimental results, we should have not merely an estimate of 

experimental error but it should be an unbiased estimate. Also, if our conclusions are to be 

valid, the treatment means and also differences among treatment means should be estimated 

without any bias. For the purpose we use the technique of randomization. When all the 

treatments have equal chances of being allocated to different experimental units it is known 

as randomization. The following are the main objectives of randomization.  

 The validity of the statistical test of the Significance. i.e.) t-test for testing the 

significance of the difference of two means. F-test for testing the homogeneity of 

variance.  

 The purpose of randomness is to assure that the source of variation, not controlled in 

the experiment operate randomly. Randomization eliminates bias in any form.  

Local control 

 We know that the estimate of experimental error is based on the variations from 

experimental unit to experimental unit. In other words, the error in an experiment is a 

measure of “within block” variation. This suggests that if we group the homogeneous 

experimental units into blocks, the experimental error will be reduced considerably. If the 

experimental material, say field for agriculture experimentation is heterogeneous and 

different treatment are allocated to various units at random over the entire field the soil 

heterogeneous will also enter the uncontrolled factors and thus increase the experimented 

error. It is desirable to reduce the experimental error as for as practicable without unduly 

increasing the number of replications, so that even smaller difference between treatments can 

be detected as significant. The process of reducing the experimental error by dividing 

relatively heterogeneous experimental area (field) into homogeneous blocks is known as local 

control. 



Analysis of Variance (ANOVA) 

 The analysis of variance is a powerful statistical tool tests of significance. The test of 

significance based on t-distribution is an adequate procedure only for testing the significance 

of the difference between two. In a situation when we have three or more samples to consider 

at a time an alternative procedure is needed for testing the hypothesis that all the samples are 

drawn from the same population, i.e., they have the same mean. For example, five fertilizers 

are applied to four plots each of wheat and yield of wheat on each of the plot is given. We 

may be interested in finding out whether the effect of these fertilizers on the yield is 

significantly different or in other words, whether the samples have come from the same 

normal population. The answer to this problem is provided by the technique of analysis of 

variance. The basic purpose of the analysis of variance is test the homogeneity of several 

means. 

Completed Randomized Design (CRD)  

 In this design the experimental units are allotted at random to the treatments, so that 

every unit gets the same chance of receiving every treatment.  

 For example: 25 Let there be five treatments each to be replicated four times. There 

are, therefore, 20 plots. Let these plots be numbered from 1 to 20 conveniently.  

 When a coin is tossed, there are two events, that is, either the head comes up, or the 

tail. We denote the “head” by H and the “tail” by T. 

Layout of CRD  

1 

A 

2 

C 

3 

A 

4 

D 

5 

B 
6 

D 
7 

B 
8 

D 

9 

C 
10 

B 
11 

C 
12 

D 

13 

B 
14 

D 
15 

A 
16 

C 

Advantages of CRD  

 It is easy to layout the design.  

 It results in the maximum use of the experimental units since all the experimental 

materials can be used.  

 It allows complete flexibility as any number of treatments and replicates may be used. 

The number of replicates , if desired, can be varied from treatment to treatment. 

 The statistical analysis is easy even if the number of replicates are not the same for all 

treatments.   

 It provides the maximum number of degrees of freedom for the estimation of the error 

variance, which increases the sensitivity or the precision of the experiment for small 

experiments.  

 

 



Disadvantages of CRD 

 In certain circumstances, the design suffers from the disadvantage of being inherently 

less informative than other more sophisticated layouts. This usually happens if the 

experimental material is not homogeneous.  

 Since, randomisation is not restricted in any direction to ensure that the units 

receiving one treatment are similar to those of receiving other treatment, the whole 

variations among the experimental units is included in the residual variance. 

 This makes the design less efficient and results in less sensitivity in detecting 

significant effects.  

 Applications: CRD is most useful in laboratory technique and methodological 

studies, e.g., in physics, chemistry, in chemical and biological experiments , in some green 

house studies, etc. 

 Statistical Analysis of CRD: The model is 

ijiij ety    

for all injandki ,....2,1.....,3,2,1   

where ijy  is the yield 

   is the general mean effect 

 it  is the general mean effect 

 ije  is the error term mean zero and variance 2  
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where i

j

ij Ty   

Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S) - Treatment Sum of Square 

(Tr.S.S) 

where 
n

G 2

 is the Correction Factor. 

