
Page 1 
 

 

 

BHARATHIDASAN UNIVERSITY  

Tiruchirappalli- 620024 

Tamil Nadu, India.  

 

 

Programme: M.Sc. Statistics 

 

 

Course Title: Stochastic Processes and  

Time Series Analysis 

Course Code: 23ST02DEC  

 

 

Unit-III 

Renewal Processes 

 

 

 

Dr. T. Jai Sankar 

Associate Professor and Head 

Department of Statistics 

Ms. I. Angel Agnes Mary 

Guest Faculty  

Department of Statistics 
  



Page 2 
 

 

UNIT – III 

RENEWAL PROCESSES 

Introduction to Renewal Processes 

A renewal process was introduced as a generalization of Poisson processes. A renewal 

process is the increasing sequence of random nonnegative numbers S0, S1, S2, . . . gotten by 

adding i.i.d. positive random variables X0, X1, . . . , that is, 

Sn = S0 + ∑ Xi

n

i=1

 

When S0 = 0 the renewal process is an ordinary renewal process; when S0 is a nonnegative 

random variable the renewal process is a delayed renewal process. In either case, the individual 

terms Sn of this sequence are called renewals, or sometimes occurrences. 

Definition: 

A random process {N(t), t ≥0} is a non-negative integer valued stochastic process that 

registers the successive occurrences of an event during a time interval (0, t], where the time 

durations between consecutive “events” are positive i. i. d. random variables. 

 

Example:  

 Consider a person with a phone. Let us associate renewal process for his phone. Let us 

assume that he will use his phone only for 15 minutes in a day. In that  15 minutes he get any 

number of calls when he talks with someone through phone that is considered to be dead and it 

will be renewed only after he ends a calls. Now, at the beginning of the 15 minutes he doesn’t gets 

any call. So at t(0) = 0. There is no renewal say at time 1 minute he gets a call and he talks to that 

person for 5 minutes. The phone is failed for the 5 minutes and after the immediate end of call the 

phone is renewed at 5 minutes, say t(1) = 1 renewal. 

 Again we receive a call at the minutes and the call prevails for 2 minutes and at the 9th minutes 

the second renewal occurs. It is denoted as t(2) = 2. 

N(2) = 2 

∑ 𝑋𝑖 = number of failures and renewal. 

         = t(1) and t(2) = 2 

∴ 𝑁(𝑡) =  2. 
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Renewal Process in Discrete and Continuous Time  

The statistical mechanism governing the renewal events can be described in the following 

manner. Consider the non-negative random variable X, which for the purposes of discussion, is 

called the failure time of a component. This variable is the length of time between renewal events. 

The distinction between the continuous time and the discrete time theory is made as follows:  

(a) The random variable has a continuous distribution over the range (0,∞), its distribution 

being determined by a probability density function, f(x). This is the continuous renewal 

process. 

(b) There is a constant, T, such that the only possible values of X are (T, 2T, ... ). The process 

is determined by its gap length distribution, p(j), which is the probability that X =jT. This 

latter case is the discrete renewal process.  

Renewal Process in Continuous Time Definition: 

 Let {Xn, n = 1,2,….} be a sequence of nonnegative independent random variables. 

Assume that P{Xn = 0} < 1 and the random variables are independent and identically distributed 

with a distribution function F(t). Since Xn is nonnegative it follows that E(Xn) exists and is,  






0

)()( xxdFXE n  

where μ may be infinite. Whenever μ is infinite, 1/μ shall be interpreted as 0. 

Renewal Interval 

 Be (Xn : n ∈ N0) a sequence of independent positive random variables, and assume that 

(Xn : n ∈ N) are identically distributed. Define the sequence S = (Sn: n ∈ N) by S1 = X0 and  
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Sn+1 = Sn + Xn for all n ∈ N. The random variable Sn, with n ∈ N, is called the nth renewal time, 

while the time duration Xn is called the nth renewal interval. Further define the random variable of 

the number of renewals until time t by N(t) = max{n ∈ N : Sn ≤ t} for all t ≥ 0 with the convention 

max ∅ = 0. Then the continuous time process N = (N(t) : t ∈ 

0R ) is called a renewal process. The 

random variable X0 is called the delay of N. If X0 and X1 have the same distribution, then N is 

called an ordinary renewal process. 

