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UNIT – II 

STATES AND CHAIN 

Accessible 

State j is accessible from state i, if Pij(n) > 0 for some n ≥ 0. 

Communicate 

If state j is accessible from state i and state i is accessible from state j, then states i and j 

are said to communicate. If state i communicate with state j and state j communicates with state k, 

then state i communicate with state k. 

Class 

The state may be partitioned into one or more separate classes such that those states that 

communicate with each other are in the same class. 

Path 

Given two states of i and j, a path from i to j is a sequence of transitions that begins in i 

and ends in j, such that each transition in the sequence has a positive probability of occurring. 

Classification of States  

In general m-state chain with states E1, E2, . . . ,Em and transition matrix 

𝑇 = [ 𝑃𝑖𝑗] ;  1 ≤ 𝑖, 𝑗 ≤ 𝑚 

For a homogeneous chain, recollect that Pij is the probability that a transition occurs 

between Ei and Ej at any step or change of state in the chain. Classify some of the more common 

types of states which can occur in Markov chains. 

 Absorbing state 

 Periodic state 

 Persistent state 

 Transient state 

 Ergodic state 

Absorbing state 

Once entered the state there is no escape from an absorbing state. An absorbing state Ei is 

characterized by the probabilities 

𝑃𝑖𝑖 = 1,    𝑃𝑖𝑗 = 0,           𝑖 ≠ 𝑗,    𝑗 = 1, 2,⋯ ,𝑚 

in the ith row of T . 
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In other words, a state is said to be an absorbing state if, upon entering this state, the 

process never will leave this state again. Therefore, state i is an absorbing state if and only if  

Pii = 1. 

Example: 

 

Periodic state 

A state i is periodic with period k > 1 if k is the smallest number such that all paths 

leading from state i back to state i have a length that is a multiple of k. If a recurrent state is not 

periodic, it is referred to as aperiodic. 

Example 

A four-state Markov chain has the transition matrix 

𝑇 =

[
 
 
 
 0

1

2
0 0

0
1

2
1 0

1 0
0 0

0 0
1 0]

 
 
 
 

 

Show that all states have period 3. 

Solution 

The transition diagram is shown in the figure from which it is clear that all states have 

period 3. If the chain starts in E1, then returns to E1 are only possible at steps 3, 6, 9, . . . , either 

through E2 or E3.which means that all states are period 3. 
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Persistent state 

Recurrence Time Tii is the first time that the Markov chain returns to state i. 

Example 

A three-state Markov chain has the transition matrix 

𝑇 = [
𝑝 1 − 𝑝 0
0 0 1

1 − 𝑞 0 𝑞
] 

where 0 < p < 1, 0 < q < 1. Show that the state E1 is persistent. 

Solution 

The transition diagram is 

 

Sequence starts in E1, then it can be seen that first returns to E1 can be made to E1 at every 

step except for n = 2, since after two steps the chain must be in state E3. From the figure it can be 

argued that 

 

Using the sum formula for the geometric series. Hence f1 = 1, and consequently the state 

E1is persistent. 
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Transient state 

For a persistent state the probability of a first return at some step in the future is certain. 

For some states, 

𝑓𝑗 = ∑ 𝑓𝑗
(𝑛)

∞

𝑛=1

< 1 

which means that the probability of a first return is not certain. Such states are described as 

transient. 

Example 

A four-state Markov chain has the transition matrix 

𝑇 =

[
 
 
 
 
 
 0

1

2
1

2

1

2

1

4

1

4
0 0

0 0
0 0

1 0
1

2

1

2]
 
 
 
 
 
 

  

Show that E1 is a transient state. 

Solution 

The transition diagram is 

 

 

Hence,  

 

Implying that E1 is a transient state. The reason for the transience of E1 can be seen from 

the Figure, where transitions from E3 or E4 to E1 or E2 are not possible. 
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Ergodic state 

An important state which we will return to in the next section is the state which is 

persistent, non-null, and aperiodic. This state is called Ergodic. 

Example 

A three-state Markov chain has the transition matrix 

𝑇 = [
𝑝 1 − 𝑝 0
0 0 1

1 − 𝑞 0 𝑞
] 

where 0 < p < 1, 0 < q < 1. Show that the state E1 is Ergodic. 

Solution 

The state E1 was persistent with 

 

It follows that its mean recurrence time is 

 

The convergence of µ1 implies that E1 is non-null. Also, the diagonal elements 𝑝𝑖𝑖
(𝑛)

> 0 

forn ≥ 3 and i = 1, 2, 3, which means that E1 is aperiodic. Hence from the definition above, E1 

(and E2 and E3 also) is Ergodic. 