ANOVA for CRD 

Source of 

Variation 
d.f Sum of Square (S.S) 

Mean Sum of 

Square (M.S.S) 
F-Ratio 

Treatments k-1 Tr.S.S=  
i i
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n
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T 22
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Error n-k 
By Subtraction  

E.S.S = T.S.S - Tr.S.S kn

SSEr
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

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 Under  the null hypothesis, H0=t1=t2=…….tk against the alternative that all t’s are not 

equal, the test Statistics  ),1(
...

...
knkFfollows

ESSM

TSSM
F   

 i.e., F follows F (Central) distribution with ),1( knk   d.f. 

 If ),1( knkFF  (α) then H0 is rejected at α% level of significance and we conclude that 

treatments differ significantly. Otherwise H0 accepted. 

Randomised Block Design (RBD)  

 If all the treatments are applied at random relatively homogeneous units within each 

strata or block and replicated over all the blocks. The design is a randomised block design.  

Advantages of RBD 

 Accuracy: This design has been shown to be more efficient or accurate than C.R.D 

for most types of experimental work. The elimination of between S.S. from residual 

S.S. usually results in a decrease of error mean S.S.  

 Flexibility: In R.B.D no restriction are placed on the number of treatments or the 

number of replicates. In general, at least two replicates are required to carry out the 

test of significance (factorial design is an exception). In addition, control (check) or 

some other treatments may be included more than once without complications in the 

analysis.  

 Ease of Analysis: Statistical analysis is simple and rapid. More-over the error of any 

treatment can be isolated and any number of treatments may be omitted from the 

analysis without complicating it.  

Disadvantages of RBD 

 RBD may give misleading results if blocks are not homogeneous. 

 RBD is not suitable for large number of treatments in that case the block size will 

increase and it may not be possible to keep large blocks homogeneous.  

 If the data on more than two plots is missing, the statistical analysis becomes quite 

tedious and complicated.  

Layout of RBD 

 Let us consider five Treatments A, B, C, D, E each replicated 4 times we divided the 

whole experimental area into 4 relatively homogeneous block and each in to 5 units the 

treatments allocated at random to the blocks particular layout may be follows: 

Block 1 A B C D E 

Block 2 B C D E A 

Block 3 C D E A B 

Block 4 D E A B C 



 

Statistical Analysis of RBD  

 The model is 

rjandtiallforebty ijjiij ,....2,1.....,3,2,1    

where yij is the response or the yield of the experimental unit receiving the ith treatment in the 

jth block;  

  is the general mean effect 

 it is the effect due to the ith treatment 

 jb is the effect due to jth block or replicate 

   is the general mean effect 

 it  is the general mean effect 
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Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S) - Treatment Sum of Square 

(Tr.S.S) - Block Sum of Square (B.S.S) 
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ANOVA for RBD 

Source of 

Variation 

d.f. Sum of Square 

(S.S) 

Mean Sum of Square  

(M.S.S) 

F-Ratio 

Treatments t-1 ST2 ST2= ST2/t-1 FT= ST2/ SE2 

Block or replicates r-1 SB2 SB2= SB2/r-1 FB= SB2/ SE2 

Error (t-1) (r-1) SE2 SE2= SE2/(t-1) (r-1)  

Total N-1    



 Under  the null hypothesis, H0=t1=t2=…….tk against the alternative that all t’s are not 

equal, the test Statistics  
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 i.e., F follows F (Central) distribution with (k-1, n-k) d.f. 

 If ),1( knkFF  (α) then H0 is rejected at α% level of significance and we conclude that 

treatments differ significantly. Otherwise H0 accepted. 

 i.e., FT follows F(central) distribution with [(t-1), (t-1)(r-1)] d.f. Thus if FT is greater than 

tabulated F for [(t-1), (t-1)(r-1)] d.f. at certain level of significance, usually 5 % then we reject the null 

hypothesis H0t and conclude that the treatments differ significantly. If Ft is less than tabulated value 

then FT is not significant and we conclude that the data do not provide any evidence against the null 

hypothesis which may be accepted. Similarly under the null hypothesis H0b=b1=b2=…=br, against the 

alternative that b‟ s are not equal, the test statistics is: ))1)(1(),1((2

2

 rtt

E

B
b Ffollows

S

S
F  

Latin Square Design (LSD) 

 LSD is defined for eliminating the variation of two factors called row and column in 

this design. The number of treatments is equal to the number of replications. Layout of design 

In this design the number of treatments is equal to the number of replications. 