 
Renewal Function  

The function M(t) = E{N(t)} is called the renewal function of process with distribution F. 

It is crystal clear that, 

{N(t) ≥ n} = {sn ≤ t} or {N(t) < n} = {Sn > t} 

Theorem 

The distribution N(t) is given by,  

pn(t) = P{N(t) = n} = P{N(t) ≥ n} - P{N(t) ≥ n+1} = Fn(t) – Fn+1(t),  

and the expected number of renewals by, 







1

)()(
n

n tFtM .    ----------------- (1) 

Proof 

Let, P{N(t) = n} = P{N(t) ≥ n} - P{N(t) ≥ n+1} 

     = P{Sn ≤ t} - P{ Sn+1 ≤ t} = Fn(t) – Fn+1(t) 

Again, 

)}({)( tNEtM   = ∑ 𝑛 𝑝𝑛(𝑡)∞
𝑛=1  

           = ∑ 𝑛 {𝐹𝑛(𝑡) −∞
𝑛=1 𝐹𝑛+1(𝑡)} 

          = ∑ 𝑛𝐹𝑛(𝑡) − ∑ 𝑛𝐹𝑛+1(𝑡)∞
𝑛=1

∞
𝑛=1  

          = ∑ 𝐹𝑛(𝑡) − ∑ (𝑛−1)𝐹𝑛(𝑡)∞
𝑛=1

∞
𝑛=1  

= ∑ 𝑛𝐹𝑛(𝑡)

∞

𝑛=1

= ∑ 𝑃{sn ≤  t} 

∞

𝑛=1

 

Hence the proof. 
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Renewal Density: 

The derivative m(t) of M(t) is called the renewal density. We have,  

m(t) = 
t

tttinrenewalmoreoroneP

t 
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. 

The function m(t) specifies the mean number of renewals to be expected in a narrow 

interval near t.  

Renewal Equation  

An integral equation can be obtained for the renewal function  

m(t) = E{N(t)} 

This gives the expected number of renewals in (0, t]. 

Theorem 

The renewal function  m(t) is satisfies the equation 

 

Proof 

By conditional expectation on the duration of the first renewal X1, we get 

m(t) = E{N(t)} 

∫ E{N(t)|X1 = x
∞

0
} 𝑑𝐹(𝑥)   ----------------- (2) 

Consider 0 ≤ x ≤ t, given that the first renewal occurs at x(≤ t). 

Then the process starts again at epoch x, the expected number of renewals in the remaining 

interval of length (t – x), is E{N(t - x)} 

𝐸{𝑁(𝑡)|𝑋1 = 𝑥} = 1 + 𝐸{𝑁(𝑡 − 𝑥)} = 1 + 𝑀(𝑡 − 𝑥) 

Thus, considering the above the equation, we get 

𝑚(𝑡) = ∫ {1 + 𝑀(𝑡 − 𝑥)}𝑑𝐹(𝑥)
∞

0
    ----------------- (3) 

= 𝐹(𝑡) + ∫ 𝑀(𝑡 − 𝑥)𝑑𝐹(𝑥)
𝑡

0

 

Hence proved. 

 

 

t

xdFxtMtFtm

0
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Application of Renewal equation: 

 N(t) has Poisson distribution, P[N(t) = k] = 
    𝐞−𝛌𝐭  (𝛌𝐭)𝐤

𝐤!
 , k= 0 ,1 , 2 , . . . . . with mean 

M(t) = E[N(t)] = 𝜆𝑡. 

