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UNIT - I 

STOCHASTIC PROCESS 

Stochastic: 

 The word stochastic comes from the Greek word stokhazesthai meaning to aim or guess. 

The definition of stochastic is random or involving chance or probability. When the order of 

events is randomly determined and it cannot be predicted what will come first, second or third, 

this is an example of when the order of events would be described as stochastic. 

Stochastic Model:  

 A stochastic model represents a situation where uncertainty is present. In other words, it’s 

a model for a process that has some kind of randomness. In the real word, uncertainty is a part of 

everyday life, so a stochastic model could literally represent anything. The opposite is 

a deterministic model, which predicts outcomes with 100% certainty. Deterministic models 

always have a set of equations that describe the system inputs and outputs exactly. On the other 

hand, stochastic models will likely produce different results every time the model is run. 

 All stochastic models have the following in common: 

 They reflect all aspects of the problem being studied, 

 Probabilities are assigned to events within the model, 

 Those probabilities can be used to make predictions or supply other relevant information 

about the process. 

Steps for Building a Stochastic Model 

 The basic steps to build a stochastic model are: 

 Create the sample space (Ω) — a list of all possible outcomes, 

 Assign probabilities to sample space elements, 

 Identify the events of interest, 

 Calculate the probabilities for the events of interest. 

 A very simple example of this process in action: You are rolling a die in a casino. If you 

roll a six or a one, you win $10. The steps would be: 

1. The sample space includes all possibilities for die roll outcomes: Ω = {1,2,3,4,5,6}. 

2. The probability for any number being rolled is 1/6. 

3. The event of interest is “roll a 6 or roll a 1”. 

4. The probability for “roll a 6 or 1” is 1/6 + 1/6 = 2/6 = 1/3. 

https://www.statisticshowto.com/uncertainty-in-statistics/
https://www.statisticshowto.com/deterministic/
https://www.statisticshowto.com/sample-space/
https://www.statisticshowto.com/sample-space/
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Differences between Behaviors of Deterministic and Stochastic Models 

Deterministic Model Stochastic Model 

Variables are functions of time only Variables depend on time and probability 

All mechanisms are described precisely 
Process could have two sources of variability 

(demographic and environmental) 

Captures only mean characteristics of 

process 
Captures variations from mean behavior 

Deterministic path provides expected 

value 

Stochasticity leads to variances and 

covariances 

Trajectory is fixed between simulations Variability between simulations 

For given parameter set, one simulation 

is sufficient 
Needs many simulations  

Behavior entirely governed by 

parameters 
Allows “chance” to play a role 

If we knew perfectly the present state, 

we could predict future states accurately 

If we knew perfectly the present state, model 

assigns only a probability distribution to 

future states 

Perfect reproducibility Each realization is different 

Deterministic dynamics, in general, have 

equilibrium behavior 

Stochasticity can excite system to sustained 

oscillations (resonance) or can drive system 

to extinction 

Mathematically easier Often harder to analyze mathematically 

 

Random Experiment 

A random experiment is a physical situation whose outcome cannot be predicted until it is 

observed.  

Sample Space 

A sample space, Ω, is a set of possible outcomes of a random experiment. 

Example 

Random experiment: Toss a coin once.  

Sample space: Ω = {head, tail} 

Random Variable 

A random variable, X, is defined as a function from the sample space to the real numbers: 

X : Ω → R. That is, a random variable assigns a real number to every possible outcome of a 

random experiment. 

Example 

Random experiment: Toss a coin once.  

Sample space: Ω = {head, tail}.  

An example of a random variable: X : Ω → R maps “head” → 1, “tail” → 0. 
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Essential point 

A random variable is a way of producing random real numbers. 

Stochastic Process or Random Process 

A stochastic process or random process is a collection of random variables, representing 

the evolution of some system of random values over time.  

A family (or collection) of random variables that are indexed by a parameter, such as time, 

is called a stochastic process. 

Definition 

A stochastic process is a family of random variables, {X(t) : t ∈ T}, where t usually 

denotes time. That is, at every time t in the index set T may discrete (T = {0, 1, 2, 3, 4, . . . .}) or 

continuous (T = [0, ∞]). 

Example of Stochastic Process 

Suppose we toss a six-sided dies several times, and is interested in the number which 

appears at the nth toss. Let X(1) denote the number which appears at the first toss, X(2), the 

number which appears at the second toss, and so on. It can be seen that, we can describe the 

outcome of this experiment by defining a family of random variables {X(t); t∈T}, where  

T = {1, 2, 3, . . .} and X(t) is the number which appears at the nth toss of the die. This family or 

collection of random variables, indexed by the parameter n, is an example of a stochastic process. 

In this example, t is called the index parameter of the stochastic process, while T is called the 

index set of the stochastic process. 

Discrete-time process 

{X(t) : t ∈ T} is a discrete-time process if the set T is finite or countable. This is generally 

means T = {0, 1, 2, 3, . . .} 

Thus a discrete-time process is {X(0), X(1), X(2), X(3), . . .}: a random number associated 

with every time 0, 1, 2, 3, . . . 

Continuous-time process 

{X(t) : t ∈ T} is a continuous-time process if T is not finite or countable. This is generally 

means T = [0, ∞), or T = [0, K] for some K.  

Thus a continuous-time process {X(t) : t ∈ T} has a random number X(t) associated with 

every instant in time.  