 

Classification of chains 

Irreducible chains 

An irreducible chain is one in which every state can be reached or is accessible from every 

other state in the chain in a finite number of steps. That any state Ej can be reached from any other 

state Ei means that 𝑝𝑖𝑗
(𝑛)

> 0 for some integer n. This isalso referred to as communicating states. 
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Example 

Show that the three-state chain with transition matrix 

𝑇 = [

1

3

1

3

1

3
0 0 1
1 0 0

] 

defines a regular (and hence irreducible) chain 

Solution 

For the transition matrix T 

𝑇2 = [

4

9

1

9

4

9

1 0 0
1

3

1

3

1

3

] and 𝑇3 =

[
 
 
 
 
16

27

4

27

7

27
1

3

1

3

1

3
4

9

1

9

4

9 ]
 
 
 
 

 

Hence T3is a positive matrix, which means that the chain is regular. 

Closed sets 

A set of states S in a Markov chain is a closed set if no state outside of S is reachable from 

any state in S, then S is said to be a closed set.  

Then 𝑝𝑖𝑗 = 0, ∀ 𝐸𝑖  ∈ 𝑆  𝑎𝑛𝑑  ∀ 𝐸𝑗 ∉ 𝑆. 

Ergodic chains 

As we have seen, all the states in an irreducible chain belong to the same class. If all states 

are ergodic, that is, persistent, non-null, and aperiodic, then the chain is described as an ergodic 

chain. 

Example 

Show that all states of the chain with transition matrix 

𝑇 = [

1

3

1

3

1

3
0 0 1
1 0 0

] 

Show that the chains are Ergodic. 

Solution 

The chain was shown to be irreducible and regular, which means that all states must be 

persistent, non-null, and aperiodic. Hence all states are ergodic. 
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Random Walk  

A one-dimensional random walk is a Markov chain whose state space is a finite or infinite 

subset a, a + 1, . . . , b of the integers, in which the particle, if it is in state i, can in a single 

transition either stay in i or move to one of the neighbouring states i - 1, i + 1. If the state space is 

taken as the nonnegative integers, the transition matrix of a random walk has the form 

 

Where, pi > 0, qi > 0, ri ≥ 0 and qi + ri + pi = 1, i = 1, 2, ... (i ≥ 1), 

p0 ≥ 0, r0 ≥ 0, r0 + p0 = 1. Specifically, if Xn = i, then for i ≥ 1, 

𝑃{𝑋𝑛+1 = 𝑖 + 1|𝑋𝑛 = 𝑖} = 𝑝𝑖 

𝑃{𝑋𝑛+1 = 1 − 1|𝑋𝑛 = 𝑖} = 𝑞𝑖 

𝑃{𝑋𝑛+1 = 𝑖|𝑋𝑛 = 𝑖} = 𝑟𝑖 

with the obvious modifications holding for i = 0. 

The designation "random walk" seems apt, since a realization of the process describes the 

path of a person (suitably intoxicated) moving randomly one step forward or backward. 

Suppose that a+1 positions are marked out on a straight line and numbered 0, 1, 2, . . . , a. 

A person starts at k where 0 < k < a. The walk proceeds in such a way that at each step there is a 

probability p that the walker goes ‘forward’ one place to k +1, and a probability q = 1-p that the 

walker goes ‘back’ one place to k - 1. The walk continues until either 0 or a is reached, and then 

ends. Generally, in a random walk, the position of a walker after having moved n times is known 

as the state of the walk after n steps or after covering n stages. Thus the walk described above 

starts at stage k at step 0 and moves to either stage k - 1 or stage k + 1 after 1 step, and so on. A 

random walk is said to be symmetric if p = q = ½. 

If the walk is bounded, then the ends of the walk are known as barriers, and they may have 

various properties. In this case the barriers are said to be absorbing, which implies that the walk 

must end once a barrier is reached since there is no escape. On the other hand, the barrier could be 

reflecting, in which case the walk returns to its previous state. A useful diagrammatic way of 

representing random walks is by a transition or process diagram as shown in Figure 1. In a 

transition diagram the possible stages of the walker can be represented by points on a line. If a 

transition between two points can occur in one step, then those points are joined by a curve or 

edge, as shown with an arrow indicating the direction of the walk and a weighting denoting the 

probability of the step occurring. In discrete mathematics or graph theory the transition diagram is 
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known as a directed graph. A walk in the transition diagram is a succession of edges covered 

without a break. In the following Figure, the closed loops with weightings of 1 at the ends of the 

walk indicate the absorbing barriers with no escape. 

