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UNIT – III 

SAMPLING DISTRIBUTIONS IN MULTIVARIATE ANALYSIS 

Hotelling's T2 

Hotelling’s T-Squared (Hotelling, 1931) is the multivariate counterpart of the T-test. 

Multivariate means that you have data for more than one parameter for each sample. For 

example, to compare how well two different sets of students performed in school. Could 

compare Univariate (e.g. mean test scores) with a t-test. Or, could use Hotelling’s T-squared 

to compare multivariate data (e.g. the multivariate mean of test scores, GPA and class 

grades). 

Hotelling’s T-Squared is based on Hotelling’s T2 distribution and forms the basis for 

various multivariate control charts. 

Hotelling's T2 Distribution 

If X is Univariate normal with mean μ and standard deviation σ, then 
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variance from a sample of size n . If U and V are independently distributed, then Student's-t is 
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The multivariate analogue of Student's − t is Hotelling's T2. 

If xα (α = 1, 2, . . . , n) is an independent sample of size n from Np(μ, Σ) and, if x  is 

the sample mean vector, S the matrix of variance covariance, then the Hotelling's –T2 is 

defined by the relation 

)()( 12    xSxnT . 

Properties of Hotelling's T2 Distribution 

 Distribution: T2 follows a Hotelling's T-squared distribution, which is a multivariate 

extension of the F-distribution. 

 Degrees of freedom: The T2 distribution has two types of degrees of freedom:  

p (number of variables) and n-1 (sample size minus one). 

https://www.statisticshowto.com/probability-and-statistics/t-test/
https://www.statisticshowto.com/probability-and-statistics/t-test/
https://www.statisticshowto.com/probability-and-statistics/multivariate-analysis/
https://www.statisticshowto.com/statistical-process-control/#CC
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 Mean and variance: The mean of T2 is p(n – 1)/(n – p – 1) and the variance is  

2p(n – 1)(n – p – 1)/((n – p – 1)2 (n – p – 3)). 

 Invariance: T2 is invariant under linear transformations of the data. 

 Consistency: T2 is a consistent estimator of the population mean vector. 

 Asymptotic distribution: As n → ∞, T2 converges in distribution to a chi-squared 

distribution with p degrees of freedom. 

Applications of Hotelling's T2 Distribution 

 Statistics and Research 

 Multivariate hypothesis testing: T2 is used to test the significance of 

differences between sample mean vectors and known population mean vectors. 

 Discriminant analysis: T2 is used to determine the most effective variables for 

discriminating between groups. 

 Cluster analysis: T2 is used to evaluate the similarity between clusters. 

 Data Science and Machine Learning 

 Anomaly detection: T2 is used to identify outliers and anomalies in multivariate 

data. 

 Feature selection: T2 is used to select the most relevant features for model 

development. 

 Model validation: T2 is used to evaluate the performance of multivariate 

models. 

 Business and Economics 

 Quality control: T2is used to monitor and control multivariate processes. 

 Marketing research: T2 is used to analyze customer behavior and preferences. 

 Financial analysis: T2 is used to evaluate portfolio performance and risk. 

 Engineering and Computer Science 

 Signal processing: T2 is used to detect anomalies in multivariate signals. 

 Image processing: T2 is used to analyze and classify images. 

 Robotics: T2 is used to evaluate the performance of robotic systems. 

 Medical and Healthcare 

 Disease diagnosis: T2 is used to identify biomarkers for disease diagnosis. 

 Patient monitoring: T2 is used to monitor patient health and detect anomalies. 

 Clinical trials: T2 is used to evaluate the efficacy of treatments. 
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 Other applications 

 Environmental monitoring: T² is used to evaluate water and air quality. 

 Social sciences: T² is used to analyze social and demographic data. 

 Sports analytics: T² is used to evaluate team and player performance. 

One Sample Hotelling’s T2 

As described in One Sample t-Test, the t-test can be used to test the null hypothesis 

that the population mean of a random variable x has a certain value, i.e. H0: μ = μ0. The test 

statistic is given by 
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The applicable Univariate test of the null hypothesis is based on the fact that  

t ~ T(n – 1) provided the following assumptions are met: 

 The population of x has a unique mean: i.e. there are no distinct sub-populations with 

different means 

 The population of x has a normal distribution 

 The sample is a random sample with each element in the sample taken independently. 