Interest areas 

 Excess life 

 Current life 

 Total life 

 

Excess life: 

 The excess life at time t exceeds x if and only if there are no renewals in the interval  

(t, t+x). this event has the same probability as that of no intervals (0 , x), it’s given by, 

𝛾𝑖 = 𝑆𝑁(𝑡)+1 − 𝑡 

Current life: 

 The current life 𝛿𝑡 of course cannot exceed t, while for x < t , the current life exceeds x if 

and only if there are no renewal in (t-x , t). It is given by, 

𝛿𝑡 = 𝑡 −  𝛿𝑁(𝑡) 

Total life: 

 The total life of a product. It’s given by, 

𝛽𝑡  =  𝛾𝑡 +  𝛿𝑡 

Stopping Time 

A stopping time with respect to a sequence of random variables X1 , X2 , . . . . is a random 

variable T with property that for each t , the occurrence or non-occurrence of the event T = t 

depends only on the values of X1 , X2 , . . . . , Xt . 
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Wald’s equation 

If X1, X2, X3, . . . be independent identically distributed with finite mean E(X), and if N is a 

stopping time for X1, X2, . . . such that E[N] < ∞, then E[X1 + · · · + Xn ] = E[X] E[N]. 

Proof 

Let 𝐼𝑛 =
1,    𝑖𝑓,   𝑁 ≥ 𝑛
0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐸 (∑ 𝑋𝑛

𝑁

𝑛=1

) = 𝐸 (∑ 𝑋𝑛

∞

𝑖=1

. 𝐼𝑛) 

= ∑ 𝐸(𝑋𝑛 . 𝐼𝑛)

∞

𝑛=1

 

Xn and In are independent. 

𝐸 (∑ 𝑋𝑛

𝑁

𝑛=1

) = ∑ 𝐸(𝑋𝑛)  𝐸(𝐼𝑛)

∞

𝑛=1

 

Where, 

∑ 𝑃(𝑁 ≥ 𝑛) = ∑ ∑ 𝑃(𝑁 = 𝑛)

∞

𝑘=𝑛

∞

𝑛=1

∞

𝑛=1

 

= ∑ ∑ 𝑃(𝑁 = 𝑛)

∞

𝑘=1

𝑘

𝑛=1

 

= ∑ 𝑘. 𝑃(𝑁 = 𝑛)

∞

𝑘=1

 

= 𝐸(𝑁) 

Therefore,  

𝐸 (∑ 𝑋𝑛

𝑁

𝑛=1

) = 𝐸(𝑋)𝐸(𝑁) 

Hence prove. 

 

Renewal theorems 

Poisson process with parameter ‘a’ is a renewal process having exponential inter arrival 

time Xn with mean 
1

𝑎
, we have 

M(t) = at 

𝑀(𝑡)

𝑡
= 𝑎 =

1

𝐸(𝑋𝑛)
 

In general, 

𝑀(𝑡)

𝑡
→

1

𝜇
 

 𝜇 = 𝐸(𝑋𝑛) < ∞ as t  ∞ is known as elementary renewal theorem. 
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Theorem 

If probability is one with interval (0, t], we have 

𝜇 = 𝐸(𝑋𝑛) ≤ ∞ 

Proof 

 Consider an interval (0, t], we have 

𝑆𝑁(𝑡) ≤ 𝑡 ≤ 𝑆𝑁(𝑡)+1 

Now, this strong law of large numbers for the sequence {Sn}, so that as n  ∞ 

𝑆𝑛

𝑛
=

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛

𝑛
→ 𝐸(𝑋𝑛) = 𝜇 

With probability one, again as 𝑡 → ∞, 𝑁(𝑡) → ∞. 

With probability one, 
𝑆𝑁(𝑡)

𝑁(𝑡)
→ 𝜇 𝑎𝑠 𝑡 → ∞. 