(Note that X(t) need not change at every instant in time, but it is allowed to change at any 

time; i.e. not just at t = 0, 1, 2, . . . , like a discrete-time process.) 
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State Space 

 The state space, S, is the set of real values that X(t) can take. Every X(t) takes a value in R, 

but S will often be a smaller set: S ⊆ R. For example, if X(t) is the outcome of a coin tossed at 

time t, then the state space is S = {0, 1}. The state space S is discrete if it is finite or countable. 

Otherwise it is continuous.  

Types of stochastic Processes 

There are four types of stochastic processes. 

 Discrete or Continuous state processes 

 Markov Processes 

 Birth-death Processes 

 Poisson Processes 

Classification of Stochastic process: 

 Stochastic process is classified in four categories on the basis of state space and time space: 

 Stochastic Processes with Discrete Parameter and State Spaces 

 Stochastic Processes with Continuous Parameter and Discrete State Space 

 Stochastic Processes with Discrete Parameter and Continuous State Space 

 Stochastic Processes with Continuous Parameter and State Spaces 

Stochastic Processes with Discrete Parameter and State Spaces 

If both t and Xt belongs to N, the set of natural numbers, then we have models like markov 

chain. For Example, if Xt means the fit (0 or 1) in position t of a sequence of transmitted bits, then 

Xt can be modelled as markov chain with two states. This leads to the error correction algorithm 

in data transmission, 

A Brand-Switching Model for Consumer Behavior 

Before introducing a new brand of coffee, a manufacturer wants to study consumer 

behavior relative to the brands already available in the market. Suppose there are three brands 

already available in the market. Suppose there are three brands on sale, say A, B, C. The 

consumers either buy the same brand for a few months or change their brands every now and then. 

There is also a strong possibility that when a superior brand is introduced, come of the old brands 

will be left with only a few customers. Sample surveys are used to gauge consumer behavior.  

In such a survey, conducted over a period of time, suppose the estimates obtained for the 

consumer brand-switching behavior are as follows: Out of those why buy A is one month, during 

the next months 60% buy A again, 30% switch to brand B and 10% switch to brand C. For brands 

B and C these figures are, B to A 50%, B to B 30%, B to C 20%, C to A 40%, C to B 40%, C to C 

20%.  
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If we are interested in the number of people who buy a certain brand of coffee, then that 

number could be represented as a stochastic process. The behavior of the consumer can also be 

considered a stochastic process that can enter three different states A, B, C. Some of the questions 

that arise are: What is the expected number of months that a consumer stays with one specific 

brand? What are the mean and variance of the number using a particular brand after a certain 

number of months? Which is the product preferred most by the customers in the long run? 

Suppose, for instance, that consumer preferences are observed on a monthly basis. Then we have 

a discrete-time, discrete-state stochastic process. 

Stochastic Processes with Continuous Parameter and Discrete State Space 

If the index space I is a finite or infinite interval the sample paths {Xt(ω)}t ϵ I may have the 

probability that it is bounded integrals, continuous, differentiable, whether it has a limit at ∞, their 

probability distribution is an interval. 

For example, the number of students waiting for a bus at any time of day in this case the 

parameter space is continuous.  

Consider the size of a population at a given time there again a continuous-time, discrete 

state stochastic process as the population is finite. 

Stochastic Processes with Discrete Parameter and Continuous State Space 

If the index set of the process is N and range is R, the sample sequences of the process 

{Xi}iϵN, where sample sequence {Xi(ω)}iϵN their arises whether the probability that each sample 

sequence is bounded, monotonic, limit approaches ∞ and also the series obtained from a sample 

sequence from f(i) converges and to know the probability distribution of the sum. There 

application includes markov chain monte carlo.  

For example, consider the values of the Dow-Jones Index at the end of the nth week. Then 

we have a discrete-time stochastic process with the continuous state space (0,∞). 

Jobs of varied length come to a computing center from various sources. The number of 

jobs arriving, as well as their length, can be said to follow certain distributions. Under these 

conditions the number of jobs waiting at any time and the time a job has to spend in the system 

can be represented by stochastic processes.  

Under a strictly first-come, first-served policy, there is a good chance of a long job 

delaying a much more important shorter fob over a long period of time. For the efficient operation 

of the system, in addition to minimizing the number of jobs waiting and the total delay, it may be 

necessary to adopt a different service policy.  

A round-robin policy in which the service is performed on a single job only for a certain 

length of time, say 3 or 5 sec, and those jobs that need more service are put back in the queue, is 

one of the common practices adopted under these conditions. Consider accumulated workload 

observed at specified points in time. 
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Stochastic Processes with Continuous Parameter and State Spaces  

The problem was concerned with a particle floating on a liquid surface receiving kicks 

from the molecules of the liquid. The particle then viewed as being subjects are small and close to 

whether is treated as being continuous and since the particle is constrained to the surface of the 

liquid by surface tension is at each point is time a vector parallel to the surface. This random force 

is described by two components stochastic processes to real valued random variables are 

associated to each point of the two random variables being R, giving the X and Y components of 

the force. For example, consider waiting time of an arriving job until it gets into service, with the 

arriving time of the job is the parameter. 

Properties of stochastic processes 

The classical types of stochastic processes, characterized by different dependence 

relationship among X(t). 

(i) Process with independent increments 

Given a stochastic process {X(t)}, if the random variables X(t2) - X(t1), X(t3) - X(t2 ), … , 

X(tn) – X(tn-1), are independent for all choices of t1, t2, . . . . , tn, satisfying t1 < t2 < . . . . < tn, then 

we say that {X (t)} is a stochastic process with independent increments. 