The null hypothesis is rejected if |t| > tcrit, F Distribution, an equivalent test can be made 

using the test statistic t2 and noting that t2 ~ F(1, n – 1). 

Now, t2 can be expressed as follows: 
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where x̄ is the sample mean and S is the sample standard deviation. 

Multivariate case 

The population mean of the k × 1 random vector X has a certain value. Here, the null 

hypothesis is H0: μ = μ0 where μ and μ0 are vectors. 

Since the null hypothesis is true when μi = μi
0 for all i, 1 ≤ i ≤ k, one way to carry out 

this test is to perform k separate univariate t-tests (or the equivalent F tests). The null 

hypothesis is then rejected if any one of these k univariate tests rejects its null hypothesis. 

 

 

https://www.real-statistics.com/students-t-distribution/one-sample-t-test/
https://www.real-statistics.com/chi-square-and-f-distributions/f-distribution/
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Experiment-wise Error Rate 

If use a given value of α for all k tests, then the probability of the multivariate 

null hypothesis being rejected is much higher than α. For this reason, use a correction 

factor, usually, the Dunn/Sidak or Bonferroni correction factor, as described in 

Planned Comparisons. Thus, use a significance level of 1 – (1–α)1/k or α/k instead of α 

for each of the k univariate tests. 

This approach is perfectly reasonable when the random variables xi in X are 

independent. But when they are not independent then the Dunn/Sidák or Bonferroni 

correction factors over-correct and the resulting experiment-wise value for α is lower 

than it needs to be, which results in a test with lower statistical power. 

Since it is common to create experiments in which the random variables xi in 

X are not independent, it is better to use a different approach. In particular, will use 

the multivariate test based on Hotelling’s T-square test statistic. 

T-square statistic 

Definition 1: Hotelling’s T-square test statistic is 

)()( 0102    XSXnT T  

where S is the covariance matrix of the sample for X, X̄ is the mean of the 

sample, and where the sample for each random variable xi in X has n elements. 

Note the similarity between the expression for T2 and the expression for t2 given above. 

Property 1: 

)(~)()( 2010 kXSXn T     

Corollary 1: For n sufficiently large, T2 ~ χ2(k) 

For small n, T2 is not sufficiently accurate and a better estimate is achieved 

using the following property. 

Property 2: Under the null hypothesis 
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If F >Fcrit then we reject the null hypothesis. 
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Hotelling’s T-square Test for Two Independent Samples 

Univariate case 

In the univariate case, we have two independent random variables and want to 

determine whether the population means of the two random variables are equal,  

i.e. H0: Î¼x = Î¼y. To test this hypothesis we create a random sample for each variable. We 

define the following statistic 
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The t-statistic defined above has a t distribution with nx+ny-2 degrees of freedom,  

i.e. t ~ T(nx+ny-2) 

Assumptions  

 The populations of x and y have unique means and there are no distinct sub-

populations with different means 

 The populations of x and y have a normal distribution 

 The variances of the two populations are equal (homogeneity of variances) 

 The samples for x and y are random with each element in the sample taken 

independently 

The null hypothesis is rejected if |t| > tcrit. Also note that by Property 1 of F 

Distribution, an equivalent test can be made using the t2 test statistic is 

t2 ~ F(1, nx+ny-2) 

Also, t2 can be expressed as follows: 
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https://real-statistics.com/chi-square-and-f-distributions/f-distribution/
https://real-statistics.com/chi-square-and-f-distributions/f-distribution/
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Multivariate case 

To test whether the population means of the k Ã – 1 random vectors and Y are equal, 

i.e. the null hypothesis H0: Î¼X = Î¼Y. 

Definition 1: The Two-sample Hotelling T-square test statistic is 
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where S is the pooled sample covariance matrix of XÂ and Y, namely 
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Note the similarity between the expression for T2 and the expression for t2 given above. 

Property 1: For nx and ny sufficiently large, T2 ~ Ï ≠ (k) 

For small nxÂ and Âny, T
2 is not sufficiently accurate and a better estimate is achieved 

using the following theorem. 

Property 2: Under the null hypothesis 
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If F > Fcrit then we reject the null hypothesis. 

