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UNIT — 11

SAMPLING DISTRIBUTIONS IN MULTIVARIATE ANALYSIS

Hotelling's T?

Hotelling’s T-Squared (Hotelling, 1931) is the multivariate counterpart of the T-test.
Multivariate means that you have data for more than one parameter for each sample. For
example, to compare how well two different sets of students performed in school. Could
compare Univariate (e.g. mean test scores) with a t-test. Or, could use Hotelling’s T-squared
to compare multivariate data (e.g. the multivariate mean of test scores, GPA and class

grades).

Hotelling’s T-Squared is based on Hotelling’s T2 distribution and forms the basis for

various multivariate control charts.
Hotelling's T2 Distribution

If X is Univariate normal with mean p and standard deviation o, then

_Jﬁ()‘(—y) (n-1)s?
== 2

U ~N(0,1), and V :iz(xi —X)? = ~ x>, where s? is the sample
(o)

variance from a sample of size n. If U and V are independently distributed, then Student's-t is

Inx- ﬂ/ \/_ n(X —u)

~t.,.
e

The multivariate analogue of Student's — t is Hotelling's T2.

defined as

If X« (@ =1, 2,...,n)is an independent sample of size n from Ny(p, X) and, if X is
the sample mean vector, S the matrix of variance covariance, then the Hotelling's —T?2 is

defined by the relation
T?=n(X—u)'SH(X—-L).
Properties of Hotelling's T2 Distribution
e Distribution: T? follows a Hotelling's T-squared distribution, which is a multivariate
extension of the F-distribution.

e Degrees of freedom: The T2 distribution has two types of degrees of freedom:

p (number of variables) and n-1 (sample size minus one).
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e Mean and variance: The mean of T2 is p(n — 1)/(n — p — 1) and the variance is
2p(n-1)(n—p-1/(n—p-1)*(n-p-3)).

e Invariance: T?is invariant under linear transformations of the data.

e Consistency: T2 is a consistent estimator of the population mean vector.

e Asymptotic distribution: As n — oo, T? converges in distribution to a chi-squared

distribution with p degrees of freedom.
Applications of Hotelling's T2 Distribution

e Statistics and Research

> Multivariate hypothesis testing: T2 is used to test the significance of
differences between sample mean vectors and known population mean vectors.

> Discriminant analysis: T2 is used to determine the most effective variables for
discriminating between groups.

> Cluster analysis: T2 is used to evaluate the similarity between clusters.

e Data Science and Machine Learning

> Anomaly detection: T2 is used to identify outliers and anomalies in multivariate
data.

> Feature selection: T2 is used to select the most relevant features for model
development.

> Model validation: T2 is used to evaluate the performance of multivariate
models.

e Business and Economics

> Quality control: T2is used to monitor and control multivariate processes.
> Marketing research: T2is used to analyze customer behavior and preferences.

> Financial analysis: T?is used to evaluate portfolio performance and risk.

e Engineering and Computer Science

> Signal processing: T2 is used to detect anomalies in multivariate signals.
> Image processing: T2 is used to analyze and classify images.

> Robotics: T2 is used to evaluate the performance of robotic systems.

e Medical and Healthcare

> Disease diagnosis: T2 is used to identify biomarkers for disease diagnosis.
> Patient monitoring: T2 is used to monitor patient health and detect anomalies.

> Clinical trials: T2 is used to evaluate the efficacy of treatments.
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e Other applications
» Environmental monitoring: T2 is used to evaluate water and air quality.
» Social sciences: T2 is used to analyze social and demographic data.

» Sports analytics: T2 is used to evaluate team and player performance.

One Sample Hotelling’s T?

As described in One Sample t-Test, the t-test can be used to test the null hypothesis
that the population mean of a random variable x has a certain value, i.e. Ho: u = xo. The test

statistic is given by

= X4
s/vn
The applicable Univariate test of the null hypothesis is based on the fact that

t ~ T(n — 1) provided the following assumptions are met:

e The population of x has a unique mean: i.e. there are no distinct sub-populations with
different means
e The population of x has a normal distribution

e The sample is a random sample with each element in the sample taken independently.

The null hypothesis is rejected if |t| > tcrit, F Distribution, an equivalent test can be made

using the test statistic t> and noting that t> ~ F(1, n— 1).
Now, t? can be expressed as follows:
T2 =n(X— 1) S™ (X — 115)
where x is the sample mean and S is the sample standard deviation.

Multivariate case

The population mean of the k x 1 random vector X has a certain value. Here, the null

hypothesis is Ho: p = u° where p and p° are vectors.

Since the null hypothesis is true when ui = i for all i, 1 <i <k, one way to carry out
this test is to perform k separate univariate t-tests (or the equivalent F tests). The null

hypothesis is then rejected if any one of these k univariate tests rejects its null hypothesis.
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Experiment-wise Error Rate

If use a given value of « for all k tests, then the probability of the multivariate
null hypothesis being rejected is much higher than a. For this reason, use a correction
factor, usually, the Dunn/Sidak or Bonferroni correction factor, as described in
Planned Comparisons. Thus, use a significance level of 1 — (1-a)Y* or a/k instead of a
for each of the k univariate tests.

This approach is perfectly reasonable when the random variables x; in X are
independent. But when they are not independent then the Dunn/Sidak or Bonferroni
correction factors over-correct and the resulting experiment-wise value for o is lower

than it needs to be, which results in a test with lower statistical power.

Since it is common to create experiments in which the random variables x; in
X are not independent, it is better to use a different approach. In particular, will use

the multivariate test based on Hotelling’s T-square test statistic.

T-square statistic

Definition 1: Hotelling’s T-square test statistic is
T?=n(X-u") ST(X -4

where S is the covariance matrix of the sample for X, X'is the mean of the

sample, and where the sample for each random variable x; in X has n elements.

Note the similarity between the expression for T2 and the expression for t? given above.

Property 1:

N(X =)' SH(X=u) ~ 1*(K)
Corollary 1: For n sufficiently large, T2 ~ (k)

For small n, T2 is not sufficiently accurate and a better estimate is achieved

using the following property.