(ii) Process with the Markovian property 

The basic property of a Markov chain is that only the most recent point in the trajectory 

affects what happens next. This is called the Markov Property. It means that Xt+1 depends upon Xt, 

but it does not depend upon Xt-1, . . . , X1, X0. 

Definition 

A stochastic process {Xt} is a Markov process if 

𝑃(𝑋𝑡+1 = 𝑘𝑡+1|𝑋𝑡 = 𝑘𝑡, 𝑋𝑡−1 = 𝑘𝑡−1, ⋯ , 𝑋1 = 𝑘1) = 𝑃((𝑋𝑡+1 = 𝑘𝑡+1|𝑋𝑡 = 𝑘𝑡) 

If a stochastic process {Xt} has the Markovian property, then given the present state Xt, the 

past states X1, X2, . . . . , Xt-1 is not needed to predict the future state Xt+1. 

(iii) Process with stationary increments 

A stochastic process {X(t); t∈T} is said to have stationary increments if the distribution of 

the increment,  X(t1 + h) - X(t1), depends only on the length h of the interval and not on the time t. 

For a process with stationary increments, the distribution of X(t1 + h) - X(t1) is the same as 

the distribution of X(t2 + h) - X(t2), no matter the values of t1, t2 and h. If {Xt} is a stochastic 

process with stationary increments, then the distribution of X(t) is the same for each t. This also 

means that the particular times at which we examine the process is irrelevant.  
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Markov Model: 

In probability theory, a Markov model is a stochastic model used to model randomly 

changing systems where it is assumed that future states depend only on the present state and not 

on the sequence of events that preceded it (that is, it assumes the Markov property). 

Generally, this assumption enables reasoning and computation with the model that would 

otherwise be intractable. 

Examples: 

 Snake & ladder game 

 Weather system 

Assumptions for Markov model: 

 A fixed set of states and fixed transition probabilities, and the possibility of getting from 

any state to another through a series of transitions. 

 A Markov process converges to a unique distribution over states. This means that what 

happens in the long run won’t depend on where the process started or on what happened 

along the way. 

 What happens in the long run will be completely determined by the transition probabilities 

– the likelihoods of moving between the various states. 

Types of Markov models and when to use which model 

 
System state is fully 

observable 

System state is partially 

observable 

System is autonomous Markov Chain Hidden Markov Model 

System is controlled Markov Decision Process 
Partially observable Markov 

decision process 

 

 

State Space and Time Space 

 
State Space 

Discrete Continuous 

Time Space 

Discrete Markov Chain 
A Markov chain on a 

measurable state space 

Continuous 
Markov 

Process 
Continuous stochastic process 
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Markov Chain 

A Markov chain is a stochastic model that uses mathematics to predict the probability of a 

sequence of events occurring based on the most recent event. A common example of a Markov 

chain in action is the way Google predicts the next word in your sentence based on your previous 

entry within Gmail.  

A Markov chain is a stochastic model created by Andrey Markov that outlines the 

probability associated with a sequence of events occurring based on the state in the previous 

event. It’s a very common and easy to understand model that’s frequently used in industries that 

deal with sequential data such as finance. Even Google’s page rank algorithm, which determines 

what links to show first in its search engine, is a type of Markov chain. Through mathematics, this 

model uses our observations to predict an approximation of future events. 

Definition 1 

The discrete parameter Markov process {Xt; t∈T} is known as Markov Chain with state 

space either discrete or continuous. 

Consider a simple coin tossing experiment repeated for a number of times (costively), two 

possible outcomes for each trial are ‘Head’ and ‘Tail’. Assume that Head occurs with probability 

p and that Tail occurs with probability q, so that p + q = 1. 

Let us denote the outcomes of the nth toss of the unbiased coin by  Xt. Then 

𝑋𝑡 = {
1             𝑖𝑓 ℎ𝑒𝑎𝑑 𝑜𝑐𝑐𝑢𝑟𝑠
0               𝑖𝑓 𝑡𝑎𝑖𝑙 𝑜𝑐𝑐𝑢𝑟𝑠 

        𝑓𝑜𝑟 𝑛 = 1, 2, … …   

That is 𝑃{𝑋𝑡 = 1} = 𝑝, 𝑎𝑛𝑑 𝑃𝑟 ℎ{𝑋𝑡 = 0} = 𝑞. Hence the sequence of random variables, 

X1, X2, . . . . , Xt-1. Can be written as {Xt: t ≥ 1 }, which is a Markov chain. 

Definition 2 

Let {X0, X1, X2, . . .} be a sequence of discrete random variables. Then {X0, X1, X2,  . . .} 

is a Markov chain if it satisfies the Markov property: 

P(Xt+1 = s |Xt = st, . . . ,X0 = s0) = P(Xt+1 = s |Xt = st),  

for all t = 1, 2, 3, . . . and for all states s0, s1, . . . , st, s and t ≥ 0 is called a Markov Chain. 

Markov Chain: Weather Example 

 Design a Markov Chain to predict the weather of tomorrow using previous information of 

the past days. 

 Our model has only 3 states: 𝑆={𝑆1,𝑆2,𝑆3}, and the name of each state is 𝑆1=𝑆𝑢𝑛𝑛𝑦, 

𝑆2=𝑅𝑎𝑖𝑛𝑦, 𝑆3=𝐶𝑙𝑜𝑢𝑑𝑦. 