T2 Statistic as a function of Likelihood Ratio Criterion 

Let xα (α =1, 2, . . . , n > p) be a random sample of size n from Np(μ, Σ) . The 

likelihood function is 
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In the parameter space Ω, the maximum of L occurs when the parameters μ and Σ are 

estimated by their maximum likelihood estimators i.e., 
n
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Thus, the likelihood ratio criterion is 
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The likelihood ratio test is defined by the critical region λ ≤ λ0, where, λ0 is so chosen 

so as to have level α, i.e., Pr[λ ≤ λ0 | H0] = α. 
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Mahalanobis D2 statistic 

The Mahalanobis distance (MD) is the distance between two points in multivariate 

space. In a regular Euclidean space, variables (e.g. x, y, z) are represented by axes drawn at 

right angles to each other; The distance between any two points can be measured with a ruler. 

For uncorrelated variables, the Euclidean distance equals the MD. However, if two or more 

variables are correlated, the axes are no longer at right angles, and the measurements become 

impossible with a ruler.  

 

Mahalanobis distance plot example. A contour plot overlaying the scatterplot of 100 

random draws from a bivariate normal distribution with mean zero, unit variance, and 50% 

correlation. The centroid defined by the marginal means is noted by a blue square [1]. 

Uses 

The most common use for the Mahalanobis distance is to find multivariate outliers, 

which indicates unusual combinations of two or more variables. For example, it’s fairly 

common to find a 6′ tall woman weighing 185 lbs, but it’s rare to find a 4′ tall woman who 

weighs that much. 

Formal Definition 

The Mahalanobis distance between two objects is  

D2 (Mahalanobis) = [(xB – xA)T Σ-1 (xB – xA)]0.5 

Where: 

 xA and xB is a pair of objects 

 Σ is the sample covariance matrix and 

 T is the transpose operation. 

The formula uses distances from each observation to the central mean:  

D2= [xi – x̄)T Σ-1(xi – x̄)]0.5 

Where: 

 xi = an object vector 

 x̄ = arithmetic mean vector 
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Distribution of Mahalanobis D2 statistic 

The quantity )()( )2()1(1)2()1(     is denoted by Δ2 and was proposed by 

Mahalanobis as a measure of the distance between the two populations, Np(μ
(1), Σ) , and 

Np(μ
(2), Σ). If the parameters are replaced by their unbiased estimates, is denoted by D2, 

which is given by 

)()( )2()1(1)2()1(2 xxSxxD    and is known as Mahalanobis's D2,  
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Therefore, 

 Y ~ Np(δ, Σ), then k2D2 = YSY 1  

Since Σ is positive definite matrix there exist a nonsingular matrix C, such that 

CΣC’ = I ═> CC’ = Σ-1. 

Define, 

 Y* = CY, S* = CSC’ , and δ* = Cδ, then 

k2D2 = *1** YSY 
, and expected value of Y* is 
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 Let, 
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If μ(1)  = μ(2), then the F – Distribution is central. 

Behrens-Fisher problem 

Let )(ix  (α =1, 2, . . . , ni ; i =1, 2) be random sample from Np(µ
(i), Σi). Hypothesis of 

interest is H0 : μ(1) = μ(2) . The mean )1(x of the first sample is normally distributed with 

expected value 
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Comparison between Mahalanobis Distance and Euclidean Distance 

Aspect Mahalanobis Distance Euclidean Distance 

Definition and 

Formula 

Measures dissimilarity while 

considering the covariance structure of 

the data. It is calculated using the mean 

vector, covariance matrix, and data 

point vector. 

Measures the straight-line distance 

between two data points in a 

multidimensional space. It is 

calculated as the square root of the 

sum of squared differences along each 

dimension. 

Sensitivity to 

Data Distribution 

Assumes that the data follows a 

multivariate normal distribution. 

Assumes no specific data distribution; 

it is applicable to a wide range of data 

types and distributions. 

Robustness to 

Scaling 

Scale-invariant; it is not affected by the 

scaling of variables. 

Sensitive to outliers, extreme values 

can significantly affect distance 

calculations. 

Handling 

Correlated 

Variables 

Suitable for datasets with correlated 

variables; considers variable 

correlations in the covariance matrix. 

Treats variables independently; does 

not account for correlations between 

variables. 

Dimensionality 

Becomes less effective with high-

dimensional data due to increased 

computational complexity and 

potential data sparsity. 

Generally applicable to high-

dimensional data, although 

interpretation can become challenging 

as dimensions increase. 

Outlier 

Sensitivity 

May be less sensitive to outliers due to 

covariance structure consideration. 

It may be less sensitive to outliers due 

to covariance structure consideration. 