 
Transition diagram for a random walk with  

absorbing barriers at each end of the walk 

Gambler's Ruin Problem 

Consider a game of chance between two players: A, the gambler and B, the opponent. It is 

assumed that at each play, A either wins one unit from B with probability p or loses one unit to B 

with probability q = 1 − p. Conversely, B either wins from A or loses to A with probabilities q or 

p. The result of every play of the game is independent of the results of previous plays. The 

gambler A and the opponent B each start with a given number of units and the game ends when 

either player has lost his or her initial stake. What is the probability that the gambler loses all his 

or her money or wins all the opponent’s money, assuming that an unlimited number of plays are 

possible? This is the classic gambler’s ruin problem1. In a simple example of gambler’s ruin, each 

play could depend on the spin of a fair coin, in which case p = q = ½. The word ruin is used 

because if the gambler plays a fair game against a bank or casino with unlimited funds, then the 

gambler is certain to lose. The problem will be solved by using results from conditional 

probability, which then leads to a difference equation. There are other questions associated with 

this problem, such as how many plays are expected before the game finishes. In some games the 

player might be playing against a casino which has a very large (effectively infinite) initial stake. 

 

Markov Process with discrete state space 

Discrete state space Markov Processes has many applicants in day to day processes, such 

as inventory control in business, queuing systems and reliability theory. Poisson process is a 

versatile process which represents almost all random processes whose values move on a discrete 

space. The inter success time or inter-arrival time between two notified events are assumed to be 

exponential with parameter λ. 

Poisson Processes 

Poisson is a special kind of Markov process with exponential inter arrival time. It is a 

stochastic process in continuous time with discrete state space which plays a vital role in 

modelling real life systems. 

Consider a random event such as incoming telephone calls, arrival of customer for services 

at a counter and occurrence of accidents at a certain places etc. 



Page 10 
 

Let us denote N(t) the number of occurrence of the event E in an interval of duration t. 

That is N(t) denote the number of events E occurred up to time epoch t. Then {N(t): t ≥ 0} is a 

counting process with time space R+. 

Let pn(t) is the probability that the random variable N(t) assumes the value n. 

i.e., pn(t) = P{N(t) = n} 

This probability is a function of time t and ∑ 𝑝𝑛(𝑡) = 1∞
𝑛=0 , where P{N(t)} represent 

probability distribution of the random variable N(t) for every value of t. 

The family of random variables, {N(t): t ≥ 0} is a stochastic process. Now we proceed to 

show that N(t) follows a Poisson distribution with parameter , the mean is t. Hence the 

stochastic process, {N(t): t ≥ 0} is a Poisson process. 

 

Postulates of Poisson Processes 

 Independence 

The random variable, (t+h)–N(t), the number of occurrences in the interval  

(t, t+h) is independent of the number of occurrences prior to that interval. 

 Homogeneity in time 

pn(t) depends only on the length t of the interval and is independent of the position 

of the interval. That is pn(t) = Pr {number of occurrence of event E in the interval  

(t1, t1+t)} 

 Regularity 

In an interval of infinitesimal length h, the probability of exactly one occurrence is 

λh + o(h) and that of more than one occurrence is o(h). 

Here o(h) is defined as lim
ℎ→0

𝑜(ℎ)

ℎ
= 0. 

In other words, if the interval between t and t + h is of very short duration h, then 

𝑝1(ℎ) =  𝜆ℎ + 𝑜(ℎ) 

∑ 𝑝𝑘(ℎ) = 𝑜(ℎ)

∞

𝑘=2

 

Since, ∑ 𝑃𝑛(ℎ) = 1∞
𝑛=0 , It follows that  

                                       𝑝0(ℎ) =  1 − 𝜆ℎ + 𝑜(ℎ)  ---------------- (1) 
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Theorem 

Under the postulates of independence, Homogeneity in time and Regularity, the random 

variable N(t) follows Position distribution with mean λt. That is pn(t) is given by the Position law: 

                         𝑝𝑛(𝑡) =  
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
,      n = 0, 1, 2, .......  ---------------- (2) 

Proof 

Consider 𝑝𝑛(𝑡 + ℎ) for n ≥ 0: 

The n events by epoch t + h can happen in the following mutually exclusive events 

A1, A2, A3, . . . . . An+1. 