Similarly, with probability one, 

𝑆𝑁(𝑡)+1

𝑁(𝑡)
 =  

𝑆𝑁(𝑡)+1

𝑁(𝑡) + 1
×

𝑁(𝑡) + 1

𝑁(𝑡)
 →  𝜇 𝑎𝑠 𝑡 →  ∞. 

From the three relations, we get with probability one,  

𝑁(𝑡)

𝑡
=  

1

𝜇
 𝑎𝑠 𝑡 →  ∞. 

Hence, proved that for large t, the number of renewals per unit time converges to 
1

𝜇
 [𝑡 =

1

𝜇
]. 

Elementary Renewal Theorem 

Let M(t) denote mean E[N(t)] of renewal process N(t), then under the hypotheses of basic 

renewal theorem, we have  

𝑀(𝑡)

𝑡
→

1

𝜇
 𝑎𝑠 𝑡 →  ∞ 

Where, M(t) = E[N(t)] is the renewal function. 

Proof 

We know that SN(t)+1 > t and taking µ<∞. Therefore, taking expectations on both sides, we 

have 

E[SN(t)+1] = E[X1] [M(t)+1] 
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We have, 

E[SN(t)+1] = μ[M(t)+1] > t 

Dividing both sides by µt and taking lim inf on both sides, we get 



1)(
inflim 

 t

tM

t
    (1) 

A truncated random variable argument to show the reverse inequality. We define truncated 

inter-arrival times  nX  as 

}}{ MXMXnn nn
IMIXX  

 

We define   MnXE  , arrival instants  nS  and renewal process )(tN  for this set of truncated 

inter-arrival times  nX  as 





n

k

kn XS
1

and }:sup{)( 0 tSNntN n   

Since nn SS  , the number of arrivals would be higher for renewal process )(tN with truncated 

random variables, i.e. 

)()( tNtN       (2) 

Further, due to truncation of inter-arrival time, next renewal happens with-in M units of time, i.e. 

MtS
tN


1)(

 

Taking expectations on both sides in the above equation, using Wald’s lemma for renewal 

processes, dividing both sides by tµM, and taking lim sup on both sides, we obtain 

Mt t

tM



1)(
suplim 


 

Taking expectations on both sides of (2) and letting M go arbitrary large on RHS, we get 



1)(
suplim 
 t

tM

t

                                (3) 

Inequalities (1) and (3) in conjunction imply 

,
1)(

lim



 t

tM

t
 

Hence the proof.  
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Branching Processes 

  A branching process is a type of mathematical object known as a stochastic process, 

which consists of collections of random variables. The random variables of a stochastic 

process are indexed by the natural numbers.  

 The original purpose of branching processes was to serve as a mathematical model of a 

population in which each individual in generation  produces some random number of 

individuals in generation, according, in the simplest case, to a fixed probability 

distribution that does not vary from individual to individual.  

 Branching processes are used to model reproduction; for example, the individuals might 

correspond to bacteria, each of which generates 0, 1, or 2 offspring with some probability 

in a single time unit.  

 Branching processes can also be used to model other systems with similar dynamics, e.g., 

the spread of surnames in genealogy or the propagation of neutrons in a nuclear reactor. 

Assumption 

 Probability same for all individuals 

 Individuals reproduce independently 

 Process starts with a single individual at time 0. 

 

Types of branching processes 

 Discrete time (Galton-Watson branching processes)  

 Continuous time,  

 With exponential lifetime distributions (Markovian branching process), or  

 General lifetime distributions (age-dependent, Bellman-Harris branching process)  

 Single type, or multitype (with finitely or ∞-ly many types)  

 Individuals’ reproduction rules may depend on the actual size of the population 

(population size-dependent branching process)  

 Branching processes can undergo catastrophes or live in a random environment. 