Customization of 

Thresholds 

Customizable thresholds can be set to 

identify outliers or anomalies, 

providing flexibility. 

Thresholds are typically not 

customized, and outliers are identified 

based on distance magnitude alone. 

Applications 

Widely used in various fields, 

including finance, healthcare, quality 

control, and image recognition, where 

correlations between variables are 

important. 

Commonly applied in geometric and 

spatial analysis, machine learning, and 

data clustering tasks when correlations 

between variables are less critical. 
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SCL PROBLEMS 

1. Test for One Sample Hotelling’s T2 

A shoe company evaluates new shoe models based on five criteria: style (x1), 

comfort (x2), stability (x3), cushioning (x4) and durability (x5) with each of the first four 

criteria evaluated on a scale of 1 to 10 and the durability criteria evaluated on the scale of 

1 to 20. Goals for each criterion expected from new products 7, 8, 5, 7 and 9 

respectively. Calculate one sample Hotelling’s T2 for the following data: 

Subjects Style Comfort Stability Cushion Durability Subjects Style Comfort Stability Cushion Durability 

1 6 8 3 5 19 14 4 9 10 2 16 

2 6 7 3 4 9 15 2 9 4 10 14 

3 5 7 1 4 16 16 7 5 8 6 15 

4 10 9 8 4 4 17 4 8 8 2 16 

5 7 9 7 6 9 18 5 10 9 3 11 

6 6 6 3 9 17 19 7 7 3 7 12 

7 5 8 6 7 6 20 1 5 2 7 17 

8 3 7 3 6 16 21 5 6 7 7 20 

9 8 8 9 3 8 22 4 3 1 2 15 

10 8 6 5 3 13 23 7 9 6 6 9 

11 5 9 5 4 17 24 4 5 2 4 12 

12 8 8 2 3 5 25 8 9 5 7 18 

13 5 8 7 5 8       

 

Procedure 

 To calculate the sample mean. 

 To calculate the sample covariance. 
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 To calculate T2 
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o where S is the covariance matrix of the sample for X,  

o X  is the mean of the sample 

 Under the null hypothesis 
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 If Fcal >Fcrit then we reject the null hypothesis, otherwise we accept it. 
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Calculation 

Hypothesis 

H0: There is no significant difference between the sample means in the five categories 

and the goals (i.e. population means). 

H1: There is a significant difference between the sample means in the five categories 

and the goals (i.e. population means). 