For n ≥ 1 

A1: n occurrences by epoch t and no occurrence event between t and t + h; 

We have, 

Pr(𝐴1) = Pr{𝑁(𝑡) = 𝑛} Pr{𝑁(ℎ) = 0|𝑁(𝑡) = 𝑛}                   ---------------- (3) 

 = 𝑝𝑛(𝑡) 𝑝0(ℎ)  

= 𝑝𝑛(𝑡) (1 − 𝜆ℎ) + 𝑜(ℎ) 

A2: (n – 1) occurrences by t and 1 occurrences between t and t + h; 

We have, 

Pr(𝐴2) = Pr{𝑁(𝑡) = 𝑛 − 1} Pr{𝑁(ℎ) = 1|𝑁(𝑡) = 𝑛 − 1}      ---------------- (4) 

 = 𝑝𝑛−1(𝑡) 𝑝1(ℎ)  

= 𝑝𝑛−1(𝑡) (𝜆ℎ) + 𝑜(ℎ) 

For n ≥ 2 

A3: (n – 2) occurrences by epoch t and 2 occurrences between t and t + h; 

We have, 

Pr(𝐴3) =  𝑝𝑛−2(𝑡){𝑝2(ℎ)} ≤ 𝑝2(ℎ) 

Same result holds for Pr(𝐴4) , Pr(𝐴5) , ……… 
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Thus we have 

∑ Pr {𝐴𝑘+1} ≤ ∑ 𝑝𝑘(ℎ) = 𝑜(ℎ)

𝑛

𝑘=2

𝑛

𝑘=2

 

And so 

 𝑝𝑛(𝑡 + ℎ) = 𝑝𝑛(𝑡)(1 − 𝜆ℎ) + 𝑝𝑛−1(𝑡) (𝜆ℎ) + 𝑜(ℎ),   𝑛 ≥ 1 

                        
𝑝𝑛(𝑡+ℎ)−𝑝𝑛(𝑡)

ℎ
= −𝜆𝑝𝑛(𝑡) + 𝜆𝑝𝑛−1(𝑡) +

𝑜(ℎ)

ℎ
                    ---------------- (5) 

taking limit, as h → 0, we get 

                       𝑝𝑛
′ (𝑡) = −𝜆[𝑝𝑛(𝑡) − 𝑝𝑛−1(𝑡)], 𝑛 ≥ 1                               ---------------- (6) 

For n = 0, we get 

𝑝0(𝑡 + ℎ) = 𝑝0(𝑡)𝑝0(ℎ) = 𝑝0(𝑡)(1 − λh) + o(h) 

𝑝0(𝑡 + ℎ) − 𝑝0(𝑡)

ℎ
= −𝜆𝑝0(𝑡) +

𝑜(ℎ)

ℎ
 

Hence, as h → 0, 𝑝0
′ (𝑡) = −𝜆𝑝0(𝑡).          ---------------------- (7) 

Suppose that the process starts from scratch at time 0, so that N (0) = 0, i. e. 

𝑝0(0) = 1  

𝑝𝑛(0)𝑓𝑜𝑟 𝑛 ≠ 0.       ---------------------- (8) 

The differential – difference equations (6) and the differential equation (7) together with 

(8) completely specify the system. Their solutions give the probability distribution {pn(t)} of N(t). 

The solutions are given by 

𝑝𝑛(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
, 𝑛 = 0,1,2, . . . . .. 

Hence the proof. 

 

Problem – 1: The Probability Law of Poisson Processes 

Suppose that customers arrive at a Bank according to a Poisson process with a mean rate 

of a minute. Then the number of customers N(t) arriving in an interval of duration t minutes 

follows Poisson distribution with mean at. If the rate of arrival is 3 per minute, then in an arrival 

of 2 minute and 4 minutes, find the probability that the number of customers arriving is: 

(i) Exactly 4customers arrive,  

(ii) Greater than 4customers arrive, 

(iii) Less than 4customers arrive. 
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Procedure 

 To identify the λ and t. 

 To calculate the probability law of Poisson processes is 

𝑝𝑛(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
 

Calculation 

Let N(t) denote the number of customers arrived during the interval (0, t).  

Then N(t) follows the Poisson distribution. 

