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UNIT - V 

FORECASTING 

Auto-correlation and auto-covariance functions 

If a time series is stationary this means that the joint probability distribution of any two 

observations, say, yt and yt+k, is the same for any two time periods t and t + k that are separated by 

the same interval k. Useful information about this joint distribution and hence about the nature of 

the time series, can be obtained by plotting a scatter diagram of all of the data pairs yt, yt+k that are 

separated by the same interval k. The interval k is called the lag. 

The covariance between yt and its value at another time period, say, yt+k is called the auto-

covariance at lag k, defined by 

γk = Cov(yt , yt+k) = E[(yt - µ)( yt+k - µ)] 

The collection of the values of γk, k = 0, 1, 2, ... is called the auto-covariance function. 

Note that the auto-covariance at lag k = 0 is just the variance of the time series; that is, γ0 = 2

y . 

The auto-correlation coefficient at lag k is 
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Example 

 Calculate autocorrelation and auto-covariance function for the following data: 23.2, 23.6, 

25.3, 25.2, 25.1, 25.6, 24.6, 24.6, 23.9 and 24.1 

Procedure 

 To calculate the mean 

 To calculate the autocorrelation function 

𝑐𝑜𝑟𝑟(𝑋, 𝑋) =
𝑐𝑜𝑣(𝑋, 𝑋)

𝜎𝑋𝜎𝑋
 

for ACF(l1) 

𝑐𝑜𝑟𝑟(𝑋, 𝑙1) =
𝑐𝑜𝑣(𝑋, 𝑙1)

𝜎𝑋𝜎𝑙1

=

1
𝑛 − 1

∑ (𝑋𝑖+1 − 𝑋̅)(𝑙1𝑖 − 𝑋̅)𝑛−1
𝑖=1

𝜎𝑋𝜎𝑙1

 

for ACF(lk) 

𝑐𝑜𝑟𝑟(𝑋, 𝑙𝑘) =
𝑐𝑜𝑣(𝑋, 𝑙𝑘)

𝜎𝑋𝜎𝑙𝑘

=

1
𝑛 − 𝑘

∑ (𝑋𝑖+𝑘 − 𝑋̅)(𝑙𝑘𝑖 − 𝑋̅)𝑛−𝑘
𝑖=1

𝜎𝑋𝜎𝑙𝑘

 

where, l1 = lag 1 of X time series, the length of l1 series will be n-1. 
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Calculation 

 The autocorrelation function of lag 1 is, 

𝐴𝐶𝐹(𝑙1) =

1
𝑛 − 1

∑ (𝑋𝑖+1 − 𝑋̅)(𝑙1𝑖 − 𝑋̅)𝑛−1
𝑖=1

𝜎𝑋𝜎𝑙1

 

X (𝑋 − 𝑋̅) (𝑋 − 𝑋̅)2 Lag 1 Lag 1 - 𝑋̅ (𝑋 − 𝑋̅)(𝑙1 − 𝑋̅) 

23.2 -1.32 1.74    

23.6 -0.92 0.85 23.2 -1.32 1.2144 

25.3 0.78 0.61 23.6 -0.92 -0.7176 

25.2 0.68 0.46 25.3 0.78 0.5304 

25.1 0.58 0.34 25.2 0.68 0.3944 

25.6 1.08 1.17 25.1 0.58 0.6264 

24.6 0.08 0.01 25.6 1.08 0.0864 

24.6 0.08 0.01 24.6 0.08 0.0064 

23.9 -0.62 0.38 24.6 0.08 -0.0496 

24.1 -0.42 0.18 23.9 -0.62 0.2604 

245.2  5.75   2.3516 

 