 

 

 

https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Surname
https://en.wikipedia.org/wiki/Genealogy
https://en.wikipedia.org/wiki/Nuclear_reactor
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Galton-Watson Branching Process 

The Galton-Watson branching process (or GW-process for short) is the simplest possible 

model for a population evolving in time. It is based on the assumption that individuals in the 

population give birth to a number of children independently of each other and all with the same 

distribution. More precisely, the model can be described as follows: 

 We start the process with a single individual, the zero generation of the population. 

 This individual gives birth to a random number X ∈ N0 of children, with E(X) ∈ (0, +∞). 

These children constitute the first generation of the population. 

 Each of the individuals in this first generation has children of their own, all of them with 

the same distribution as X and independently of all the other individuals in the population. 

These constitute the second generation of the population. This generation in turn gives rise 

to a third generation of individuals by the same rules as the previous generation, and so on. 

 

A realisation of a GW process through 3 generations starting with a single individual at 

generation 0: 

 
 

If Zn denotes the number of individuals in the nth generation (n ∈ N0), then Zn satisfies the 

recurrence relation 

 
where:  

 Z0 ≡ 1 by convention,  

 {
)(n

iX  : i ∈ N, n ∈ N0} is an array of i.i.d. random variables with 
)(n

iX ∼ X for all i, n. 

The sequence 
0

)( NnnZ 
is what is typically known as the GW-process with offspring distribution 

X. However, sometimes by a GW-process we shall understand the entire genealogical tree 

induced by the population, i.e the collection {(n, i, 
)(n

iX ) : n ∈ N0 , i ∈ {1, . . . , Zn}}, and not just

0
)( NnnZ   . When is it that we mean one or the other will always be clear from the context. 
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Age and block replacement policies 

Age: 

In this policy the component is replaced when it completely fails. Excess life is enjoyed 

here. For example, we use the light bulbs as long as it works, usually even beyond its prescribed 

life time. The bulb fails to work so we change. 

Block: 

 In this policy if the component fails for the first time at T. then at 2T, 3T it is always 

renewed. The excess life time won’t be exercised here. For example, when the expiry date is 

reached by a medicine, it is always renewed it we throw the pills and buy a new one. 

Properties of Generating Functions  

 Let {𝑍𝑛}𝑛∈𝑁0
 be a branching process and let the generating function of its offspring 

distribution {𝑝𝑛}𝑛∈𝑁0
be given by P(s). Then the generating function of Zn is the n-fold 

composition of P with itself, i.e., 

 

Proof 

 For n = 1, the distribution of Z1 is exactly {𝑝𝑛}𝑛∈𝑁0
, so𝑃𝑍1

= 𝑃(𝑠). Suppose that the 

statement of the proposition holds for some 𝑛 ∈ 𝑁. Then 

𝑍𝑛+1 = ∑ 𝑍𝑖,𝑛

𝑍𝑛

𝑖=1

 

 The random sum of Zn independent random variables with pmf {𝑝𝑛}𝑛∈𝑁0
, where the 

number of summands Zn is independent of {𝑍𝑛,𝑖}𝑖∈𝑁. We have seen that the generating function 

𝑃𝑍𝑛+1
 of Zn+1 is a composition of the generating function P(s) of each of the summands and the 

generating function 𝑃𝑍𝑛
 of the random time Zn. Therefore, 

 

Hence proved. 

Mean and Variance of Zn  

let {𝑝𝑛}𝑛∈𝑁0
 be a pmf of the offspring distribution of a branching process {𝑍𝑛}𝑛∈𝑁0

. If {𝑝𝑛}𝑛∈𝑁0
 

admits an expectation, i.e., if  
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𝜇 = ∑ 𝑘𝑝𝑘 < ∞

∞

𝑘=0

 

then 

 𝐸[𝑍𝑛] = 𝜇𝑛 .                  (1) 

If the variance of {𝑝𝑛}𝑛∈𝑁0
 is also finite, i.e., if 

𝜎2 = ∑(𝑘 − 𝜇)2𝑝𝑘 <  ∞

∞

𝑘=0

 

then 

𝑉𝑎𝑟[𝑍𝑛] = 𝜎2𝜇𝑛(1 + 𝜇 + 𝜇2 + ⋯ + 𝜇𝑛) 