 To establish the transition probabilities relationship between states we will need to collect 

data. 
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 Assume the data produces the following transition probabilities:  

 

 Let’s say we have a sequence: Sunny, Rainy, Cloudy, Cloudy, Sunny, Sunny, Sunny, 

Rainy, ….; so, in a day we can be in any of the three states. 

 We can use the following state sequence notation: 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5,….., where 𝑞𝑖 𝜖 

{𝑆𝑢𝑛𝑛𝑦,𝑅𝑎𝑖𝑛𝑦,𝐶𝑙𝑜𝑢𝑑𝑦}. 

 In order to compute the probability of tomorrow’s weather we can use the Markov property: 

 

Exercise 1: Given that today is Sunny, what’s the probability that tomorrow is Sunny and the next 

day Rainy? 

 

Exercise 2: Assume that yesterday’s weather was Rainy, and today is Cloudy, what is the 

probability that tomorrow will be Sunny? 
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Markov process 

A ‘continuous time’ stochastic process that fulfils the Markov property is called a Markov 

process.  

Markov process is to identify the probability of transitioning from one state to another. 

One of the primary appeals to Markov is that the future state of a stochastic variable is only 

dependent on its present state. An informal definition of a stochastic variable is described as a 

variable whose values depend on the outcomes of random occurrences. Markov process is a 

stochastic process which has memoryless characteristics. 

Definition of Markov process 

A stochastic process {X(t), t∈T} is said to be Markov if the future of the process is 

independent of its past, conditioned on the present value of the process. That is, for any choice of 

sampling instances t1<t2< . . . <tk, 

))()(Pr[))(,)()(Pr[ 111111   kkkkkkkk xtXxtXxtXxtXxtX   

the process {X(t), t∈T} is a Markov process. 

Definition of Process Diagram: 

The process diagram of a Markov chain is a directed graph describing the Markov process. 

Each node represents a state from the state space. The edges are labeled by the probabilities of 

going from one state to the other states. Edges with zero transition probability are usually 

discarded. 

Create a Markov Chain Model 

A Markov chain model is dependent on two key pieces of information:  

 Transition matrix  

 Initial state vector 

Transition Matrix 

Denoted as “P,” This NN matrix represents the probability distribution of the state’s 

transitions. The sum of probabilities in each row of the matrix will be one, implying that this is a 

stochastic matrix. 

Initial State Vector  

Denoted as “S,” this N1 vector represents the probability distribution of starting at each 

of the N possible states. Every element in the vector represents the probability of beginning at that 

state. 
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Transition probabilities: 

We have a set of states, S = {s1; s2; ... ; sr}. The process starts in one of these states and 

moves successively from one state to another. Each move is called a step. If the chain is currently 

in state si, then it moves to state sj at the next step with a probability denoted by pij , and this 

probability does not depend upon which states the chain was in before the current state. 

The probabilities pij are called transition probabilities. The process can remain in the state 

it is in, and this occurs with probability pii. An initial probability distribution, defined on S, 

specifies the starting state. 

Transition Probability Table 

 

Example: 

Cheezit, a lazy hamster, only knows three places in its cage: (a) the pine wood shaving that 

offers him bedding where it sleeps, (b) the feeding trough that supplies him with food, and (c) the 

wheel where it makes some exercise. 

After every minute, the hamster either gets to some other activity, or keeps on doing what 

he’s just been doing. Referring to Cheezit as a process without memory is not exaggerated at all: 

 When the hamster sleeps, there are 9 chances out of 10 that it won’t wake up the next 

minute. 

 When it wakes up, there is 1 chance out of 2 that it eats and 1 chance out of 2 that it does 

some exercise. 

 The hamster’s meal only lasts for one minute, after which it does something else. 

 After eating, there are 3 chances out of 10 that the hamster goes into its wheel, but most 

notably, there are 7 chances out of 10 that it goes back to sleep. 

 Running in the wheel is tiring: there is an 80% chance that the hamster gets tired and goes 

back to sleep. Otherwise, it keeps running, ignoring fatigue. 
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Process Diagrams: 

Process diagrams offer a natural way of graphically representing Markov processes – 

similar to the state diagrams of finite automata. 

For instance, the previous example with our hamster in a cage can be represented with the 

process diagram. 

 

Transition probabilities 

      S       E       Ex 



















2.008.0

3.007.0

05.005.09.0

Ex

E

S

P  

P(sleep | sleep)=0.9   P(sleep | eat)=0.7   P(sleep | exercise)=0.8 

P(eat | sleep)=0.05    P(eat | eat)=0    P(eat | exercise)=0 

P(exercise | sleep)=0.05   P(exercise | eat)=0.3   P(exercise | exercise)=0.2 

Example: Markov Chain 

Suppose that on any given sunny day, the next day’s weather has a 60% chance of being 

sunny, a 30% chance of being cloudy, and a 10% chance of being rainy. On any given cloudy day, 

the next day’s weather has a 40% chance of being sunny, a 30% chance of being cloudy, and a 

30% chance of being rainy. Lastly, on any given rainy day, there is a 20% chance of being sunny, 

a 50% chance of being cloudy, and a 30% chance of being rainy. 

(i) To find the transition probability matrix and also find the initial state probability matrix. 

(ii) Draw the process diagram. 