Property 2: Under the null hypothesis

n—k

= k(n—l)T ~F(k,n—k)

If F >Fcrit then we reject the null hypothesis.
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Hotelling’s T-square Test for Two Independent Samples
Univariate case

In the univariate case, we have two independent random variables and want to
determine whether the population means of the two random variables are equal,
i.e. Ho: T¥ax = Tvay. To test this hypothesis we create a random sample for each variable. We
define the following statistic

:(X—V)—(ﬂx—uy)
\/1 1
S | —+—
n, n,

where s is the pooled standard deviation defined by

t

, (N =Ds}+(n, -Ds;
(0, =D+ (n, 1)

The t-statistic defined above has a t distribution with ny+ny-2 degrees of freedom,
i.e. t ~ T(nx+ny-2)

Assumptions

e The populations of x and y have unique means and there are no distinct sub-

populations with different means
e The populations of x and y have a normal distribution
e The variances of the two populations are equal (homogeneity of variances)

e The samples for x and y are random with each element in the sample taken

independently

The null hypothesis is rejected if [t >tcit. Also note that by Property 1 of F

Distribution, an equivalent test can be made using the t?test statistic is
t2 -~ F(l, nx+ny'2)

Also, t? can be expressed as follows:

t =(z—u){s{i+iﬂ ()"
n, n,
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Multivariate case

To test whether the population means of the k A — 1 random vectors and Y are equal,
i.e. the null hypothesis Ho: T¥%X = T%4Y.

Definition 1: The Two-sample Hotelling T-square test statistic is

T? :(X—V){s[ni+iﬂ (X =YY

X ny

where S is the pooled sample covariance matrix of XA and Y, namely

S — (nx _1)Sx +(ny _l)SY
(0, -D+(n, -1

Note the similarity between the expression for T2 and the expression for t? given above.
Property 1: For ng and ny sufficiently large, T2 ~T# (k)

For small n«A and Any, T2 is not sufficiently accurate and a better estimate is achieved

using the following theorem.

Property 2: Under the null hypothesis

n—k

g’ Fln-k)

If F > Ferit then we reject the null hypothesis.
T2 Statistic as a function of Likelihood Ratio Criterion

Let X« (@ =1, 2, ..., n > p) be a random sample of size n from Np(n, X) . The

likelihood function is

f(u,2)= EXD{—%Z(XQ ~ )7 (X, —ﬂ)}

o
(27[)np/2 |Z|n/2
and the likelihood ratio criterion

4 — max L,(u,X)  max L,
max L,(«,2) maxL
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In the parameter space €, the maximum of L occurs when the parameters p and X are

. . . I . . A ~ A
estimated by their maximum likelihood estimators i.e., gz=XandX =—. In the space o,
n

we have u = u,and S = EZ(xa — 1) (X, — 1,)", Therefore
n o

e L, = ;mexp{—%zm - x>'[5j_ (x, - xﬂ
(Zﬂ)anZ a n

n

_ {_in}
AT 2

Similarly,
s ! exp{—%trn{; 510 6, =)} S5,y s —uo)H
(2m)"™ 2 (X, = ) (X = 145)’
= " — exp{—lnp}
(27)"™"* ;(xa — o) (X, = 145)’ i
Consider

;(Xa — 11y) (X, — 15)' = ;[(Xa — %)+ (X = 225 )][(x,, = %)+ (X = 110)]

!

= A+n()_(_,uo)()_(_ﬂo)

Hence,

nnp/2 1
max L, = T exp{—znp}

(Zﬂ)nplz A+ n()_(_:uo)()_(_ﬂo)’

Thus, the likelihood ratio criterion is

n/2
, A

[ (e ) c-0)

i A ,: A
1 R w)| (AR ) A (- )
\/ﬁ()_(_ﬂo) A

n/2

since [3]=[Z,| [£11 — 21, 255 25,
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1
LN (X - ) AT (X 1)
1 1
T?_
n-1
where, T2 = n (X — #5)’ S (X 115) = (N ~1) (X — 41,)’ A™ (R~ 11)

= — — =
1+E(X_ﬂo)sl(x_ﬂo) 1+

The likelihood ratio test is defined by the critical region A < Ao, Where, Ao is SO chosen
so as to have level a, i.e., Pr[A <Xo | Ho] = .
Thus,

1 T?

<2 or ——— < 22" orl+
° 1+T?/(n-1) &

> —n/n
1=

orT2>(n-1) (47" -1 =T/
=T*>T7
Therefore, Pr{T? > T2 |H,|= .
Invariance property of T2 statistic
Let X ~ Np(i, Z), then T2 =n(X — 2, )'S (X — 145, ) ,

where,
S :LE (x, —X)x —)?)'=i(xx'+~--+xx’—n>‘o‘(')
X n—la, a a n—1 1M1 n“*n

Make a non-singular transformation

Y =CX,=>y, =Cx,

Now
S,=—-3(y -y)y —V)'=i(y1y1'+-~+yy'—ny_y’)
y n—1 ~ a a n—-1 nJn
= %(Cxlx;C' ot anxn’C’ - nC>‘(>‘('C’)
n_
|: 1 ' ' ., ,
=C —[xlx1 4o+ X, X, —NXX HC
n-1
=CS,C".
By definition

T2 =0(Y -~ t,)'S; (J — o) = N(CX — Cato Y (CS,C) H(CK — Cpt,)
=N(X — 1,)C'C" S, )CIC(X — )

= n()_( _IUOX)’S;I()_(_ IUOX) :sz'
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Mahalanobis D? statistic

The Mahalanobis distance (MD) is the distance between two points in multivariate
space. In a regular Euclidean space, variables (e.g. X, y, z) are represented by axes drawn at
right angles to each other; The distance between any two points can be measured with a ruler.
For uncorrelated variables, the Euclidean distance equals the MD. However, if two or more
variables are correlated, the axes are no longer at right angles, and the measurements become

impossible with a ruler.

Mahalanobis distance plot example. A contour plot overlaying the scatterplot of 100
random draws from a bivariate normal distribution with mean zero, unit variance, and 50%
correlation. The centroid defined by the marginal means is noted by a blue square [1].

Uses

The most common use for the Mahalanobis distance is to find multivariate outliers,
which indicates unusual combinations of two or more variables. For example, it’s fairly
common to find a 6’ tall woman weighing 185 Ibs, but it’s rare to find a 4’ tall woman who
weighs that much.

Formal Definition
The Mahalanobis distance between two objects is
D? (Mahalanobis) = [(xs — xa)"T 2 (Xg — xa)]%°
Where:

e Xaand xg is a pair of objects
e X'is the sample covariance matrix and
e T is the transpose operation.