Mean =
245.2

10
= 24.52 

 The autocorrelation function of lag 2 to lag 9 is 

(𝑋 − 𝑋̅) Lag 2 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 2 

Lag 3 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 3 

Lag 4 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 4 

Lag 5 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 5 

-1.32         

-0.92         

0.78 -1.32 -1.0296       

0.68 -0.92 -0.6256 -1.32 -0.8976     

0.58 0.78 0.4524 -0.92 -0.5336 -1.32 -0.7656   

1.08 0.68 0.7344 0.78 0.8424 -0.92 -0.9936 -1.32 -1.4256 

0.08 0.58 0.0464 0.68 0.0544 0.78 0.0624 -0.92 -0.0736 

0.08 1.08 0.0864 0.58 0.0464 0.68 0.0544 0.78 0.0624 

-0.62 0.08 -0.0496 1.08 -0.6696 0.58 -0.3596 0.68 -0.4216 

-0.42 0.08 -0.0336 0.08 -0.0336 1.08 -0.4536 0.58 -0.2936 

  -0.4188  -1.1912  -2.4556  -2.102 

 

(𝑋 − 𝑋̅) Lag 6 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 6 

Lag 7 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 7 

Lag 8 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 8 

Lag 9 
(𝑋 − 𝑋̅)
∗  𝑙𝑎𝑔 9 

-1.32         

-0.92         

0.78         

0.68         

0.58         

1.08         

0.08 -1.32 -0.1056       

0.08 -0.92 -0.0736 -1.32 -0.1056     

-0.62 0.78 -0.4836 -0.92 0.5704 -1.32 0.8184   

-0.42 0.68 -0.2856 0.78 -0.3276 -0.92 0.3864 -1.32 0.5544 

  -0.9484  0.1372  1.2048  0.5544 
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ACF(l1) =
2.3516

5.75
= 0.409 

ACF(l2) =
−0.4188

5.75
= −0.073 

ACF(l3) =
−1.1912

5.75
= −0.207 

ACF(l4) =
−204556

5.75
= −0.427 

ACF(l5) =
−2.102

5.75
= −0.366 

ACF(l6) =
−0.9484

5.75
= −0.165 

ACF(l7) =
0.1372

5.75
= −0.024 

ACF(l8) =
1.2048

5.75
= 0.210 

ACF(l9) =
0.5544

5.75
= 0.096 

Result 

 The autocorrelation and Auto-covariance function is, 

Lag Autocorrelation Auto-covariance 

0 1 5.75 

1 0.410 2.3516 

2 -0.073 -0.4188 

3 -0.208 -1.1912 

4 -0.428 -2.4556 

5 -0.366 -2.102 

6 -0.165 -0.9484 

7 -0.024 0.1372 

8 0.210 1.2048 

9 0.097 0.5544 

 

Linear stationary models 

A time series has stationarity if a shift in time doesn’t cause a change in the shape of the 

distribution. Basic properties of the distribution like the mean, variance and covariance are 

constant over time. Most forecasting methods assume that a distribution has stationarity. For 

example, Autocovariance and autocorrelations rely on the assumption of stationarity. An absence 

of stationarity can cause unexpected or bizarre behaviors, like t-ratios not following a  

t-distribution or high r-squared values assigned to variables that aren’t correlated at all. There are 

three types of stationary models.  

 Autoregressive  

 Moving Average 

 Autoregressive Moving Average 
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Autoregressive 

In a multiple regression model, we forecast the variable of interest using a linear 

combination of predictors. In an autoregression model, we forecast the variable of interest using a 

linear combination of past values of the variable. The term autoregression indicates that it is a 

regression of the variable against itself. 

Thus, an autoregressive model of order p can be written as 

tptpttt YYYY    ....2211
 

where, y is the prediction outcome of multiple orders of previous results multiplied by 

their respective coefficients, ϕ. μ is the constant coefficient and εt is white noise. 

An autoregressive model is when a value from a time series is regressed on previous 

values from that same time series. for example, yt on yt-1: 

yt = c + ϕ1yt−1 + εt 

In this regression model, the response variable in the previous time period has become the 

predictor and the errors have our usual assumptions about errors in a simple linear regression 

model. The order of an autoregression is the number of immediately preceding values in the 

series that are used to predict the value at the present time. So, the preceding model is a first-order 

autoregression, written as AR(1). 

If we want to predict y this year (yt) using measurements of global temperature in the 

previous two years (yt−1, yt−2), then the autoregressive model for doing so would be: 

yt = c + ϕ1yt−1 + ϕ2yt−2 + εt 

This model is a second-order autoregression, written as AR(2) since the value at time t is 

predicted from the values at times t−1 and t−2. More generally, a kth-order autoregression, written 

as AR(k), is a multiple linear regression in which the value of the series at any time t is a (linear) 

function of the values at times t−1, t−2,…, t−p. 