Calculation of Mean vector and Variance covariance Matrix 

Subjects x1 x2 x3 x4 x5 x1
2 x2

2 x3
2 x4

2 x5
2 x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 

1 6 8 3 5 19 36 64 9 25 361 48 18 30 114 24 40 152 15 57 95 

2 6 7 3 4 9 36 49 9 16 81 42 18 24 54 21 28 63 12 27 36 

3 5 7 1 4 16 25 49 1 16 256 35 5 20 80 7 28 112 4 16 64 

4 10 9 8 4 4 100 81 64 16 16 90 80 40 40 72 36 36 32 32 16 

5 7 9 7 6 9 49 81 49 36 81 63 49 42 63 63 54 81 42 63 54 

6 6 6 3 9 17 36 36 9 81 289 36 18 54 102 18 54 102 27 51 153 

7 5 8 6 7 6 25 64 36 49 36 40 30 35 30 48 56 48 42 36 42 

8 3 7 3 6 16 9 49 9 36 256 21 9 18 48 21 42 112 18 48 96 

9 8 8 9 3 8 64 64 81 9 64 64 72 24 64 72 24 64 27 72 24 

10 8 6 5 3 13 64 36 25 9 169 48 40 24 104 30 18 78 15 65 39 

11 5 9 5 4 17 25 81 25 16 289 45 25 20 85 45 36 153 20 85 68 

12 8 8 2 3 5 64 64 4 9 25 64 16 24 40 16 24 40 6 10 15 

13 5 8 7 5 8 25 64 49 25 64 40 35 25 40 56 40 64 35 56 40 

14 4 9 10 2 16 16 81 100 4 256 36 40 8 64 90 18 144 20 160 32 

15 2 9 4 10 14 4 81 16 100 196 18 8 20 28 36 90 126 40 56 140 

16 7 5 8 6 15 49 25 64 36 225 35 56 42 105 40 30 75 48 120 90 

17 4 8 8 2 16 16 64 64 4 256 32 32 8 64 64 16 128 16 128 32 

18 5 10 9 3 11 25 100 81 9 121 50 45 15 55 90 30 110 27 99 33 

19 7 7 3 7 12 49 49 9 49 144 49 21 49 84 21 49 84 21 36 84 

20 1 5 2 7 17 1 25 4 49 289 5 2 7 17 10 35 85 14 34 119 

21 5 6 7 7 20 25 36 49 49 400 30 35 35 100 42 42 120 49 140 140 

22 4 3 1 2 15 16 9 1 4 225 12 4 8 60 3 6 45 2 15 30 

23 7 9 6 6 9 49 81 36 36 81 63 42 42 63 54 54 81 36 54 54 

24 4 5 2 4 12 16 25 4 16 144 20 8 16 48 10 20 60 8 24 48 

25 8 9 5 7 18 64 81 25 49 324 72 40 56 144 45 63 162 35 90 126 

Total 140 185 127 126 322 888 1439 823 748 4648 1058 748 686 1696 998 933 2325 611 1574 1670 

 

Mean Vector 

Style 6.5
25

140
1 X    Comfort 4.7

25

185
2 X  

Stability 08.5
25

127
3 X   Cushion 04.5

25

126
4 X  

Durability 88.12
25

322
5 X  
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Mean Vector = 























88.12

04.5

08.5

4.7

6.5

  

Covariance Matrix 

16.4)6.5(
25

888 22

111   

8.2)4.7(
25

1439 22

222   

11.7)08.5(
25

823 22

333   

52.4)04.5(
25

748 22

444   

03.20)88.12(
25

4648 22

555   

88.0)4.76.5(
25

1058
12   

472.1)08.56.5(
25

748
13   

784.0)04.56.5(
25

686
14   

288.4)88.126.5(
25

1696
15   

328.2)08.54.7(
25

998
23   

024.0)04.54.7(
25

933
24   

312.2)88.124.7(
25

2325
25   

1632.1)04.508.5(
25

611
34   

4704.2)88.1208.5(
25

1574
35   

8848.1)88.1204.5(
25

1670
45   
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Covariance Matrix = 

































026.208848.14704.2312.2288.4

8848.15184.41632.1024.0784.0

4704.21632.11136.7328.2472.1

312.2024.0328.28.288.0

288.4784.0472.188.016.4

 

here,  

n = 25, k = 5 

)()( 12    XSXnT T  
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96.1

08.0

6.0

4.1

9

7

5

8

7

88.12

04.5

08.5

4.7

6.5

)( X  

)(1   XSb  

































026.208848.14704.2312.2288.4

8848.15184.41632.1024.0784.0

4704.21632.11136.7328.2472.1

312.2024.0328.28.288.0

288.4784.0472.188.016.4
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b

b

b

b

b

=





























88.3

96.1

08.0

6.0

4.1

 





























































































437.2

224.2

575.0

304.0

337.0

606.15077.1890.0405.10

077.1371.4886.01898.00

953.0886.0593.6016.20

405.11898.0017.2614.20

031.1188.0354.0212.01

)288.4(

)784.0(

)472.1(

)88.0(

16.4/

5

4

3

2

1

15

14

13

12

1

b

b

b

b

b

RR

RR

RR

RR

R

 



























































































274.2

202.2

810.0

116.0

312.0

851.14179.1194.000

179.1357.4032.100

131.0032.1037.500

538.0073.0772.010

917.0204.0191.101

)405.1(

)1898.0(

)016.2(

614.2/

)212.0(

5

4

3

2

1

25

24

23

2

21

b

b

b

b

b

RR

RR

RR

R

RR

 

























































































242.2

036.2

161.0

240.0

343.0

846.14218.1000

206.1145.4000

026.0205.0100

558.0231.0010

922.0165.0001

)194.0(

)032.1(

037.5/

)772.0(

)191.1(

5

4

3

2

1

35

34

3

32

31

b

b

b

b

b

RR

RR

R

RR

RR
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841.2

491.0

060.0

127.0

424.0

492.140000

291.01000

086.00100

625.00010

874.00001

)218.1(

145.4/

)205.0(

)231.0(

)165.0(

5

4

3

2

1

45

4

43

42

41

b

b

b

b

b

RR

R

RR

RR

RR

 



















































