The formula uses distances from each observation to the central mean:
D?= [xi—x)" 2 (xi — %)]°°
Where:

e X = an object vector
e X = arithmetic mean vector
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Distribution of Mahalanobis D? statistic

The quantity (u® —x@)Y= (1™ — @) is denoted by A? and was proposed by
Mahalanobis as a measure of the distance between the two populations, Ny(u®, X) , and
Np(u@, ). If the parameters are replaced by their unbiased estimates, is denoted by D?,
which is given by

D? = (x® —x®)'s(x® —x?) and is known as Mahalanobis's D?,

where

g (M-DSP+(n,-9s® 1 ZZ: . (x - x0)x® - )—((i))'
n+n,—2 n+n, -2 " “

where

NS
n

i a=1

It is obvious that T2 = —1"2_ p?
n, +n,

. nn
i.e. two-sample T2 and D? are almost the same, except for the constant k* = —-2—
n, +n,
Let, Y =k(x® —x?), then expected value of Y is E(Y) =k(u® — u®) =06 and the

variance covariance matrix of Y is
z, = sz[()—((n CX@Y_(u® _ﬂ<2))][()—((1) _R@Y (O _ﬂ(z>)I
= k{l +ij2 =X, because (Mj = iz

n n, nn, k

Therefore,
Y ~ Ny(3, X), thenk?D2 = Y'S'Y

Since X is positive definite matrix there exist a nonsingular matrix C, such that
CxC'=I=>CC'=x"

Define,
Y*=CY,S " =CSC’ and 6" = C6, then

k?2D?=Y" ST'Y", and expected value of Y™ is

> =CE[y —~E(M)]E[Y —E(V)] c’'=C3C' = 1.

Y

Thus,

Y =N, D)=Y Y ~ 235 ,6)
Where,

0 6 =6CCo=6275=1
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n+n,—2

Let, (n,+n,-2)S= > 2,7, , where, Z,~ No(0, )

a=1
n+n,—2 ,
=(n+n,-2)S" = > (CZ,)(CZ,) ,where, CZ,~ Ny(0, I)
a=1

Therefore,
25(2%)
r?ﬁnﬂ—( p-1)

K’D?2=Y" S™'Y =(n,+n,—2)

nn, n1+n2_p_1D2: Z;Z)(lz)/p N
n+n, (N, +n,-2)p Z;%%mﬂnh+%_p_l

Fp, n+n,—p-1 (ﬂ’z )

If u® = p®@, then the F — Distribution is central.
Behrens-Fisher problem

Let X (a=1,2,...,ni;i=1,2) be random sample from Np(u®, Zi). Hypothesis of

interest is Ho : p® = u® . The mean x® of the first sample is normally distributed with

expected value
E(X®) =4, and covariance matrix
E(XY - u®)(x® - 1) = %21, ie, X ~ N, (1?2, In).

Similarly, X ~N (4,2, /n,).

1 1
Thus, (x® -x®)~N {,u(l) —y‘z),[n—zl +n—zzﬂ.
1 2
ifni=nx=n.
Let y, =x —x?, (assuming the numbering of the observations in the two samples is

independent of the observations themselves), then y ~ Np(0, 21 + 22) under Ho.

n

2+
Vz%Zya = (X -x?) ~ Np[o,[%ﬂ:ﬁv Np (0.2, +2;).

a=1

Let,
1 ¥ _ _
S, =——> (Y, -y, -y) or
r]_:l-af=l
n-1 ’
(n-1S,=>2,Z, , where Z,~ Np1(0, 21 + 3).
a=1

Thus, by definition, T? = ny'sy‘ly has T2 - distribution with (» —1) degrees of freedom.

(n-Dp
np Fp’n_p ().

The critical region is T? >

If n1 #n2, and n1 < ny.
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. n 1
Define, y, =x — [-Lx® +—Zx(2’ Zx(z’ ---,n,, then
N, NN, s

o_ [N @ 1 & oo 1 o
Ey, = u" - nHo Zu -=>u

n, y=1

2 p=1
/ /1(2) + / (2) (2) _/J ﬂ

The covariance matrix of y, and yz is

~EWIly, -E,)] = E{[x‘” u®)- ( (x? - u®)+ J—ZW )23 (2 - <2>)}

nn, 5= n, y=l

l:[x(l) (l) \/7()((2) (2)) 4= Z(X(Z) (2))' Z(X(Z) (2))':|

1 1
=2+ 12 + n, nZ —I’\Z-
1 n, \/ 1/nn \/ n, -
=21+22(&+i+i_£+£ [ /l} s,
n, n, n, n, n,\'n, n,\n,

Hence, y, ~ N{O,Zl +ﬂ22junder Ho , then
r]2

y=13y, ~N, 0,i(21+i22j = Jny~N, 0,(21+i22J
1 a=1 nl n2 n2

y -1

Consider (n, —1)S = Z(y -y, -y _ZZaZa , With Zo ~ Np(0, Zl+%22).

a=1 a=1 2

>

Therefore, by definition
T? =n,y'S™y. This statistic has T2 - distribution with (n, —1) degree of freedom.
The critical region of size a. is

TZZ(nl_l)pF
nl_p

p.m—p (0()
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Comparison between Mahalanobis Distance and Euclidean Distance

Aspect

Mahalanobis Distance

Euclidean Distance

Definition and
Formula

Measures dissimilarity while
considering the covariance structure of
the data. It is calculated using the mean
vector, covariance matrix, and data
point vector.

Measures the straight-line distance
between two data points in a
multidimensional ~ space. It s
calculated as the square root of the
sum of squared differences along each
dimension.

Sensitivity to
Data Distribution

Assumes that the data follows a
multivariate normal distribution.

Assumes no specific data distribution;
it is applicable to a wide range of data
types and distributions.

Robustness to

Scale-invariant; it is not affected by the

Sensitive to outliers, extreme values

. . . can significantly affect distance

Scaling scaling of variables. .
calculations.

Handling Suitable for datasets with correlated | Treats variables independently; does

Correlated variables; considers variable | not account for correlations between
Variables correlations in the covariance matrix. variables.

Becomes less effective with high- | Generally  applicable to  high-

. . . dimensional data due to increased | dimensional data, although

Dimensionality . . . . .
computational complexity and | interpretation can become challenging

potential data sparsity.

as dimensions increase.

Outlier
Sensitivity

May be less sensitive to outliers due to
covariance structure consideration.

It may be less sensitive to outliers due
to covariance structure consideration.