Moving Average 

The notation MA(q) refers to the moving average model of order q: 

Moving Average process of order (q) is, 
tqtqtttY    ....2211
 

Where Yt is Yield, t ’s are independently and normally distributed with zero mean and 

constant variance 2  for t = 1,2,..., n;  s are coefficients to be estimated.  

Autoregressive Moving Average 

 This is a model that is combined from the AR and MA models. In this model, the impact 

of previous lags along with the residuals is considered for forecasting the future values of the time 

series. Here β represents the coefficients of the AR model and α represents the coefficients of the 

MA model. 
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Autoregressive process of order (p) is, 
tptpttt YYYY    ....2211
; 

Moving Average process of order (q) is, 
tqtqtttY    ....2211
; and  

The general form of ARMA model of order (p, q) is  

tqtqttptpttt YYYY    ........ 22112211  

Where Yt is Yield, t ’s are independently and normally distributed with zero mean and 

constant variance 2  for t = 1,2,..., n; and s and s are coefficients to be estimated.  

Differencing: 

The difference operator ∇ is given by, 

 

These differences form a new time series ∇X (of length n−1 if the original series had 

length n). Similarly 

 

and so on.  

If our original time series is not stationary, we can look at the first order difference process 

∇X, or second order differences ∇2X, and so on. If we find that a differenced process is a 

stationary process, we can look for an ARMA model of that differenced process.  

In practice if differencing is used, usually d = 1, or maybe d = 2, is enough. 

 

The Box-Jenkins approach  

The Box-Jenkins approach to fitting ARIMA models can be divided into three parts:  

• Identification 

• Estimation 

• Verification 

Identification  

This refers to initial preprocessing of the data to make it stationary and choosing plausible 

values of p and q (which can of course be adjusted as model fitting progresses).  

To assess whether the data come from a stationary process we can  

• Look at the data: e.g. a time plot as we looked at for the l h series;  

• Consider transforming it (e.g. by taking logs;)  

• Consider if we need to difference the series to make it stationary.  
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For stationarity the ACF should decay to zero fairly rapidly. If this is not true, then try 

differencing the series, and maybe a second time if necessary. (In practice it is rare to go beyond  

d = 2 stages of differencing.)  

The next step is initial identification of p and q. For this we use the ACF and the PACF, 

recalling that  

• For an MA(q) series, the ACF is zero beyond lag q;  

• for an AR(p) series, the PACF is zero beyond lag p.  

We can use plots of the ACF/PACF and the approximate ±
2

√𝑛
 confidence bounds.  

Estimation: AR processes  

For the AR(p) process 

 
We have the Yule-Walker equations  

 
for k > 0. 

 

 We fit the parameters α1, . . . , αp by solving  

 
These are p equations for the p unknowns α1, . . . , αp which, as before, can be solved using 

a Levinson-Durbin recursion. 

The Levinson-Durbin recursion gives the residual variance 

 

This can be used to guide our selection of the appropriate order p. Define approximate log 

likelihood by 

 

Then this can be used for likelihood ratio tests.  

Alternatively, p can be chosen by minimizing AIC where 

 

and k = p is the number of unknown parameters in the model. 
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If (Xt)t is a causal AR(p) process with i.i.d. with N(0, σ2
ε) then the Yule-Walker estimator 

is optimal with respect to the normal distribution. 

Moreover for the PACF of a causal AR(p) process we have that, for m > p, 

 
is asymptotically standard normal. However, the elements of the vector  

 are in general not asymptotically uncorrelated. 

Estimation: ARMA processes 

Now we consider an ARMA(p, q) process. If we assume a parametric model for the white 

noise – this parametric model will be that of Gaussian white noise – we can use maximum 

likelihood.  

We rely on the prediction error decomposition. That is, X1, . . . , Xn have joint density 

 

Suppose the conditional distribution of Xt given X1, . . . , Xt−1 is normal with mean  and 

variance Pt−1, and suppose that . 

Then for the log likelihood we obtain 

 

Here  and Pt−1 are functions of the parameters α1, . . . , αp, β1, . . . , βq, and so maximum 

likelihood estimators can be found (numerically) by minimising −2 log L with respect to these 

parameters. 