(iii) To determine the probabilities of the weather conditions after 5 days from today. 
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Procedure 

 To calculate the probabilities of weather condition and from the transition probability 

matrix. 

 To draw the process diagram for given probabilities. 

 To estimate the probabilities of the weather conditions after 5 days. 

S1 = S0  P 

P2
 = P  P 

S2 = S0  P2 

P3
 = P2  P 

S3 = S0  P3 

P4
 = P3  P 

S4 = S0  P4 

P5
 = P4  P 

S5 = S0  P5 

Calculation 
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(i) The transition Probability matrix is, 

𝑃 = [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

The initial state probability matrix is, 

𝑆0 = [1 0 0] 

(ii) The process diagram is  

 

(iii) To calculate the probabilities of the weather conditions after 5 days from today 

Here the initial vector is  𝑆0 = [1 0 0] because it was sunny on Sunday. 

Day 1:  

As Monday is first day away from Sunday so there have to determine the first step of the 

transition probability matrix. 

𝑃 = [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

S1 = S0  P 

𝑆1 = [1 0 0] [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

𝑆1 = [0.6 0.3 0.1] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next day is 0.6, clouding next 

is 0.3 and raining next day is 0.1. 
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Day 2:  

As Tuesday is Second day away from Sunday so there have to determine the Second step of the 

transition probability matrix. 

P2
 = P  P 

𝑃2 = [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] × [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

𝑃2 = [
0.50 0.32 0.18
0.42 0.36 0.22
0.38 0.36 0.26

] 

S2 = S0  P2 

𝑆2 = [1 0 0] [
0.50 0.32 0.18
0.42 0.36 0.22
0.38 0.36 0.26

] 

𝑆2 = [0.5 0.32 0.18] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Tuesday is 0.5, clouding 

next Tuesday is 0.32 and raining next Tuesday is 0.18. 

Day 3:  

As Wednesday is Third day away from Sunday so there have to determine the third step of the 

transition probability matrix. 

P3
 = P2  P 

𝑃3 = [
0.50 0.32 0.18
0.42 0.36 0.22
0.38 0.36 0.26

] × [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

𝑃3 = [
0.464 0.336 0.200
0.440 0.344 0.216
0.424 0.352 0.224

] 

S3 = S0  P3 

𝑆3 = [1 0 0] [
0.464 0.336 0.200
0.440 0.344 0.216
0.424 0.352 0.224

] 

𝑆3 = [0.464 0.336 0.2] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Wednesday is 0.464, 

clouding next Wednesday is 0.336 and raining next Wednesday is 0.2. 
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Day 4:  

As Thursday is four days away from Sunday so there have to determine the 4th step of the 

transition probability matrix. 

P4
 = P3  P 

𝑃4 = [
0.464 0.336 0.200
0.440 0.344 0.216
0.424 0.352 0.224

] × [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

𝑃4 = [
0.4528 0.3400 0.2072
0.4448 0.3432 0.2120
0.4400 0.3448 0.2152

] 

S4 = S0  P4 

𝑆4 = [1 0 0] [
0.4528 0.3400 0.2072
0.4448 0.3432 0.2120
0.4400 0.3448 0.2152

] 

𝑆4 = [0.4528 0.34 0.2072] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Thursday is 0.4528, 

clouding next Thursday is 0.34 and raining next Thursday is 0.2072. 

Day 5:  

As Friday is fifth days away from Sunday so there have to determine the fifth step of the transition 

probability matrix. 

P5
 = P4  P 

𝑃5 = [
0.4528 0.3400 0.2072
0.4448 0.3432 0.2120
0.4400 0.3448 0.2152

] × [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

𝑃5 = [
0.449 0.341 0.209
0.447 0.342 0.211
0.445 0.343 0.212

] 

S5 = S0  P5 

𝑆5 = [1 0 0] [
0.449 0.341 0.209
0.447 0.342 0.211
0.445 0.343 0.212

] 

𝑆5 = [0.449 0.341 0. 209] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Friday is 0.449, 

clouding next Friday is 0.341 and raining next Friday is 0.209. 

 



Page 18 
 

Result 

(i) The transition Probability matrix is, 

𝑃 = [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

The initial state probability matrix is, 

𝑆0 = [1 0 0] 

(ii) The process diagram is  

 

(iii) To calculate the probabilities of the weather conditions after 5 days from today 

Day 1:  

𝑃 = [
0.6 0.3 0.1
0.4 0.3 0.3
0.2 0.5 0.3

] 

𝑆1 = [0.6 0.3 0.1] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next day is 0.6, clouding next 

is 0.3 and raining next day is 0.1. 

Day 2:  

𝑃2 = [
0.50 0.32 0.18
0.42 0.36 0.22
0.38 0.36 0.26

] 

𝑆2 = [0.5 0.32 0.18] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Tuesday is 0.5, clouding 

next Tuesday is 0.32 and raining next Tuesday is 0.18. 
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Day 3:  

𝑃3 = [
0.464 0.336 0.200
0.440 0.344 0.216
0.424 0.352 0.224

] 

𝑆3 = [0.464 0.336 0.2] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Wednesday is 0.464, 

clouding next Wednesday is 0.336 and raining next Wednesday is 0.2. 

Day 4:  

𝑃4 = [
0.4628 0.3400 0.2072
0.4448 0.3432 0.2120
0.4400 0.3448 0.2152

] 

𝑆4 = [0.4528 0.34 0.2072] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Thursday is 0.4528, 

clouding next Thursday is 0.34 and raining next Thursday is 0.2072. 