196.0

548.0

043.0

005.0

252.0

10000

01000

00100

00010

00001

492.14/

)291.0(

)086.0(

)625.0(

)874.0(

5

4

3

2

1

5

54

53

52

51

b

b

b

b

b

R

RR

RR

RR

RR

 

252.01 b , 005.02 b , 043.03 b , 548.04 b  and 196.05 b  

 































196.0

548.0

043.0

005.0

252.0

88.396.108.06.04.1252T  

= 25× [-1.4×(-0.252) + (-0.6)×(-0.005) + 0.08×0.043 + (-1.96)×(-0.548) + 3.88×(0.196)] 

=25×[0.353+0.003+0.003+1.074+0.760]  = 25×2.193 

T2 = 54.825 

Under the null hypothesis, 

),(~
)1(

2 knkFT
nk

kn
F 




  

)20,5(~825.54
)125(5

525
FF 




  

138.9calF  

Table Value 

Degrees of freedom = F(k, n-k) 

        = F(5, 20) 

Fcrit = 2.71 

Conclusion 

Since, the calculated value is greater than the critical table value (9.138 > 2.71), we 

reject the null hypothesis. Hence, we conclude that there is a significant difference between 

the sample means in the five categories and the stated goals. 
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2. Test for Two Independent Samples Hotelling’s T2 

A certain type of tropical disease is characterized by fever, low blood pressure, 

and body aches. A pharmaceutical company was working on a new drug to treat this type 

of disease and wanted to determine whether the drug was effective. They took a random 

sample of 20 people with this type of disease and 18 with a placebo. Apply two sample 

Hotelling’s T2 method and to test whether the drug is effective at reducing these three 

symptoms for the following data: 

 
Drug Placebo 

ID Fever (X1) Blood Pressure (X2) Body Aches (X3) Fever (Y1) Blood Pressure (Y2) Body Aches (Y3) 

1 38.4 73 18 40.9 54 14 

2 36.8 85 14 39.5 75 18 

3 40.0 58 20 39.4 57 24 

4 39.8 80 20 38.2 71 24 

5 38.6 68 25 39.7 65 22 

6 39.1 52 27 38.9 49 30 

7 38.9 79 26 38.6 58 25 

8 36.8 100 8 39.9 52 17 

9 40.4 64 21 41.3 62 18 

10 39.4 53 22 38.1 57 20 

11 38.0 70 15 39.6 78 19 

12 38.6 75 14 37.1 92 15 

13 40.1 48 28 39.5 63 13 

14 38.1 57 22 40.3 52 25 

15 37.2 78 16 41.5 46 27 

16 39.5 65 18 39.3 56 14 

17 37.3 77 13 37.6 86 16 

18 39.1 67 16 40.6 48 21 

19 39.9 52 10    

20 37.8 68 13    

 

Procedure 

 To calculate the sample mean. 

 To calculate the sample covariance. 

2

2

2

i

i

iij X
n

X



  

ji

ji

ij XX
n

XX



  

 To calculate T2 

T

yx

YX
nn

SYXT )(
11

)(

1

2 































 

where, S is the pooled sample covariance matrix of XÂ and Y, namely 

)1()1(

)1()1(






yx

YyXx

nn

SnSn
S  

 Under the null hypothesis 

   ),(~
)1(

2 knkFT
nk

kn
F 




  

If Fcal >Fcrit then we reject the null hypothesis, otherwise we accept it. 
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Calculation 

Hypothesis 

H0: There is no significant difference between the mean vectors for the drug and 

placebo. 

H1: There is significant difference between the mean vectors for the drug and placebo. 