Here, n = 4, λ = 3 /min and t = 2 /min and 4 /min 

The Poisson processes is 

𝑝𝑛(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
 

(i) Exactly 4 customers arrive 

P[Exactly 4 customers arrive during a time interval of two minutes] 

Mean = λt = 3 × 2 = 6 /min 

 

𝑝4(6) =
𝑒−6(6)4

4!
 

=
3.2125

4 × 3 × 2 × 1
 

𝑝4(6) = 0.1339 

P[Exactly 4 customers arrive during a time interval of four minutes] 

Mean = λt = 3 × 4 = 12 /min 

 

𝑝4(12) =
𝑒−12(12)4

4!
 

=
0.1274

4 × 3 × 2 × 1
 

𝑝4(12) = 0.0053 
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(ii) Greater than 4 customers arrive 

P[Greater than 4 customers arrive during a time interval of two minutes] 

P{N(2) > 4} = 1 – P{N(2) ≤ 4} 

 = 1 – {P(N(t) = 0) + P(N(t) = 1) + P(N(t) = 2) + P(N(t) = 3) + P(N(t) = 4)} 

P{N(t)  >  4} = ∑
𝑒−6(6)4

4!

4

𝑛=0

 

= 1 − {
𝑒−6(6)0

0!
+

𝑒−6(6)1

1!
+

𝑒−6(6)2

2!
+

𝑒−6(6)3

3!
+

𝑒−6(6)4

4!
} 

= 1 − 𝑒−6{1 + 6 + 18 + 36 + 54} 

      = 1 – 0.285 

P{N(2) > 4} = 0.715 

P[Greater than 4 customers arrive during a time interval of four minutes] 

P{N(4) > 4} = 1 – P{N(4) ≤ 4} 

 = 1 – {P(N(t) = 0) + P(N(t) = 1) + P(N(t) = 2) + P(N(t) = 3) + P(N(t) = 4)} 

P{N(t)  >  4} = ∑
𝑒−12(12)4

4!

4

𝑛=0

 

= 1 − {
𝑒−12(12)0

0!
+

𝑒−12(12)1

1!
+

𝑒−12(12)2

2!
+

𝑒−12(12)3

3!
+

𝑒−12(12)4

4!
} 

= 1 − 𝑒−12{1 + 12 + 72 + 288 + 864} = 1 – 0.0076 

P{N(4) > 4} = 0.9924 

(iii) Less than 4customers arrive 

P[Less than 4 customers arrive during a time interval of two minutes] 

P{N(2) <  4} = ∑
𝑒−6(6)3

3!

3

𝑛=0

 

= {
𝑒−6(6)0

0!
+

𝑒−6(6)1

1!
+

𝑒−6(6)2

2!
+

𝑒−6(6)3

3!
} 

= 𝑒−6{1 + 6 + 18 + 36} 

P{N(2) <  4} = 0.1512 
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P[Less than 4 customers arrive during a time interval of four minutes] 

P{N(4) <  4} = ∑
𝑒−12(12)3

3!

3

𝑛=0

 

= {
𝑒−12(12)0

0!
+

𝑒−12(12)1

1!
+

𝑒−12(12)2

2!
+

𝑒−12(12)3

3!
} 

= 𝑒−12{1 + 12 + 72 + 288} 

P{N(4) <  4} = 0.0023 

Result 

The probability that the number of customers arriving is 

(i) Exactly 4 customers arrive 

𝑝4(6) = 0.1339 

𝑝4(12) = 0.0053 

(ii) Greater than 4 customers arrive 

P{N(2) > 4} = 0.715 

P{N(4) > 4} = 0.9924 

(iii) Less than 4customers arrive 

P{N(2) < 4} = 0.1512 

P{N(4) < 4} = 0.0023 
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Problem– 2 

A machine goes out of order whenever a component part fails. The failure of this part is in 

accordance with a Poisson process with mean rate of 1 per week. Then the probability that two 

weeks have elapsed since the last failure is e-2 = 0.135, being the probability that time t = 2 weeks, 

the number of occurrences is 0. Suppose that there are 5 spare parts of the component in an 

inventory and that the next supply is not due in 10 weeks. What is the probability that the machine 

will not be out of order in the next 10 weeks? 

Solution 

Here, λ = 5 spare parts and t = 2 weeks 

Mean = λt = 5× 2 = 10 weeks 

The Poisson processes is 

𝑝𝑛(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
 

The probability that the number of failures in t = 10 weeks will be less than or equal to 5 

𝑝𝑛(2) = ∑
𝑒−10(10)𝑛

𝑛!