= 𝜎2𝜇𝑛
1 − 𝜇𝑛+1

1 − 𝜇
,      𝜇 ≠ 1 

= 𝜎2(𝑛 + 1),   𝜇 = 1  (2) 

Proof: 

 Since the distribution of Z1 is just {𝑝𝑛}𝑛∈𝑁0
, it is clear that E[Z1] = µ and Var[Z1] = σ2. We 

proceed by induction and assume that the formulas (1) and (2) hold for 𝑛 ∈ 𝑁.  

𝑃𝑍𝑛

′ (𝑠) = 𝑃𝑍𝑛−1

′ (𝑃(𝑠))𝑃′(𝑠) 

𝑃𝑍𝑛

′ (1) = 𝑃𝑍𝑛−1

′ (1)𝑃′(1) 

= 𝐸[𝑍𝑛−1]𝐸[𝑍1] 

= 𝜇𝑛−1𝜇 =  𝜇𝑛  

  

Let Var[Z1] = σ2 and 𝑉𝑎𝑟(𝑍𝑛) =  𝜎𝑛
2 

𝑃𝑍𝑛

′ (𝑠) = 𝑃𝑍𝑛−1

′ (𝑃(𝑠))𝑃′(𝑠) 

𝑃𝑍𝑛

′′ (𝑠) = 𝑃𝑍𝑛−1

′′ (𝑃(𝑠))𝑃′(𝑠)2 + 𝑃𝑍𝑛−1

′ (𝑃(𝑠))𝑃′′(𝑠)   (3) 

Now, P(1) = 1, 𝑃′(1) =  𝜇, 𝑃𝑍𝑛−1

′ (1) = 𝜇𝑛−1 and 𝑃′′(1) = 𝜎2 − 𝜇 + 𝜇2 . 

Also, 𝜎𝑛
2 = 𝑃𝑍𝑛

′′ (1) + 𝜇𝑛 − 𝜇𝑛
2, we have 

𝑃𝑍𝑛

′′ (1) = 𝜎𝑛
2 − 𝜇𝑛 + 𝜇2𝑛  

𝑃𝑍𝑛−1

′′ (1) = 𝜎𝑛−1
2 − 𝜇𝑛−1 + 𝜇2𝑛−2 
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From (3), 

𝑃𝑍𝑛

′′ (1) = 𝑃𝑍𝑛−1

′′ (1)𝑃′(1)2 + 𝑃𝑍𝑛−1

′ (1)𝑃′′(1) 

𝜎𝑛
2 − 𝜇𝑛 + 𝜇2𝑛 = (𝜎𝑛−1

2 − 𝜇𝑛−1 + 𝜇2𝑛−2)𝜇2 + 𝜇𝑛−1(𝜎2 − 𝜇 + 𝜇2) 

𝜎𝑛
2 = 𝜇2𝜎𝑛−1

2 + 𝜇𝑛−1𝜎2 

Leading to 

𝜎𝑛
2 = 𝜇𝑛−1𝜎2(1 + 𝜇 + 𝜇2 + ⋯ + 𝜇𝑛−1) 

So, we have 

= 𝜎2𝜇𝑛
1 − 𝜇𝑛+1

1 − 𝜇
,      𝜇 ≠ 1 

= 𝜎2(𝑛 + 1),   𝜇 = 1 

Hence proved. 

Ultimate Extinction Probabilities  

 Let P(X = 0) = p(0) ≠ 0. 

       Let 𝜃𝑛 = 𝑃(𝑛𝑡ℎ  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 0 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠) 

= 𝑃(𝑛𝑡ℎ  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 0 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠) 

𝜃𝑛 = 𝑃(𝑍𝑛 = 0) = 𝑃𝑍𝑛
(𝑠) 

 Now, P(extinct by nth generation) = P(extinct by (n − 1)th) + P(extinct at nth). 