Day 5:  

𝑃5 = [
0.449 0.341 0.209
0.447 0.322 0.211
0.445 0.343 0.212

] 

𝑆5 = [0.449 0.341 0. 209] 

Thus, the probability that if it is sunny on Sunday, it will be sunning next Friday is 0.449, 

clouding next Friday is 0.341 and raining next Friday is 0.209. 

The n-step transition probability matrix 

We define 𝑃𝑖𝑗
(𝑛)

 as the probability that the chain is in state Ej after n steps given that the 

chain started in state Ei. The first step transition probabilities 𝑃𝑖𝑗
(1)

= 𝑃𝑖𝑗 are simply the elements 

of the transition matrix T. We intend to find a formula for 𝑃𝑖𝑗
(𝑛)

. 

Now, by definition, 

𝑃𝑖𝑗
(𝑛)

= 𝑃(𝑋𝑛 = 𝑗|𝑋0 = 𝑖) 

And also 

𝑃𝑖𝑗
(𝑛)

= ∑ 𝑃(𝑋𝑛 = 𝑗, 𝑋𝑛−1 = 𝑘|𝑋0 = 𝑖)

𝑚

𝑘=1

 

for n ≥ 2, since the chain must have passed through one of all the m possible states at step n − 1. 
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For any three events A, B, and C, we have available the identity 

𝑃(𝐴 ∩ 𝐵|𝐶) =  𝑃(𝐴|𝐵 ∩ 𝐶) × 𝑃(𝐵|𝐶) 

Interpreting A as Xn = j, B as Xn−1 = k, and C as X0 = i, it follows that 

in General n :    iXkXjXPCBAP nn

n
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Using the Markov property again. These are known as the Chapman–Kolmogorov 

equations. Putting n successively equal to 2, 3, . . ., we find that the matrices with these elements 

are, using the product rule for matrices, 

[𝑃𝑖𝑗
(2)

] = [∑ 𝑃𝑖𝑘
(1)

𝑃𝑗𝑘
(1)

𝑚

𝑘=1

] =  𝑇2 

[𝑃𝑖𝑗
(3)

] = [∑ 𝑃𝑖𝑘
(2)

𝑃𝑗𝑘
(1)

𝑚

𝑘=1

] =  𝑇2𝑇 =  𝑇3 

Since 𝑃𝑖𝑘
(2)

 are the elements of T2, and so on. Generalising this rule, 

[𝑃𝑖𝑗
(𝑛)

] =  𝑇𝑛 

is proven by induction to n. 

 

Calculation Procedure for n-state Transition probability matrix:  

Rows indicate the current state and column indicate the transition. For example, given the 

current state of A, the probability of going to the next state A is s. Given the current state A', the 

probability of going from this state to A is r. Notice that the rows sum to 1. We will call this 

matrix P. 

𝑃 =
𝐴
𝐴′ [

𝑠 1 − 𝑠
𝑟 1 − 𝑟

] 
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Initial State distribution matrix: 

 This is the initial probabilities of being in state A as well as not A, A'.  Notice again 

that the row probabilities sum to one, as they should. 

𝑆0 = [𝑡 (1 − 𝑡)] 

First and second state matrices: 

 If we multiply the Initial state matrix by the transition matrix, we obtain the first state 

matrix. 

S1 = S0P 

 If the first state matrix is multiplied by the transition matrix we obtain the second state 

matrix:  

S2 = S1P = S0P . P = S0P
2 

 nth – State matrix: If this process is repeated, we will obtain the following expression: 

The entry in the ith row and jth column indicates the probability of the system moving from the ith 

state to the jth state in n observations or trials.  

Sn = Sn-1P = S0P
n 

Example: nth State Transition Probability Matrix 

An insurance company classifies drivers as low-risk if they are accident-free for one year. 

Past records indicate that 98% of the drivers in the low-risk category (L) will remain in that 

category of the next year, and 78% of the drivers who are not in the low-risk category (L') one 

year will be in the low-risk category of the next year. 

(i) Find the transition matrix. 

(ii) If 90% of the drivers in the community are the low-risk category in this year, what is 

the probability that a driver chosen at random from the community will be the  

low-risk category in the next 6 years? 

Procedure 

 To calculate the transition probability matrix 

𝑃 = [
𝐿 (1 − 𝐿)

𝐿′ (1 − 𝐿′)
] 

 To calculate the initial state distribution matrix 

𝑆0 = [𝑡 (1 − 𝑡)] 
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 To calculate the low-risk category in the next 6 years 

Year 1: S1 = S0P 

Year 2: S2 = S1P 

Year 3: S3 = S2P 

Year 4: S4 = S3P 

Year 5: S5 = S4P 

Year 6: S6 = S5P 

Calculation 

o The transition matrix, P  

L L' 

𝑃 =
𝐿
𝐿′ [

0.98 0.02
0.78 0.22

] 

o Initial State distribution matrix, S0  

     L      L' 

𝑆0 = [0.90 0.10] 

 

o First year Probability, S1  

S1 = S0P 

𝑆1 = [0.90 0.10] [
0.98 0.02
0.78 0.22

] 

        L      L' 

𝑆1 = [0.96 0.04] 

o Second year Probability, S2  

S2 = S1P = S0 P . P = S0P
2 

𝑆2 = [0.96 0.04] [
0.98 0.02
0.78 0.22

] 