 In this case of m treatments there have to be mm = m² experimental units. The whole 

of the experimental area is divided into m² experimental units (plots) arranged in a square so 

that each row as well each column contain m units.  

 The m treatments are allocated at random to these rows and columns in such a way 

that every treatment occurs only once in each row and in each column. Such a layout is LSD. 

Layouts22  

A B 

B A 

Layouts33  

 

 

Layouts44  

 

 

A B C 

B C A 

C A B 

A B C D 

B C D A 

C D A B 

D A B C 



Layouts55  

 

 

 

 Example: An animal feeding experiment where the column groups may 

corresponding with initial weight and the row group with age.  

 Standard Latin square: A Latin in which the treatments say A, B, C etc occur in the 

first row and first column in alphabetical order is called standard Latin square. 

  

 Example: 

A B 

B A 

Advantages of LSD  

 With two way grouping LSD controls more of the variation than CRD or RBD.   

 The two way elimination of variation as a result of cross grouping often results in 

small error mean sum of squares. 

 LSD is an incomplete 3-way layout. Its advantage over the complete 3-way layout is 

that instead of m³ experimental units only m² units are needed. Thus, a 4x4 LSD 

results in saving of m³ = 4³ - 4² = 64- 16 = 48 observations over a complete 3-way 

layout.  

 The statistical analysis is simple though slightly complicated than for RBD. Even  1 

or 2  missing observations the analysis remains relatively simple.  

 More than one factor can be investigated simultaneously.  

 

Disadvantages of LSD 

 LSD is suitable for the number of treatments between 5 and 10 and for more than 10 

to 12 treatments the design is seldom used. Since in that case, the square becomes too 

large  and does not remain homogeneous.  

 In case of missing plots the statistical analysis becomes quite complex.  

 If one or two blocks in a field are affected by some disease or pest. We can’t omit 

because the number of rows columns and treatments have to be equal. 
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Statistical Analysis of LSD 

 Let ),.....2,1,,( mkjiyijk   denote the response from the unit in the ith row jth column 

and receiving the kth treatment. The model is 

mkjietcry ijkkjiijk ,....,2,1,,;    

where   is the constant mean effect; ri, cj and tk due to the ith row jth column and kth 

treatment respectively and eijk is error effect due to random component assumed to be 

normally distributed with mean zero and variance ),0(.,. 22
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 If we write   

 G = total of all the m observations 

 Ri = total of the m observations in the ith row 

 Cj = total of the m observations in the jth column 

 Tk = total of the m observations from kth treatment 

 Estimation by the method of least squares 
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 Differentiate with respect to ir in equation (3) 
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 Differentiate with respect to jc in equation (4) 
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 Differentiate with respect to kt in equation (5) 
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 The equation (2), (3), (4) and (5) are not independent 

 We assume that, 
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 Error Sum of Square 
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ANOVA Table for LSD 

Source of 

Variation 
d.f 
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(M.S.S) 
F-Ratio 

Row m-1 2

RS  

)1(

2
2




m
S

S R
R  2

2

E

R
R S

S
F   

Column m-1 
2

CS  

)1(

2
2




m
S

S C
C  2

2

E

C
C S

S
F   

Treatment m-1 2

TS  

)1(

2
2




m
S

S T
T  2

2

E

T
T S

S
F   

Error (m-1)(m-2) 2

ES  

)2)(1(

2
2




mm
S

S E
E   

Total m2-1    

 

 

 
ijk

kjiijkijk tcryeE 22 )()( 



Let us set up null hypothesis 

 For row effects H0r=r1=r2 =…= rm=0  

 For column effects H0c=c1=c2=…=cm=0  

 For treatment effects H0t=t1=t2=…=tm=0 

Alternative Hypotheses  

 For row effects, H1r: At least two ri’s are different  

 For column effects, H1c: At least two ci’s are different  

 For treatment effects, H1t: At least two ti’s are different  

 d.f. under the null hypotheses Hr, Hb and Ht, respectively. 

 Let Fα = Fα{(m-1), (m-1)(m-2)} be tabulated value of F for [(m-1),(m-1)(m-2)] d.f. at 

the level of significance α. Thus if FR > Fα we reject H0r and if FR ≤ Fα we fail to reject H0r. 

Similarly, we can test for H0c and H0t. 