Customization of

Customizable thresholds can be set to

Thresholds  are  typically  not

identify  outliers or  anomalies, | customized, and outliers are identified
Thresholds L L . .
providing flexibility. based on distance magnitude alone.
Widely wused in various fields, L .
. . . . Commonly applied in geometric and
including finance, healthcare, quality . . . .
I . .. spatial analysis, machine learning, and
Applications control, and image recognition, where

correlations between variables are
important.

data clustering tasks when correlations
between variables are less critical.
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SCL PROBLEMS
1. Test for One Sample Hotelling’s T?
A shoe company evaluates new shoe models based on five criteria: style (x1),

comfort (x2), stability (xs), cushioning (xs) and durability (xs) with each of the first four
criteria evaluated on a scale of 1 to 10 and the durability criteria evaluated on the scale of
1 to 20. Goals for each criterion expected from new products 7, 8, 5, 7 and 9

respectively. Calculate one sample Hotelling’s T for the following data:

Subjects | Style | Comfort | Stability | Cushion | Durability | Subjects | Style | Comfort | Stability | Cushion | Durability
1 6 8 3 5 19 14 4 9 10 2 16
2 6 7 3 4 9 15 2 9 4 10 14
3 5 7 1 4 16 16 7 5 8 6 15
4 10 9 8 4 4 17 4 8 8 2 16
5 7 9 7 6 9 18 5 10 9 3 11
6 6 6 3 9 17 19 7 7 3 7 12
7 5 8 6 7 6 20 1 5 2 7 17
8 3 7 3 6 16 21 5 6 7 7 20
9 8 8 9 3 8 22 4 3 1 2 15
10 8 6 5 3 13 23 7 9 6 6 9
11 5 9 5 4 17 24 4 5 2 4 12
12 8 8 2 3 5 25 8 9 5 7 18
13 5 8 7 5 8

Procedure

e To calculate the sample mean.
e To calculate the sample covariance.

e To calculate T?
T2=n(X-u)" ST (X =) ~ (K
o Wwhere S is the covariance matrix of the sample for X,
o X isthe mean of the sample
e Under the null hypothesis
_ n-k
k(n-1)
If Fcar >Fcrit then we reject the null hypothesis, otherwise we accept it.

T2~ F(k,n—k)
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Calculation
Hypothesis

Ho: There is no significant difference between the sample means in the five categories
and the goals (i.e. population means).

Hi: There is a significant difference between the sample means in the five categories
and the goals (i.e. population means).

Calculation of Mean vector and Variance covariance Matrix

Subjects | x1 X2 X3 Xa xs | X | x® | x? | x| Xs? | Xixe | XaXs | XaXa | XaXs | XoXs | XoXa | XoXs | XaXa | XaXs | XaXs
1 6 8 3 5 19 36 64 9 25 361 48 18 30 114 24 40 152 15 57 95
2 6 7 3 4 9 36 49 9 16 81 42 18 24 54 21 28 63 12 27 36
3 7 1 4 16 25 49 1 16 256 35 5 20 80 7 28 112 4 16 64
4 10 9 8 4 4 100 81 64 16 16 90 80 40 40 72 36 36 32 32 16
5 7 9 7 6 9 49 81 49 36 81 63 49 42 63 63 54 81 42 63 54
6 6 6 3 9 17 36 36 9 81 289 36 18 54 102 18 54 102 27 51 153
7 5 8 6 7 6 25 64 36 49 36 40 30 35 30 48 56 48 42 36 42
8 3 7 3 6 16 9 49 9 36 256 21 9 18 48 21 42 112 18 48 96
9 8 8 9 3 8 64 64 81 9 64 64 72 24 64 72 24 64 27 72 24
10 8 6 5 3 13 64 36 25 9 169 48 40 24 104 30 18 78 15 65 39
11 5 9 5 4 17 25 81 25 16 289 45 25 20 85 45 36 153 20 85 68
12 8 8 2 3 5 64 64 4 9 25 64 16 24 40 16 24 40 6 10 15
13 5 8 7 5 8 25 64 49 25 64 40 35 25 40 56 40 64 35 56 40
14 4 9 10 2 16 16 81 100 4 256 36 40 8 64 90 18 144 20 160 32
15 2 9 4 10 14 4 81 16 | 100 | 196 18 8 20 28 36 90 126 40 56 140
16 7 5 8 6 15 49 25 64 36 225 35 56 42 105 40 30 75 48 120 90
17 4 8 8 2 16 16 64 64 4 256 32 32 8 64 64 16 128 16 128 32
18 5 10 9 3 11 25 100 81 9 121 50 45 15 55 90 30 110 27 99 33
19 7 7 3 7 12 49 49 9 49 144 49 21 49 84 21 49 84 21 36 84
20 1 5 2 7 17 1 25 4 49 289 5 2 7 17 10 35 85 14 34 119
21 5 6 7 7 20 25 36 49 49 400 30 35 35 100 42 42 120 49 140 140
22 4 3 1 2 15 16 9 1 4 225 12 4 8 60 3 6 45 2 15 30
23 7 9 6 6 9 49 81 36 36 81 63 42 42 63 54 54 81 36 54 54
24 4 5 2 4 12 16 25 4 16 144 20 8 16 48 10 20 60 8 24 48
25 8 9 5 7 18 64 81 25 49 324 72 40 56 144 45 63 162 35 90 126

Total 140 | 185 | 127 | 126 | 322 | 888 | 1439 | 823 | 748 | 4648 | 1058 | 748 | 686 | 1696 | 998 | 933 | 2325 | 611 | 1574 | 1670

Mean Vector

Style X, _140 5 Comfort X, :128—55 =74
Stability X, _127 508 Cushion X, _126 504
25 25

Durability X, = % =12.88
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[ 5.6 ]
7.4