        L      L' 

𝑆2 = [0.972 0.028] 

o Third year Probability, S3  

S3 = S2P 

𝑆3 = [0.972 0.028] [
0.98 0.02
0.78 0.22

] 

   𝑆3 = [0.9744 0.0256] 
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o Fourth year Probability, S4 

S4 = S3P 

𝑆4 = [0.9744 0.0256] [
0.98 0.02
0.78 0.22

] 

        L      L' 

𝑆4 = [0.97488 0.02512] 

o Fifth year Probability, S5 

S5 = S4P 

𝑆5 = [0.97488 0.02512] [
0.98 0.02
0.78 0.22

] 

        L      L' 

𝑆5 = [0.97498 0.02502] 

o Sixth year Probability, S6 

Use the formula Sn = S0P
n to find the 6th state matrix  

S6 = S5P 

𝑆6 = [0.97488 0.02502] [
0.98 0.02
0.78 0.22

] 

        L      L' 

𝑆6 = [0.974996 0.025004] 

After Six states, the percentage of low-risk drivers has increased to 0.97499 

Result 

 The transition matrix, P  

𝑃 =
𝐿
𝐿′ [

0.98 0.02
0.78 0.22

] 

 Initial State distribution matrix, S0  

𝑆0 = [0.90 0.10] 

 To calculate the low-risk category in the next 6 years 

 

Year 1: 𝑆1 = [0.96 0.04] 

Year 2: 𝑆2 = [0.972 0.028] 

Year 3: 𝑆3 = [0.9744 0.0256] 



Page 24 
 

Year 4: 𝑆4 = [0.97488 0.02512] 

Year 5: 𝑆5 = [0.97498 0.02502] 

Year 6: 𝑆6 = [0.974996 0.025004] 

After Six states, the percentage of low-risk drivers has increased to 0.97499 

Chapman – Kolmogorov equation 

Considered unit-step or one-step transition probabilities, the probability of Xn given Xn-1,  

i. e. the probability of the outcome at the nth step or trial given the outcome at the previous step; 

pjk gives the probability of unit-step transition from the state j at a trial to the state k at the next 

following trial. The m-step transition probability is denoted by 

Pr {𝑋𝑚+𝑛 = 𝑘|𝑋𝑛 = 𝑗} = 𝑝𝑗𝑘
(𝑚)

 

𝑝𝑗𝑘
(𝑚)

 gives the probability that from the state j at nth trial, the k is reached at (m + n )th trial 

in m steps, i. e. the probability of transition from the state j to the state k in exactly m steps. The 

number n does not occur in the r. h. s. of the relation and the chain is homogeneous. The one-step 

transition probabilities 𝑝𝑗𝑘
(1)

 are denoted by pjk for simplicity. Consider  

pjk
(2)

= Pr {𝑋𝑛+2 = 𝑘|𝑋𝑛 = 𝑗} 

The state k can be reached from the state j in two steps through some intermediate state r. 

Consider a fixed value of r; we have  

𝑝𝑟{𝑋𝑛+2 = 𝑘, 𝑋𝑛+1 = 𝑟|𝑋𝑛 = 𝑗} = 𝑝𝑟{𝑋𝑛+2 = 𝑘, 𝑋𝑛+1 = 𝑟|𝑋𝑛 = 𝑗} Pr {𝑋𝑛+1 = 𝑟|𝑋𝑛 = 𝑗} 

= 𝑝𝑟𝑘
(1)

𝑝𝑗𝑟
(1)

=  𝑝𝑟𝑘𝑝𝑗𝑟  

Since these intermediate state r can assume values r = 1, 2, …., we have  

pjk
(2)

= Pr {𝑋𝑛+2 = 𝑘|𝑋𝑛 = 𝑗} = 𝑝𝑟{𝑋𝑛+2 = 𝑘, 𝑋𝑛+1 = 𝑟|𝑋𝑛 = 𝑗}  

= ∑ pjrpjk
𝑟

 

(summing over for all intermediate states). 

By induction, we have 

𝑝𝑗𝑘
(𝑚+1)

= 𝑝𝑟{𝑋𝑛+𝑚+1 = 𝑘|𝑋𝑛 = 𝑗} 

= ∑ Pr {𝑋𝑛+𝑚+1 = 𝑘|𝑋𝑛+𝑚 = 𝑟}
𝑟

 𝑃𝑟{𝑋𝑛+𝑚 = 𝑟|𝑋𝑛 = 𝑗} 

= ∑ Pr {𝑃𝑗𝑟
(𝑚)

}
𝑟
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Similarly, we get 

𝑝𝑗𝑘
(𝑚+1)

= ∑ pjrpjr
(m)

𝑟
 

In general, we have 

𝑝𝑗𝑘
(𝑚+𝑛)

= ∑ prk
(n)

pjr
(m)

= ∑ pjr
(n)

prk
(m)

𝑟𝑟
 

This equation is a special case of Chapman-Kolmogorov equation, which is satisfied by 

the transition probabilities of a Markov chain. 

From the above argument, we get 

𝑝𝑗𝑘
(𝑚+𝑛)

≥ ∑ prk
(n)

pjr
(m)

𝑟 , for any r. 

Let P = (Pjk) denote the transition matrix of the unit-step transition and P(m) = 𝑃𝑗𝑘
(𝑚)

 denote 

the m-step transition matrix. For m = 2, we have the matrix P(2) whose elements are given by.  