5

𝑛=0

 

= {
𝑒−10(10)0

0!
+

𝑒−10(10)1

1!
+

𝑒−10(10)2

2!
+

𝑒−10(10)3

3!
+

𝑒−10(10)4

4!
+

𝑒−10(10)5

5!
} 

= e-10 {1 + 10 + 50 + 166.67 + 416.67 + 833.33} 

= e-10{1477.67} 

= 0.068 

The probability that the number of failures in t = 10 weeks will be less than or equal to 5 is 0.068. 

 

Pure Birth Processes: 

 A natural generalization of the Poisson process is to permit the chance of an event 

occurring at a given instant of time to depend upon the number of events which have already 

occurred. An example of this phenomenon is the reproduction of living organisms (and hence the 

name of the process), in which under certain conditions – sufficient food, no mortality, no 

migration, etc, the probability of a birth at a given instant is proportional (directly) to the 

population size at the time. 

Here the probability that k events occurs between t and t+h, given that n event occurred by 

epoch t is given by 
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𝑝𝑘(ℎ) = 𝑝(𝑁(ℎ) = 𝑘|𝑁(𝑡) = 𝑛) = {

𝜆𝑛(ℎ) + 𝑜(ℎ)               𝑘 = 1

𝑜(ℎ)                                𝑘 ≥ 2

1 − 𝜆𝑛(ℎ) + 𝑜(ℎ)      𝑘 = 0

    

The equation can be 

𝑝𝑛(𝑡 + ℎ) = 𝑝𝑛(𝑡){1 − λ𝑛h + 𝑝𝑛−1(𝑡){λ𝑛−1h} + o(h)}, 𝑛 ≥ 1 

And taking limits, as ℎ → 0, we have 

𝑝1(𝑡) = −λ𝑛𝑝𝑛(𝑡) + 𝜆𝑛−1𝑝𝑛−1(𝑡),   𝑛 ≥ 1 

𝑝0(𝑡) = −λ0𝑝0(𝑡) 

This process is called pure births process. 

 

Pure Birth and Death Processes 

Consider a pure birth process, where probability that the Number of births between t and  

t+h is k, given the number of individuals at epoch t is n is given by 

𝑝(𝑘 , ℎ | 𝑛, 𝑡) = {

𝜆𝑛(ℎ) + 𝑜(ℎ)               𝑘 = 1

𝑜(ℎ)                                𝑘 ≥ 2
1 − 𝜆𝑛(ℎ) + 𝑜(ℎ)      𝑘 = 0

    --------------- (1) 

Probability that the Number of deaths between t and t+h is k, given the number of 

individuals at epoch t is n is given by 

𝑝(𝑘 , ℎ | 𝑛, 𝑡) = {

𝜇𝑛(ℎ) + 𝑜(ℎ)               𝑘 = 1

𝑜(ℎ)                                𝑘 ≥ 2
1 − 𝜇𝑛(ℎ) + 𝑜(ℎ)      𝑘 = 0

   --------------- (2) 

Consider, Aij : (n – i + j) individuals by epoch t, i birth and j death between t and t + h, i, j = 0 , 1. 

We have 

𝑝(𝐴00) = 𝑝𝑛(𝑡){1 − λ𝑛h + o(h)}{1 − μ
𝑛
h + o(h)} 

= 𝑝𝑛(𝑡){1 − (λ
𝑛

+ 𝜇
𝑛
)h + o(h)} 

𝑝(𝐴10) = 𝑝𝑛−1(𝑡){λ𝑛−1h + o(h)}{1 − μ
𝑛−1

h + o(h)} 

= 𝑝𝑛−1(𝑡){λ𝑛−1h + o(h)} 

𝑝(𝐴01) = 𝑝𝑛−1(𝑡){1 − λ𝑛+1h + o(h)}{μ
𝑛+1

h + o(h)} 

= 𝑝𝑛+1(𝑡){μ𝑛+1
h + o(h)} 
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𝑝(𝐴11) = 𝑝𝑛(𝑡){λ𝑛h + o(h)}{μ
𝑛
h + o(h)} = 𝑜(ℎ) 

Hence, we have, for n ≥ 1, 

𝑝𝑛(𝑡 + ℎ) = 𝑝𝑛(𝑡){1 − (λ
𝑛
+ 𝜇

𝑛
)h + 𝑝𝑛−1(𝑡){λ𝑛−1h} + 𝑝𝑛+1(𝑡){μ𝑛+1

h} + o(h)} -------- (3) 