Mean Vector = | 5.08
5.04

112.88 |

Covariance Matrix

0, =0 = %— (5.6)* = 4.16
0, =0, = %— (7.4)* =28

O3 =0} % —(5.08)* =7.11

, 148
Oy =0y :2_5_

O =0, = %;‘8 —(12.88)* = 20.03

(5.04)% = 4.52

o, = % —(5.6x7.4)=0.88

oy = 72;4; —(5.6x5.08) =1.472

Oy = % —(5.6x5.04) =-0.784

Oy = % — (5.6x12.88) = —4.288

Gy = 92—9:— (7.4x5.08) = 2.328

O, = 92—353 —(7.4x5.04) =0.024

0,0 = 2325 _(7.4x12.88) = —2.312
25

Oy = % —(5.08x5.04) =-1.1632

oy = 2% (5.08x12.88) = ~2.4704
25

ou =010 _(5.04x12.88) ~1.8848
25
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[ 416  0.88 1472 -0.784 -4.288]
0.88 2.8 2328 0.024 -2312
Covariance Matrix = | 1.472 2328  7.1136 -1.1632 -2.4704
~-0.784 0.024 -1.1632 45184 1.8848
| -4.288 -2.312 -24704 1.8848 20.026
here,
n=25k=5
T?=n(X-p)" S7(X - p)
56 ] [7] [-14]
7.4 8| | -06
(X —u)=|5.08 |-|5|=| 0.08
504 | |7| |-1.96
112.88] |9 | 3.88 |
b=8"(X~u)
[ 4.16 0.88 1.472  —0.784 —4.288[b | [ -1.4]
0.88 2.8 2328 0024 -2312 ||b,| | -06
1472 2328 7.1136 -1.1632 -2.4704||b, (=| 0.08
—-0.784 0.024 -1.1632 45184 18848 ||b, | |-1.96
|—4.288 -2312 -24704 1.8848  20.026 | [b;| | 3.88 |
R /416 [1 0212 0354 -0.188 -1.031|[b ] [-0.337
R,-(0.88xR) |0 2614 2017 0.1898 -1.405|(b,| |-0.304
R,—(L472xR)|0 2016 6593 -0.886 —0.953||b,|=| 0.575
R,—(0.784xR)|0 0.1898 -0.886 4.371 1.077 ||b,| |-2224
R;—(4.288xR)|0 -1.405 -0.890 1.077 15.606 ||b, | | 2.437 |
R —(0.212xR,) [1 0 1191 -0.204 -0.917|[b | [-0.312
R,/2.614 |0 1 0772 0073 -0.538||b,| |-0.116
R,—(2.016xR,) |0 0 5037 -1.032 0.131 ||b, |=| 0.810
R,—(0.1898xR,)|0 0 -1.032 4.357 1179 ||b,| |-2202
R;+(1.405xR,) [0 O 0.194 1179 14.851 ||b| | 2.274 |
R -(1.191xR,)[1 0 0 -0.165 -0.922]|[b | [-0.343
R,-(0.772xR,)|0 1 0 0.231 -0.558||b,| |-0.240
R,/5.037 [0 0 1 -0.205 0.026 ||b,|=| 0.161
R, +(1.032xR,)[0 0 0 4145 1.206 ||b,| |-2.036
R;—(0.194xR;)[0 0 0 1218 14.846 ||by| | 2.242 |
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R, +(0.165xR,)[1 0 0 0 —0.874[b, | [-0.424]
R, —(0.231xR,)|0 1 0 0 -0625||b,| [-0.127
R, +(0.205xR,){0 0 1 0 0.086 ||b, |=| 0.060
R,/4145 |0 0 0 1 0291 ||b, | |-0.491
R,—(1.218xR,)|0 0 0 0 14492 ||b;| | 2.841 |
R +(0.874xR,)[1 0 0 0 0]|[b | [-0.252]
R, +(0.625xR,){0 1 0 0 O||h,| |-0.005
R,—(0.086xR;)[0 0 1 0 Of|h,|=| 0.043
R, —(0.291xR,)[0 0 0 1 Of|b, | |-0.548
R;/14.492 |0 0 0 0 1]|bs| | 0.196 |
b, =-0.252, b, =-0.005, b, =0.043, b, =—0.548 and b, =0.196
[~0.252]
~0.005
T?=25[-14 -06 008 -196 3.88] 0.043
~0.548
| 0.196 |

= 25x [-1.4x(-0.252) + (-0.6)%(-0.005) + 0.08x0.043 + (-1.96)x(-0.548) + 3.88x(0.196)]
=25x[0.353+0.003+0.003+1.074+0.760] = 25x2.193

T?=154.825
Under the null hypothesis,
_ k?n‘_kl)Tz ~F(k,n—K)
F= 5(2;5__51) x54.825 ~ F (5, 20)
F. =9.138
Table Value
Degrees of freedom = F(k, n-k)
= F(5, 20)
Feit = 2.71
Conclusion

Since, the calculated value is greater than the critical table value (9.138 > 2.71), we
reject the null hypothesis. Hence, we conclude that there is a significant difference between

the sample means in the five categories and the stated goals.

Page 19



2. Test for Two Independent Samples Hotelling’s T2
A certain type of tropical disease is characterized by fever, low blood pressure,
and body aches. A pharmaceutical company was working on a new drug to treat this type
of disease and wanted to determine whether the drug was effective. They took a random
sample of 20 people with this type of disease and 18 with a placebo. Apply two sample
Hotelling’s T? method and to test whether the drug is effective at reducing these three
symptoms for the following data:
Drug Placebo

ID Fever (X1) Blood Pressure (X2) | Body Aches (X3) Fever (Y1) | Blood Pressure (Y2) | Body Aches (Y3)

1 38.4 73 18 40.9 54 14

2 36.8 85 14 39.5 75 18

3 40.0 58 20 39.4 57 24

4 39.8 80 20 38.2 71 24

5 38.6 68 25 39.7 65 22

6 39.1 52 27 389 49 30

7 38.9 79 26 38.6 58 25

8 36.8 100 8 39.9 52 17

9 40.4 64 21 413 62 18

10 39.4 53 22 38.1 57 20

11 38.0 70 15 39.6 78 19

12 38.6 75 14 371 92 15

13 40.1 48 28 39.5 63 13

14 38.1 57 22 40.3 52 25

15 37.2 78 16 415 46 27

16 395 65 18 39.3 56 14

17 37.3 77 13 376 86 16

18 39.1 67 16 40.6 48 21

19 39.9 52 10

20 37.8 68 13

Procedure

To calculate the sample mean.
To calculate the sample covariance.

Z Xi2 _ X2

J— 2_
0;=0; = i

To calculate T?

where, S is the pooled sample covariance matrix of XA and Y, namely
S — (nx _1)Sx + (ny _1)SY
(n -+, -1)

Under the null hypothesis

n-k _, B
=k(n—1)T F(k,n—k)

If Feal >Fcrit then we reject the null hypothesis, otherwise we accept it.
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Calculation
Hypothesis
Ho: There is no significant difference between the mean vectors for the drug and
placebo.
Hq: There is significant difference between the mean vectors for the drug and placebo.
Mean and Covariance for Drug

ID X1 X2 X3 X2 X2? X3? X1X2 X1X3 X2X3
1 38.4 73 18 1474.56 5329 324 2803.2 691.2 1314
2 36.8 85 14 1354.24 7225 196 3128 515.2 1190
3 40.0 58 20 1600 3364 400 2320 800 1160
4 39.8 80 20 1584.04 6400 400 3184 796 1600
5 38.6 68 25 1489.96 4624 625 2624.8 965 1700
6 39.1 52 27 1528.81 2704 729 2033.2 1055.7 1404
7 38.9 79 26 1513.21 6241 676 3073.1 1011.4 2054
8 36.8 100 8 1354.24 10000 64 3680 294.4 800
9 40.4 64 21 1632.16 4096 441 2585.6 848.4 1344