It follow that the elements of P(2) are the elements of the matrix obtained by multiplying the 

matrix P by itself, i. e. 

𝑃(2) = 𝑃 × 𝑃 = 𝑃2 

Similarly, 

𝑃(𝑚+1) = 𝑃(𝑚) × 𝑃 

And  

𝑃(𝑚+𝑛) = 𝑃(𝑚) × 𝑃(𝑛) 

It should be noted that there exist non -Markov chain whose transition probabilities satisfy 

Chapman – Kolmogorov equation. 

 

Example: Chapman-Kolmogorov equation 

Consider a Markov chain with the following transition probability matrix. 

𝑃 = [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] 

and initial distribution 𝑃(0) =  [0.7 0.2 0.1]. Determine the conditional probabilities,  

(i) 𝑃[𝑋3 = 2|𝑋1 = 1], (ii) 𝑃[𝑋3 = 2|𝑋0 = 1], (iii) 𝑃[𝑋4 = 2|𝑋0 = 1], (iv) 𝑃[𝑋3 = 1|𝑋0 = 1] and 

(v) 𝑃[𝑋4 = 1|𝑋0 = 1] 



Page 26 
 

Procedure 

 To calculate the first state probability  

 𝑃(1) = 𝑃(0) × 𝑃 

 To calculate the conditional probabilities 

𝑃[𝑋3 = 2|𝑋1 = 1] =  𝑃12
(2)

𝑃1
(1)

 

𝑃[𝑋3 = 2|𝑋0 = 1] = 𝑃12
(3)

𝑃1
(0)

 

𝑃[𝑋4 = 2|𝑋0 = 1] = 𝑃12
(4)

𝑃1
(0)

 

𝑃[𝑋3 = 1|𝑋0 = 1] = 𝑃11
(3)

𝑃1
(0)

 

𝑃[𝑋4 = 1|𝑋0 = 1] = 𝑃11
(4)

𝑃1
(0)

 

Calculation 

Given transition probability matrix of {𝑋𝑛} is 

𝑃 = [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] 

By conditional probability 

𝑃(𝑋0 = 1) = 0.7 = 𝑃1
(0)

 

𝑃(𝑋0 = 2) = 0.2 = 𝑃2
(0)

 

𝑃(𝑋0 = 3) = 0.1 = 𝑃3
(0)

 

The first state probability  

 

 𝑃(1) = 𝑃(0) × 𝑃 

𝑃(1) = [0.7 0.2 0.1] × [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] 

𝑃(1) =  [0.17 0.19 0.64] 

By conditional probability 

𝑃(𝑋1 = 1) = 0.17 = 𝑃1
(1)

 

𝑃(𝑋1 = 2) = 0.19 = 𝑃2
(1)

 

𝑃(𝑋1 = 3) = 0.64 = 𝑃3
(1)
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To calculate two step TPM 

𝑃2 = [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] × [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] 

𝑃2 = [
0.47 0.13 0.4
0.42 0.14 0.44
0.26 0.17 0.57

] 

To calculate three step TPM 

𝑃3 = [
0.47 0.13 0.4
0.42 0.14 0.44
0.26 0.17 0.57

] × [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] 

𝑃3 = [
0.313 0.160 0.527
0.334 0.156 0.51
0.402 0.143 0.455

] 

To calculate four step TPM 

𝑃4 = [
0.313 0.160 0.527
0.334 0.156 0.51
0.402 0.143 0.455

] × [
0.1 0.2 0.7
0.2 0.2 0.6
0.6 0.1 0.3

] 

𝑃4 = [
0.3795 0.1473 0.4732
0.3706 0.1490 0.4804
0.3418 0.1545 0.5037

] 

The conditional probabilities is, 

(i) 𝑃[𝑋3 = 2|𝑋1 = 1] =  𝑃12
(2)

𝑃1
(1)

 

      = 0.13 × 0.17 

        𝑃[𝑋3 = 2|𝑋1 = 1] = 0.0221 

(ii) 𝑃[𝑋3 = 2|𝑋0 = 1] = 𝑃12
(3)

𝑃1
(0)

 

      = 0.16 × 0.7 

        𝑃[𝑋3 = 2|𝑋1 = 1] = 0.112 

(iii) 𝑃[𝑋4 = 2|𝑋0 = 1] = 𝑃12
(4)

𝑃1
(0)

 

      = 0.1473 × 0.7 

        𝑃[𝑋3 = 2|𝑋1 = 1] = 0.10311 
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(iv) 𝑃[𝑋3 = 1|𝑋0 = 1] = 𝑃11
(3)

𝑃1
(0)

 

= 0.313 × 0.7 

        𝑃[𝑋3 = 2|𝑋1 = 1] = 0.2191 

(v) 𝑃[𝑋4 = 1|𝑋0 = 1] = 𝑃11
(4)

𝑃1
(0)

 

= 0.3795 × 0.7 

        𝑃[𝑋3 = 2|𝑋1 = 1] = 0.2657 

Result 

 𝑃[𝑋3 = 2|𝑋1 = 1] =0.0221 

 𝑃[𝑋3 = 2|𝑋0 = 1] =0.112 

 𝑃[𝑋4 = 2|𝑋0 = 1] =0.10311 

 𝑃[𝑋3 = 1|𝑋0 = 1] =0.2191 

 𝑃[𝑋4 = 1|𝑋0 = 1] =0.2657 

 

Skeleton of Stochastic Process 
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