𝑝𝑛(𝑡 + ℎ) − 𝑝𝑛(𝑡)

ℎ
= −(λ

𝑛
+ 𝜇

𝑛
)𝑝𝑛(𝑡) + 𝜆𝑛−1𝑝𝑛−1(𝑡) + μ

𝑛+1
𝑝𝑛+1(𝑡) +

𝑜(ℎ)

ℎ
 

And taking limits, as ℎ → 0, we have 

𝑝𝑛
′ (𝑡) = −(λ

𝑛
+ 𝜇

𝑛
)𝑝𝑛(𝑡) + 𝜆𝑛−1𝑝𝑛−1(𝑡) + μ

𝑛+1
𝑝𝑛+1(𝑡),   𝑛 ≥ 1   ----------------------- (4) 

For n = 0, we have 

𝑝0(𝑡 + ℎ) = 𝑝0(𝑡){1 − (λ
0
h) + o(h)} + 𝑝1(𝑡){1 − λ0h + o(h)}{μ

𝑛
h + o(h)}----------- (5) 

= 𝑝0(𝑡) − λ0h𝑝0(𝑡) + {μ
𝑛
h} 𝑝1(𝑡) 

𝑝0(𝑡 + ℎ) − 𝑝0(𝑡)

ℎ
= −λ0 𝑝0(𝑡) + μ

1
 𝑝1(𝑡) +

𝑜(ℎ)

ℎ
 

Taken limit as h→ 0, we get 

𝑝0
′ (𝑡) = −(λ

0
)𝑝0(𝑡) + μ

1
𝑝1(𝑡)   ----------------------- (6) 

If at epoch t = 0, there were i (≥ 0) individuals, then the initial condition is 

𝑝𝑛(0) = 0 

𝑓𝑜𝑟 𝑛 ≠ 𝑖, 𝑝𝑖(0) = 1.  ---------------------- (7) 

The above equations (4) and (6) are the equations of the birth and death process. 

 

Markov processes with continuous state space 

Poisson processes are a real-life process with continuous time with discrete counting state 

space. But in most of the real-life problems Markov Problems have continuous state space. For 

example, level of water in a dam over a continuous time space, Life time of a electronic device 

over a continuous time are Stochastic processes with continuous state space. In mathematical term 

{X(t) : t Є T}where T = (−∞, ∞) and  X(t) Є (−∞, ∞) is a stochastic process with continuous time 

space and continuous state space. 

Weiner process 

Consider that a (Brownian) particle performs a random walk such that in a small interval 

of time of duration ∆t, the displacement of the particle to the right or to the left is also of small 

magnitude ∆x, the total displacement X(t) of the particle in time t being x. Suppose that the 
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random variable Zi denotes the length of the ith step taken by the particle in a small interval of time 

∆t and that 

𝑃𝑟{𝑍𝑖 = ∆𝑥} = 𝑝 𝑎𝑛𝑑 𝑃𝑟{𝑍𝑖 = ∆𝑥} = 𝑞,        𝑝 + 𝑞 = 1 

0<p< 1, where p is independent of x and t. 

Suppose that the interval of length t is divided into n equal subintervals of length ∆t and 

that the displacements Zi, i = 1, … ,n in the nth steps are mutually independent random variables. 

Then n (∆t) = t and the total displacement X(t) is the sum of n, i.i.d. random variables Zi, i.e.,  

𝑋(𝑡) = ∑ 𝑍𝑖

𝑛(𝑡)

𝑖=1

, 𝑛 ≡ 𝑛(𝑡)
𝑡

∆𝑡
 

We have, 𝐸(𝑍𝑖) = (𝑝 − 𝑞)∆𝑥 𝑎𝑛𝑑 𝑉𝑎𝑟(𝑍𝑖) = 4𝑝𝑞 (∆𝑥)2. 

Hence,𝐸{𝑋(𝑡)} = 𝑛 𝐸(𝑍𝑖) = 𝑡(𝑝 − 𝑞)
∆𝑥

∆𝑡
,   ------------------- (1) 

And 𝑉𝑎𝑟{𝑋(𝑡)} = 𝑛 𝑣𝑎𝑟(𝑍𝑖) =
4𝑝𝑞𝑟(∆𝑥)2

∆𝑡
. 