10 39.4 53 22 1552.36 2809 484 2088.2 866.8 1166
11 38.0 70 15 1444 4900 225 2660 570 1050
12 38.6 75 14 1489.96 5625 196 2895 540.4 1050
13 40.1 48 28 1608.01 2304 784 1924.8 1122.8 1344
14 38.1 57 22 1451.61 3249 484 2171.7 838.2 1254
15 37.2 78 16 1383.84 6084 256 2901.6 595.2 1248
16 39.5 65 18 1560.25 4225 324 2567.5 711 1170
17 37.3 77 13 1391.29 5929 169 2872.1 484.9 1001
18 39.1 67 16 1528.81 4489 256 2619.7 625.6 1072
19 39.9 52 10 1592.01 2704 100 2074.8 399 520

20 37.8 68 13 1428.84 4624 169 2570.4 491.4 884

Total 773.8 1369 366 29962.2 96925 7302 | 52777.7 14222.6 24325

Mean Vector

773.8 1369

Fever X, =——— =38.69 Blood pressure X, =——— =68.45
20 20
Body aches X, = 306 _183
20
38.69
Mean Vector = | 68.45
18.3

Covariance Matrix

o,=0.= %?)22 —(38.69)* =1.19

0, =05 = %})25 —(68.45)* =160.85
Oy =0 = 7302 _ (18.3)* =30.21

20
oy, = 52;# —(38.69 % 68.45) = —-9.45
O3 = % —(38.69%x18.3) =3.10

Oy = 24325 (68.45%18.3) = —36.39
20

1.19 -9.45 3.10
Covariance Matrix=|-9.45 160.85 —-36.39
3.10 -36.39 30.21
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Mean and Covariance for Placebo

ID Y1 Y2 Y3 \f% Y32 Y1Y2 Y1Ys Y2Ys
1 40.9 54 14 1672.81 2916 196 2208.6 572.6 756
2 39.5 75 18 1560.25 5625 | 324 | 2962.5 711 1350
3 39.4 57 24 1552.36 3249 576 2245.8 945.6 1368
4 38.2 71 24 1459.24 5041 576 2712.2 916.8 1704
5 39.7 65 22 1576.09 4225 484 2580.5 873.4 1430
6 38.9 49 30 1513.21 2401 900 1906.1 1167 1470
7 38.6 58 25 1489.96 3364 | 625 | 2238.8 965 1450
8 39.9 52 17 1592.01 2704 289 2074.8 678.3 884
9 41.3 62 18 1705.69 3844 324 2560.6 743.4 1116
10 38.1 57 20 1451.61 3249 400 2171.7 762 1140
11 39.6 78 19 1568.16 6084 | 361 3088.8 752.4 1482
12 37.1 92 15 1376.41 8464 225 3413.2 556.5 1380
13 | 395 63 13 1560.25 3969 169 | 2488.5 513.5 819
14 | 403 52 25 1624.09 2704 | 625 | 20956 1007.5 1300
15 41.5 46 27 1722.25 2116 729 1909 1120.5 1242
16 39.3 56 14 1544.49 3136 196 2200.8 550.2 784
17 | 376 86 16 1413.76 7396 | 256 | 3233.6 601.6 1376
18 | 406 48 21 1648.36 2304 | 441 1948.8 852.6 1008
Total | 710 | 1121 | 362 | 28031 | 72791 | 7696 | 44039.9 | 14289.9 | 22059
Mean Vector
Fever Y, = o 39.44 Blood pressure Y, = 121 62.28
18 18
Body aches Y, = 30z_ 20.11
18
39.44
Mean Vector = | 62.28
20.11

Covariance Matrix

o, =0} = %831 —(39.44)* =1.41

0, =0r = %;91 —(62.28)* =165.42

Oy =07 =%—(20.11)2 =23.10

o= 440399 (39.44% 62.28) =—9.85

Oy =@—(39.44x 20.11) =0.61
22059

Oy = T - (6228 X 2011) = —2698

141 -9.85 0.61

Covariance Matrix = | —9.85 165.42 —26.98

061 -26.98 23.10

Pooled covariance Matrix

_ (nx _1)Sx + (ny _1)SY
~(n =D +(n, -1
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2 (19x1.19) + (17 x1.41)

Tu= 19+17
o gt _ 1916085+ (17x165.42) )0 o0
19+17
o o2 (19x302D)+(7x2310) ) oo
19+17
5, (19x(-945) +(17x(-985) ¢,
19+17
5. (19x310)+(7x061) _, o,
19+17
5. _(19x(-36.39) + (I7x(-2698) __y g,
19+17

1.30 -9.63 1.93

Pooled Covariance Matrix (S) = | -9.63 163.01 -31.94
193 -31.94 26.85

here, =38, k=3

-1

TZ:(Y—V){S{i+iH (X -V)
n, n,

38.69] [39.44] [-0.75

(X -Y)=|68.45|-|62.28|=| 6.17

18.30| |20.11| |-1.81

130 -963 193

Hi+iﬂz 963 16301 -31.94 [%+a
N M 193 -31.94 26585

(130 -964 1.93
=|-9.64 163.01 —31.94 [[0.11]
| 193 -31.94 26585

(014 -106 021
=|-1.06 17.93 -351
| 021 -351 295

b:Hi+iH (X -¥)
n, n,

014 -1.06 0.217[b] [-0.75
~1.06 17.93 -351||b, |=| 6.17
021 -351 295 ||b,| |-181
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R/014 [1 -757 150 [b| [-5.36
R,+(1.06xR)[0 990 -192||b,|=| 0.49

2

R,—(021xR)|0 -1.92 264 ||b,| |-0.69

R +(757xR)[1 0 003 7[b] [-4.98
R,/9.90 |0 1 —019||b,|=| 0.05
R,+(L92xR,)|0 0 226 |[b,| |-059

R —(0.03xR,)[1 0 0][bh —4.97
R, +(0.19xR;)[0 1 O||b, |=| 0.00
R,/226 |0 0 1]|b, -0.26
b =-4.97, b,=0and b, =-0.26
—4.97
T?=38[-0.75 6.17 -1.81] 0.00
-0.26
= [-0.75%(-4.97) + 6.17x0 + (-1.81)%(-0.26)]
=3.73+0+0.47
T2=4.20
Under the null hypothesis,
LI S
k(n-1)
_ 823 420~ F(@3,35)
3(38-1)
F. =132
Table Value
Degrees of freedom = F(k, n-k)
= F(3, 35)
Fcrit =2.87
Conclusion

Since, the calculated value is less than the critical table value (1.32 < 2.87), we do not
reject the null hypothesis. Hence, we conclude that there is no significant difference between

the mean vectors for the drug and placebo.
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3. Test for Paired Sample Hotelling’s T?