Mean and Covariance for Drug 
ID X1 X2 X3 X1

2 X2
2 X3

2 X1X2 X1X3 X2X3 

1 38.4 73 18 1474.56 5329 324 2803.2 691.2 1314 

2 36.8 85 14 1354.24 7225 196 3128 515.2 1190 

3 40.0 58 20 1600 3364 400 2320 800 1160 

4 39.8 80 20 1584.04 6400 400 3184 796 1600 

5 38.6 68 25 1489.96 4624 625 2624.8 965 1700 

6 39.1 52 27 1528.81 2704 729 2033.2 1055.7 1404 

7 38.9 79 26 1513.21 6241 676 3073.1 1011.4 2054 

8 36.8 100 8 1354.24 10000 64 3680 294.4 800 

9 40.4 64 21 1632.16 4096 441 2585.6 848.4 1344 

10 39.4 53 22 1552.36 2809 484 2088.2 866.8 1166 

11 38.0 70 15 1444 4900 225 2660 570 1050 

12 38.6 75 14 1489.96 5625 196 2895 540.4 1050 

13 40.1 48 28 1608.01 2304 784 1924.8 1122.8 1344 

14 38.1 57 22 1451.61 3249 484 2171.7 838.2 1254 

15 37.2 78 16 1383.84 6084 256 2901.6 595.2 1248 

16 39.5 65 18 1560.25 4225 324 2567.5 711 1170 

17 37.3 77 13 1391.29 5929 169 2872.1 484.9 1001 

18 39.1 67 16 1528.81 4489 256 2619.7 625.6 1072 

19 39.9 52 10 1592.01 2704 100 2074.8 399 520 

20 37.8 68 13 1428.84 4624 169 2570.4 491.4 884 

Total 773.8 1369 366 29962.2 96925 7302 52777.7 14222.6 24325 

 

Mean Vector 

Fever 69.38
20

8.773
1 X   Blood pressure 45.68

20

1369
2 X  

Body aches 3.18
20

366
3 X    

Mean Vector = 

















3.18

45.68

69.38

  

Covariance Matrix 

19.1)69.38(
20

2.29962 22

111   

85.160)45.68(
20

96925 22

222   

21.30)3.18(
20

7302 22

333   

45.9)45.6869.38(
20

7.52777
12   

10.3)3.1869.38(
20

6.14222
13   

39.36)3.1845.68(
20

24325
23   

Covariance Matrix = 























21.3039.3610.3

39.3685.16045.9

10.345.919.1
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Mean and Covariance for Placebo 

ID Y1 Y2 Y3 Y1
2 Y2

2 Y3
2 Y1Y2 Y1Y3 Y2Y3 

1 40.9 54 14 1672.81 2916 196 2208.6 572.6 756 

2 39.5 75 18 1560.25 5625 324 2962.5 711 1350 

3 39.4 57 24 1552.36 3249 576 2245.8 945.6 1368 

4 38.2 71 24 1459.24 5041 576 2712.2 916.8 1704 

5 39.7 65 22 1576.09 4225 484 2580.5 873.4 1430 

6 38.9 49 30 1513.21 2401 900 1906.1 1167 1470 

7 38.6 58 25 1489.96 3364 625 2238.8 965 1450 

8 39.9 52 17 1592.01 2704 289 2074.8 678.3 884 

9 41.3 62 18 1705.69 3844 324 2560.6 743.4 1116 

10 38.1 57 20 1451.61 3249 400 2171.7 762 1140 

11 39.6 78 19 1568.16 6084 361 3088.8 752.4 1482 

12 37.1 92 15 1376.41 8464 225 3413.2 556.5 1380 

13 39.5 63 13 1560.25 3969 169 2488.5 513.5 819 

14 40.3 52 25 1624.09 2704 625 2095.6 1007.5 1300 

15 41.5 46 27 1722.25 2116 729 1909 1120.5 1242 

16 39.3 56 14 1544.49 3136 196 2200.8 550.2 784 

17 37.6 86 16 1413.76 7396 256 3233.6 601.6 1376 

18 40.6 48 21 1648.36 2304 441 1948.8 852.6 1008 

Total 710 1121 362 28031 72791 7696 44039.9 14289.9 22059 

 

Mean Vector 

Fever 44.39
18

710
1 Y   Blood pressure 28.62

18

1121
2 Y  

Body aches 11.20
18

362
3 Y    

Mean Vector = 

















11.20

28.62

44.39

  

Covariance Matrix 

41.1)44.39(
18

28031 22

111   

42.165)28.62(
18

72791 22

222   

10.23)11.20(
18

7969 22

333   

85.9)28.6244.39(
18

9.44039
12   

61.0)11.2044.39(
18

9.14289
13   

98.26)11.2028.62(
18

22059
23   

Covariance Matrix = 























10.2398.2661.0

98.2642.16585.9

61.085.941.1

 

Pooled covariance Matrix 

)1()1(

)1()1(






yx

YyXx

nn

SnSn
S  
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30.1
1719

)41.117()19.119(2

111 



  

01.163
1719

)42.16517()85.16019(2

222 



  

85.26
1719

)10.2317()21.3019(2

333 



  

64.9
1719

))85.9(17())45.9(19(
12 




  

93.1
1719

)61.017()10.319(
13 




  