 So, θn = θn−1 + P(extinct at nth) 

  θn ≥ θn−1. 

 Now, 𝑃𝑍𝑛
(𝑠) = 𝑃[𝑃𝑍𝑛−1

(𝑠)] 

𝑃𝑍𝑛
(0) = 𝑃[𝑃𝑍𝑛−1

(0)] 

θn = P[θn−1] 

𝜃𝑛 is a non-decreasing sequence that is bounded above by 1 (it is a probability). Hence, by the 

monotone convergence theorem  
lim

n → ∞
 𝜃𝑛 = 𝜃∗ exists and 𝜃∗ ≤ 1. 

Now,  
lim

n → ∞
 𝜃𝑛 =  

lim
n → ∞

 𝜃𝑛−1, so 𝜃∗
 satisfies 

𝜃 = 𝑃(𝜃), 𝜃 ∈ [0, 1] 
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Consider,  

𝑃(𝜃) = ∑ 𝑝(𝑥)𝜃𝑥

∞

𝑥=0

 

P(0) = p(0) (> 0), and P(1) = 1, also, 𝑃′(1) > 0 and 𝜃 > 0, 𝑃′′(0) > 0, so P(θ) is a convex 

increasing function for 𝜃 ∈ [0, 1] and solutions of 𝜃 = 𝑃(𝜃) are determined by slope of 

𝑃(𝜃)𝑎𝑡 𝜃 = 1, i.e., by 𝑃′(1) =  𝜇. 

 If μ < 1 there is one solution at 𝜃∗ ≤ 1. 

  extinction is certain. 

 If μ > 1 there are two solution:  𝜃∗ < 1 𝑎𝑛𝑑 𝜃∗ = 1 . as θn is increasing, we want the 

smaller solution. 

  extinction is not certain. 

 If μ = 1 solution is 𝜃∗ = 1. 

  extinction is certain. 

 

Example of extinction problem: 

 Consider a parent can produce at most two offspring. The extinction probability in each 

generation is: 

dm = p0 + p1dm-1 + p2(dm-1)
2  

with d0 = 0. For the ultimate extinction probability, we need to find d which 

satisfies d = p0 + p1d + p2d
2. Taking as example probabilities for the numbers of offspring 

produced p0 = 0.1, p1 = 0.6, and p2 = 0.3, the extinction probability for the first 20 generations is 

as follows: 

Generation  

( 1–10) 

Extinction 

probability 

Generation 

(11–20) 

Extinction 

probability 

1 0.1 11 0.3156 

2 0.163 12 0.3192 

3 0.2058 13 0.3221 

4 0.2362 14 0.3244 

5 0.2584 15 0.3262 

6 0.2751 16 0.3276 

7 0.2878 17 0.3288 

8 0.2975 18 0.3297 

9 0.3051 19 0.3304 

10 0.3109 20 0.331 

 

 In this example, we can solve algebraically that d = 1/3, and this is the value to which the 

extinction probability converges with increasing generations. 
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Distribution of Total Number of Progeny 

 Let S be total progeny in a branching process {Zn}, then  

S = Z0 + Z1 

Lemma 1 

 Let there be d types, and let w(i)(s) be the generating function for the total numbers of the 

various types in all generations, starting with one object of type i. Then the w(i)(s) satisfy the 

functional equations 

w(i)(s) = sif
(i) (w(1)(s), . . . , w(d)(s)), i = 1, 2, . . ., d 

for d = 1, this reduces to  

w(s) = s f (w(s)) 

Lemma 2 

 If the branching process starts with i1 individuals of type 1, i2 individuals of type 2,· · ·, id 

individuals of type d, then the generating function for the total numbers of the various types in all 

generations is given by 

w(s) = (w(1)(s))(i1) . . . (w(d)(s))(id) 

 

 

 