The matrix of second derivatives of −2 log L, evaluated at the MLE, is the observed 

information matrix, and its inverse is an approximation to the covariance matrix of the estimators. 

Hence we can obtain approximate standard errors for the parameters from this matrix.  

In practice, for AR(p) for example, the calculation is often simplified if we condition on 

the first m values of the series for some small m. That is, we use a conditional likelihood, and so 

the sum in the expression for −2 log L is taken over t = m + 1 to n.  

For an AR(p) we would use some small value of m, m > p.  

When comparing models with different numbers of parameters, it is important to use the 

same value of m, in particular when minimising AIC = −2 log L + 2(p + q). 
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Verification  

The third step is to check whether the model fits the data. Two main techniques for model 

verification are  

• Over fitting: add extra parameters to the model and use likelihood ratio or t 

tests to check that they are not significant.  

• Residual analysis: calculate residuals from the fitted model and plot their ACF, 

PACF, ‘spectral density estimates’, etc, to check that they are consistent with 

white noise. 

Linear non-stationary models 

A time series has non-stationarity if a shift in time does cause a change in the shape of the 

distribution. Basic properties of the distribution like the mean, variance and covariance aren’t 

constant over time. There are three types of stationary models.  

 Autoregressive Integrated Moving Average (ARIMA) 

 Seasonal Autoregressive Integrated  Moving Average (SARIMA) 

 Exponential Smoothing 

Autoregressive Integrated Moving Average (ARIMA) 

The time series when differenced follows both AR and MA models and is known as 

ARIMA model. Hence, ARIMA model was used in this study, which required a sufficiently large 

data set and involved four steps: identification, estimation, diagnostic checking and forecasting. 

Model parameters were estimated to fit the ARIMA models. 

Autoregressive process of order (p) is, 
tptpttt YYYY    ....2211
; 

Moving Average process of order (q) is, 
tqtqtttY    ....2211
; and  

The general form of ARIMA model of order (p,d,q) is  

tqtqttptpttt YYYY    ........ 22112211
 

where Yt is Yield, t ’s are independently and normally distributed with zero mean and constant 

variance 2  for t = 1,2,..., n; d is the fraction differenced while interpreting AR and MA and s and 

s are coefficients to be estimated.  

Trend Fitting 

The Box-Ljung Q statistics was used to transform the non-stationary data into Stationarity 

data and also to check the adequacy for the residuals. For evaluating the adequacy of AR, MA and 

ARIMA processes, various reliability statistics like R2, Stationary R2, RMSE, MAPE, and BIC as 

suggested by Gideon Schwartz (1978) were used computed as below:  

2/1

1

2)(
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
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
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ii

Y

YY

n
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1

)(1
and BIC(p,q) = ln v*(p,q)+(p+q) [ ln(n) / n] 

where, p and q are the order of AR and MA processes respectively and n is the number of 

observations in the time series and v* is the estimate of white noise variance σ2.  
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Seasonal Autoregressive Integrated Moving Average (SARIMA) 

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a 

multiplicative model. One shorthand notation for the model is  

ARIMA (p, d, q) × (P, D, Q)S 

Where, p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA 

order, P = seasonal AR order, D = seasonal differencing, Q = seasonal MA order and  

S = time span of repeating seasonal pattern, Φ = Autoregressive polynomial Order and  

Θ = Moving average polynomial Order.  

Without differencing operations, the model could be written more formally as  

)()( pS BB    -------------- (1) 

 The non-seasonal components are:  

AR: 𝜙(𝐵) = 1 −  𝜙1𝐵 −  … … … −  𝜙𝑝𝐵𝑝 

MA: 𝜃(𝐵) = 1 +  𝜃1𝐵 +  … … … + 𝜃𝑞𝐵𝑞  

The seasonal components are:  

Seasonal AR: Φ(𝐵𝑆) =  1 −  Φ1𝐵𝑆 −  … … … − ΦP𝐵𝑃𝑆 

Seasonal MA: Θ(𝐵𝑆) = 1 +  Θ1𝐵𝑆 + … … … + ΘQ𝐵𝑄𝑆  

On the left side of equation (1) the seasonal and non-seasonal AR components multiply 

each other, and on the right side of equation (1) the seasonal and non-seasonal MA components 

multiply each other. 