To get meaningful result, as ∆x → 0, ∆t → 0, we must have 

(∆𝑥)2

∆𝑡
→ 𝑎 𝑙𝑖𝑚𝑖𝑡, (𝑝 − 𝑞) → 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 ∆𝑥.  ------------------ (2) 

We may suppose, in particular, that in an interval of length t, X(t) has mean value function 

equal to μt and variance function equal to σ2t. In other words, we suppose that as ∆x → 0, ∆t → 0, 

such a way that (2) are satisfied, and per unit time 

𝐸{𝑋(𝑡)}  → 𝜇 𝑎𝑛𝑑 𝑣𝑎𝑟{𝑋(𝑡)}  →  𝜎2,   ------------------- (3) 

From (1) for t = 1 and (3), we have 

(𝑝−𝑞)∆𝑥

∆𝑡
 →  𝜇; 

4𝑝𝑞𝑟 (∆𝑥)2

∆𝑡
 →  𝜎2.  ------------------- (4) 

The relations (2) and (4) will be satisfied when 

∆𝑥 =  𝜎(∆𝑡)
1

2   ------------------- (5) 

𝑝 =
1

2
(1 +

𝜇(∆𝑡)
1
2

𝜎
)  𝑎𝑛𝑑 𝑞 =  

1

2
(1 −

𝜇(∆𝑡)
1
2

𝜎
)  ------------------- (6) 

Now since Zi are i. i. d. random variables, the sum ∑ 𝑍𝑖 = 𝑋(𝑡)
𝑛(𝑡)
𝑖=1 for large n(t) (=n), is 

asymptotically normal with mean μt and variance σ2t. 

 We may now define a Wiener or a Brownian motion process as follows: 
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The stochastic process {X(t), t ≥ 0} is called a Wiener process (or a Wiener Einstein 

process or a Brownian motion process) with drift μ and variance parameter σ2, if: 

(i) X(t) has independent increments, i. e. for every pair of disjoint intervals of time (s, t) 

and (u, v), where s ≤ t ≤ u ≤ v, the random variables {X(t) – X(s)} and {X(v) – X(u)} 

are independent. 

(ii) Every increment {X(t) – X(s)} is normally distributed with mean μ(t - s) and variance 

σ2(t). 

Note that (i) implies that Wiener process is a Markov process with independent increments 

and (ii) implies that a Wiener process is Gaussian. 

 

Stationary processes 

Stationarity refers to time invariance of some, or all, of the statistics of a random process, 

such as mean, autocorrelation, nth-order distribution 

We can classify random processes based on many different criteria. One of the important 

questions that we can ask about a random process is whether it is a stationary process. Intuitively, 

a random process {X(t), t ∈ j} is stationary if its statistical properties do not change by time. For 

example, for a stationary process, X(t) and X(t+Δ) have the same probability distributions. In 

particular, we have 

)()( )()( xFxF tXtX  ,  for all t, t+ Δ ∈j 

More generally, for a stationary process, the joint distribution of X(t1) and X(t2) is the 

same as the joint distribution of X(t1+Δ) and X(t2+Δ). For example, if you have a stationary 

process X(t) then 

   AtXtXPAtXtXP  ))(),(())(),(( 2121
 

For any set A∈R2. In sum, a random process is stationary if a time shift does not change 

its statistical properties. Here is a formal definition of Stationarity of continuous-time processes. 

 

Strict-Sense Stationary: 

The stochastic process X(.) is called stationary (or strict-sense stationary (SSS), or strictly 

stationary) if the joint distribution of any collection of samples depends only on their relative 

time. That is, for any k and any t1, t2, . . . ,tk and any τ, we have 

),...,;,...,(),...,;,...,( 1111   kkXkkX ttxxpttxxp  

If for any τ, where the left side represents the joint density function of the random 

variables X1=X(t1), X2=X(t2),..., Xk=X(tk) and the right side corresponds to the joint density 

function of the random variables Xʹ1=X(t1+τ), Xʹ2=X(t2+τ),...,Xʹk=X(tk+τ). A process X(t) is said to 

be strict-sense stationary is true for all ti, i =1,2,....,k, k= 1,2,.... and any τ. 
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Wide-Sense Stationary: 

The process X(.) is said to be wide-sense stationary (WSS) (or weakly stationary) if the 

mean of the process does not depend on time, and autocorrelation function depends only on the 

time difference of the two samples. That is, 

)(),(;)( 1221 ttRttRmtm XXXX   

 Another class of random processes of interest is processes whose description exhibits 

periodic behaviour. These processes arise in many communications applications, where operations 

must be repeated periodically. 

 

 