A shoe company evaluates two new model shoes, Model 1 based on five criteria:
style (x1), comfort (x2), stability (xs), cushioning (xs) and durability (xs) and Model 2
based on five criteria: style (y1), comfort (y2), stability (ys), cushioning (yz) and
durability (ys) with each of the first four criteria evaluated on a scale of 1 to 10 and the
durability criteria evaluated on the scale of 1 to 20. Calculate the paired sample

Hotelling’s T? for the following data:

Model 1 Model 2
Subjects | Style | Comfort | Stability | Cushion | Durability | Style | Comfort | Stability | Cushion | Durability
1 6 8 3 5 19 8 6 5 6 10
2 6 7 3 4 9 8 6 3 6 4
3 5 7 1 4 16 7 5 6 4 17
4 10 9 8 4 4 9 8 6 3 4
5 7 9 7 6 9 8 5 6 8 11
6 6 6 3 9 17 8 7 4 4 13
7 5 8 6 7 6 7 3 6 3 8
8 3 7 3 6 16 6 6 5 8 14
9 8 8 9 3 8 6 9 7 5 12
10 8 6 5 3 13 7 5 9 6 11
11 5 9 5 4 17 7 5 4 6 15
12 8 8 2 3 5 5 7 4 4 6
13 5 8 7 5 8 6 4 6 4 12
14 4 9 10 2 16 8 7 8 5 12
15 2 9 4 10 14 5 6 5 7 12
16 7 5 8 6 15 10 5 7 6 6
17 4 8 8 2 16 9 6 9 5 11
18 5 10 9 3 11 8 7 10 5 5
19 7 7 3 7 12 6 2 5 3 8
20 1 5 2 7 17 5 7 5 5 8
21 5 6 7 7 20 8 4 8 8 10
22 4 3 1 2 15 3 2 4 4 15
23 7 9 6 6 9 8 6 3 6 12
24 4 5 2 4 12 5 4 6 5 9
25 8 9 5 7 18 6 3 4 8 8
Procedure

To calculate the difference between model 1 and model 2.
To calculate the sample mean.
To calculate the sample covariance.

o

To calculate T?
T? = n()?—Y_)T S’l()?—Y_) ~ ;(Z(k)

Under the null hypothesis
T? ~F(k,n-k)

n—k

T k(n-

1)

S 2 X
' n

X-2

and o;; =

2 XX, _X
n

If F >Fcrit then we reject the null hypothesis, otherwise we accept it.

X

o Wwhere S is the covariance matrix of the sample for X,
o Xis the mean of the sample
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Calculation

Hypothesis

Ho: There is no significant difference between the two shoe models.

Hi: There is a significant difference between the two shoe models.

Calculation of difference between model 1 and model 2
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Mean Vector
Style z, = -3 -1.32 Comfort z, = 0 2
25 25

Stability z, = _2—158 =-0.72 Cushion z, = ;—g =-0.32

Durability z; = % =2.76

[-1.32]
2.00
Mean Vector = | - 0.72
-0.32
| 2.76 |
Covariance Matrix
, 151 2
= =——-(-1.32)°=4.30
01, =0, o5 ( )
, 194 2
= =——(2)°=3.76
0, =0, o5 (2)
, 122 2
=0 =——(-0.72)" =4.36
O33 =03 o5 ( )
132
Oy = O'j = E—(—ng)z =5.18
, 653 2
= =———(2.76)° =18.50
Ogs = O¢ o5 ( )
—-54
0'12 = 2—5 - (—132 X 2) = 048
27
Op3=—"-— (-1.32x(-0.72)) =0.13
25
10
O = 2—5 —(-1.32x(-0.32)) =-0.02
O = % —(-1.32x(2.76)) =-3.44

O = ‘2—21- (2% (~0.72)) =1.00

O,y = ;—58 —(2x(-0.32)) =0.32

116
=——(2x2.76) =-0.88
O o5 (2x )
O = 235 —(-0.72x(-0.32)) =-0.15

o = _2—?31 _(~0.72x2.76) =—1.65

O = _2—3;1 —(~0.32x2.76) =—-0.48
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430 048 013 -0.02 -3.44]
048 376 1.00 0.32 -0.88
Covariance Matrix=| 0.13 100 436 -0.15 -1.65
-0.02 032 -015 518 -0.48
-344 -0.88 -1.65 -0.48 18.50
here, ) )
n=25 k=5
T?=nz'S"z
[-1.32]
2.00
(X-y)=2=|-0.72
-0.32
| 2.76 |
b=S"(X-Y)
430 048 013 -0.02 -344|[b | [-1.32]
048 376 1.00 032 -0.88||b,| | 2.00
013 1.00 436 -015 -165||b,|=|-0.72
-0.02 032 -015 518 -048||b,| |-0.32
|-344 -0.88 -1.65 -0.48 1850 | |b;| | 2.76 |
R /430 [1 011 003 -001 -0.80|[b] [-0.31]
R,-(048xR)|{0 371 099 032 -050||b, 2.15
R,—(0.13xR) |0 099 436 -0.15 -1.55||b,|=|-0.68
R,—(-0.02xR)|0 032 -015 518 -049||b,| [-0.33
R;—(-3.44xR)|0 -050 -155 -049 15.75]|b;| | 1.70
R -(0.11xR,)[1 0 0 -0.01 -0.78][b | [-0.37]
R,/371 |0 1 027 0.09 -0.13||h, 0.58
R,—(0.99xR,)|0 0 4.09 -024 -1.42]||b,|=|-1.25
R,-(0.32xR,)[0 0 -0.23 515 -045||b,| |-0.51
R;+(0.50xR,)|0 0 -142 -045 15.69 ||b, | | 1.99 |
R -(0xR;) [1 0 0 -001 -0.78][b | [-0.37]
R,-(0.27xR,)|0 1 0 0.10 -0.04||b, 0.66
R,/409 |0 0 1 -006 -0.35||b,|=|-0.31
R,+(0.23xR;)|0 0 0 514 -053||b,| |-058
R;+(1.42xR;)|0 0 0 -053 1519 ||b,| | 1.56 |
R +(0.01xR,)[1 0 0 0 -0.79][b ] [-0.37]
R,-(0.10xR,)[0 1 0 0 -0.03||h, 0.67
R,+(0.06xR,)[0 0 1 0 -0.35(|b,|=|-031
R,/514 |0 0 0 1 -0.10||b,| [-0.11
R;+(0.53xR,)[0 0 0 0 1514 ||b;| | 150 |
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R +(0.79xR)[1 0 0 0 0][b | [-0.29]
R,+(0.03xR,)[0 1 0 0 0||b,| | 0.72
R, +(0.35xR,)[0 0 1 0 0||b,|=[-028
R,+(0.10xR)[0 0 0 1 0f|b,| |[-0.10
R,/1514 |0 0 0 0 1]|by| | 0.10 |
b =-0.29, b, =-0.72, b,=-0.28, b, =-0.10 and b, =0.10
[-0.29]
0.72
T?=25[-1.32 200 -0.72 -0.32 2.76] -0.28
~0.10
| 0.10 |