Exponential Smoothing 

Exponential smoothing is a time series method for forecasting univariate time series 

data. Time series methods work on the principle that a prediction is a weighted linear sum of past 

observations or lags. The Exponential Smoothing time series method works by assigning 

exponentially decreasing weights for past observations. It is called so because the weight assigned 

to each demand observation is exponentially decreased.  

Types of Exponential Smoothing 

There are three types of Exponential Smoothing forecasting methods. 

 Simple or Single Exponential Smoothing 

 Double Exponential Smoothing 

 Triple Exponential Smoothing 

1. Simple or Single Exponential Smoothing 

Simple or single exponential smoothing (SES) is the method of time series forecasting 

used with univariate data with no trend and no seasonal pattern. It needs a single parameter called 

alpha (a), also known as the smoothing factor. Alpha controls the rate at which the influence of 

past observations decreases exponentially. The parameter is often set to a value between 0 and 1.    

https://www.simplilearn.com/tutorials/python-tutorial/time-series-analysis-in-python
https://www.simplilearn.com/what-is-predictive-analytics-article
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The simple exponential smoothing formula is given by: 

st = αxt+(1 – α)st-1= st-1+ α(xt – st-1) 

here,  

 st = smoothed statistic (simple weighted average of current observation xt) 

 st-1 = previous smoothed statistic 

 α = smoothing factor of data; 0 < α < 1 

 t = time period 

2. Double Exponential Smoothing 

This method is known as Holt's trend model or second-order exponential smoothing. 

Double exponential smoothing is used in time-series forecasting when the data has a linear trend 

but no seasonal pattern. The basic idea here is to introduce a term that can consider the possibility 

of the series exhibiting some trend.  

In addition to the alpha parameter, Double exponential smoothing needs another 

smoothing factor called beta (b), which controls the decay of the influence of change in trend. The 

method supports trends that change in additive ways (smoothing with linear trend) and trends that 

change in multiplicative ways (smoothing with exponential trend).   

The Double exponential smoothing formulas are: 

S1 = x1 

B1 = x1-x0 

For t>1, 

st = αxt + (1 – α)(st-1 + bt-1) 

βt = β(st – st-1) + (1 – β)bt-1 

Here, 

 st = smoothed statistic, it is the simple weighted average of current observation xt 

 st-1 = previous smoothed statistic 

 α = smoothing factor of data; 0 < α < 1 

 t = time period 

 bt = best estimate of trend at time t 

 β = trend smoothing factor; 0 < β <1 

3. Triple Exponential Smoothing 

In this method, exponential smoothing applied three times. This method is used for 

forecasting the time series when the data has both linear trend and seasonal pattern. This method 

is also called Holt-Winters exponential smoothing. The triple exponential smoothing formulas are 

given by: 
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Here, 

 st = smoothed statistic, it is the simple weighted average of current observation xt 

 st-1 = previous smoothed statistic 

 α = smoothing factor of data; 0 < α < 1 

 t = time period 

 bt = best estimate of a trend at time t 

 β = trend smoothing factor; 0 < β <1 

 ct = sequence of seasonal correction factor at time t 

 γ = seasonal change smoothing factor; 0 < γ < 1 

 Holt-Winters Exponential Smoothing has two categories depending on the nature of the 

seasonal component: 

 Holt-Winter's Additive Method − for seasonality that is addictive. 

 Holt-Winter's Multiplicative Method – for seasonality that is multiplicative. 

Example  

The sales of a magazine in a stall for the previous 10 months are given below: 

Month January February March April May June July August September October 

Sales 30 25 35 25 20 30 35 40 30 45 

 

Calculate the simple exponential smoothing taking α =0.3. 

Solution 

Month Sales Exponential smooth α =0.3 

January 30 30.00 

February 25 30.00 

March 35 28.50 

April 25 30.45 

May 20 14.10 

June 30 15.87 

July 35 20.11 

August 40 24.58 

September 30 29.20 

October 45 29.44 

November – 34.11 

 

 

 