= 25x [-1.32x(-0.29) + 2)x(0.72) + (-0.72)x(-0.28) + (-0.32)x(-0.10) + 2.76x(0.10)]
=25x[0.39+1.44+0.20+0.03+0.27] = 25x2.33

T2=58.36
Under the null hypothesis,
L S
k(n-1)
F= 25-5 x58.36 ~ F (5, 20)
5(25-1)
F. =973
Table Value
Degrees of freedom = F(k, n-k)
= F(5, 20)
Fcrit =271
Conclusion

Since, the calculated value is greater than the critical table value (9.73 > 2.71), we
reject the null hypothesis. Hence, we conclude that there is a significant difference between
the two shoe models.
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4. Test for Mahalanobis D? Statistic

Calculate Mahalanobis distance for the following data:

Months (2021) Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Stocks (X1) | 5.00% | 1.90% | 9.80% | -2.00% | 2.10% | 2.50% | 1.60% | 6.20% | 5.30% | -0.40%
Bonds (X2) | -0.30% | 1.20% | 1.30% | 0.30% | 0.00% | 2.10% | 0.90% | 1.40% | 0.60% | 0.70%
Procedure
e To calculating Mean vector ().
e To finding Covariance Matrix ().
X: XX _
Gij=0'i2=L—Xi2 and O'ij=L—Xin
n n

e To calculate Mahalanobis Distance Components
D2 = [Xi —)Z)T Zl(Xi _ )Z)]O'S
= an object vector

X = arithmetic mean vector

where, X;

2’ = variance covariance matrix

e Mahalanobis Distance (Dw) calculation

Calculation
Calculate Mean Vector and Variance-covariance Matrix
X1 X1 X12 X2 X1 X2
5 -0.3 25 0.09 -1.5
1.9 1.2 3.61 1.44 2.28
9.8 1.3 96.04 1.69 12.74
) 0.3 4 0.09 -0.6
2.1 0 4.41 0 0
25 2.1 6.25 4.41 5.25
1.6 0.9 2.56 0.81 1.44
6.2 1.4 38.44 1.96 8.68
5.3 0.6 28.09 0.36 3.18
-0.4 0.7 0.16 0.49 -0.28
32 8.2 208.56 11.34 31.19
Mean Vector
- 32% - 8.2%
Stocks X, = 2=32%  Bonds X, = °
10
Covariance Matrix
208.56%
o, =0l =20 (3.20%)2 =10.616
10
11.34
0, =0, =——-(0.82)° =0.4616
31.19

O, = T - (32 X 082) = 0495

Covariance Matrix (%) = {

Inverse of Covariance

==
|

1
>

(adj =) =‘

10.616  0.495
0.495 0.4616

10.616 0.495
0.495 0.4616

|

‘ =14.900—0.245) =|4.655

3.2
=0.82% Mean Vector =
0.82

Page 30




. {0.4616 —0.495}T
adj> =

~0.495 10.616
. 0.4616 —0.495
adjz =
~0.495 10.616
si_ 1 0.4616 —0.495
 4.655|-0.495 10.616

4, | 0.0992 -0.1063
—-0.1063 2.2806

Mahalanobis Distance Components
D? = [xi —%)" 2 (xi — )]°°
- 0.5

(18 -13 66 -52 -11 -07 -16 30 21 -367
-112 038 048 -052 -0.82 128 008 058 -022 -0.12

|[0.0992 -0.1063
|| -0.1063 2.2806

18 -13 66 -52 -11 -07 -16 30 21 -36
-1.12 038 048 -052 -082 128 0.08 058 -022 -0.12

C11= 1.8 x 1.8 + (-1.3) X (-1.3) + 6.6 X 6.6 + (-5.2) x (-5.2) + (-1.1) x (-1.1) + (-0.7) x (-0.7)
+(-1.6) X (-1.6) + 3x 3 + 2.1 x 2.1 + (-3.6) x (-3.6) = 106.16

C12 = 1.8 x (-1.12) + (-1.3) x 0.38 + 6.6 x 0.48 + (-5.2) x (-0.52) + (-1.1) x (-0.82) + (-0.7) x
1.28 + (-1.6) x 0.08 + 3 x 0.58 + 2.1 x (-0.22) + (-3.6) x (-0.12) = 4.95

Cor = -1.12 x 1.8 + 0.38 x (-1.3) + 0.48 x 6.6 + (-0.52) x (-5.2) + (-0.82) x (-1.1) + 1.28 x
(-0.7) +0.08 x (-1.6) + 0.58 x 3 + (-0.22) x 2.1 + (-0.12) x (-3.6) = 4.95

Co2 = -1.12 x (-1.12) + 0.38 x 0.38 + 0.48 x 0.48 + (-0.52) x (-0.52) + (-0.82) x (-0.82) + 1.28
x 1.28 +0.08 x 0.08 + 0.58 x 0.58 + (-0.22) x (-0.22) + (-0.12) x (-0.12) = 4.616

7106.16 4957 [ 00992 —0.1063]]"°
X
| 495 4616] |-0.1063 2.2806

[10.0049 0.00421°°
| 0.0004 10.0011]
, [3163 0.065

{o.oz 3.162}

Result

The Mahalanobis distance is a positive value that quantifies are similar between a
Stocks (X1) and Bonds (X2), and the mean of the data set. Hence, we conclude that two
variables are correlated.
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