94.31
1719

))98.26(17())39.36(19(
23 




  

Pooled Covariance Matrix (S) = 























85.2694.3193.1

94.3101.16363.9

93.163.930.1

 

here, n = 38, k = 3 
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 11.0
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95.251.321.0

51.393.1706.1

21.006.114.0
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17.6
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51.393.1706.1

21.006.114.0
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b
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69.0

49.0

36.5

64.292.10

92.190.90

50.157.71

)21.0(

)06.1(

14.0/

3

2

1

13

12

1

b

b

b

RR

RR

R

 





























































59.0

05.0

98.4

26.200

19.010

03.001

)92.1(

90.9/

)57.7(

3

2

1

23

2

21

b

b

b

RR

R

RR

 



























































26.0

00.0

97.4

100

010

001

26.2/

)19.0(

)03.0(

3

2

1

3

32

31

b

b

b

R

RR

RR

 

97.41 b , 02 b  and 26.03 b  

 






















26.0

00.0

97.4

81.117.675.0382T  

= [-0.75×(-4.97) + 6.17×0 + (-1.81)×(-0.26)] 

= 3.73 + 0 + 0.47 

       T2 = 4.20 

Under the null hypothesis, 

),(~
)1(

2 knkFT
nk

kn
F 




  

)35,3(~20.4
)138(3

338
FF 




  

32.1calF  

Table Value 

Degrees of freedom = F(k, n-k) 

        = F(3, 35) 

Fcrit = 2.87 

Conclusion 

Since, the calculated value is less than the critical table value (1.32 < 2.87), we do not 

reject the null hypothesis. Hence, we conclude that there is no significant difference between 

the mean vectors for the drug and placebo. 
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3. Test for Paired Sample Hotelling’s T2 

A shoe company evaluates two new model shoes, Model 1 based on five criteria: 

style (x1), comfort (x2), stability (x3), cushioning (x4) and durability (x5) and Model 2 

based on five criteria: style (y1), comfort (y2), stability (y3), cushioning (y4) and  

durability (y5) with each of the first four criteria evaluated on a scale of 1 to 10 and the 

durability criteria evaluated on the scale of 1 to 20. Calculate the paired sample 

Hotelling’s T2 for the following data: 

 
Model 1 Model 2 

Subjects Style Comfort Stability Cushion Durability Style Comfort Stability Cushion Durability 

1 6 8 3 5 19 8 6 5 6 10 

2 6 7 3 4 9 8 6 3 6 4 

3 5 7 1 4 16 7 5 6 4 17 

4 10 9 8 4 4 9 8 6 3 4 

5 7 9 7 6 9 8 5 6 8 11 

6 6 6 3 9 17 8 7 4 4 13 

7 5 8 6 7 6 7 3 6 3 8 

8 3 7 3 6 16 6 6 5 8 14 

9 8 8 9 3 8 6 9 7 5 12 

10 8 6 5 3 13 7 5 9 6 11 

11 5 9 5 4 17 7 5 4 6 15 

12 8 8 2 3 5 5 7 4 4 6 

13 5 8 7 5 8 6 4 6 4 12 

14 4 9 10 2 16 8 7 8 5 12 

15 2 9 4 10 14 5 6 5 7 12 

16 7 5 8 6 15 10 5 7 6 6 

17 4 8 8 2 16 9 6 9 5 11 

18 5 10 9 3 11 8 7 10 5 5 

19 7 7 3 7 12 6 2 5 3 8 

20 1 5 2 7 17 5 7 5 5 8 

21 5 6 7 7 20 8 4 8 8 10 

22 4 3 1 2 15 3 2 4 4 15 

23 7 9 6 6 9 8 6 3 6 12 

24 4 5 2 4 12 5 4 6 5 9 

25 8 9 5 7 18 6 3 4 8 8 

Procedure 

 To calculate the difference between model 1 and model 2. 

 To calculate the sample mean. 

 To calculate the sample covariance. 

2

2

2

i

i

iij X
n

X



   and ji

ji

ij XX
n

XX



  

 To calculate T2  

)(~)()( 212 kYXSYXnT T    

o where S is the covariance matrix of the sample for X,  

o X̄ is the mean of the sample 

 Under the null hypothesis 

   ),(~
)1(

2 knkFT
nk

kn
F 




  

If F >Fcrit then we reject the null hypothesis, otherwise we accept it. 
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Calculation 

Hypothesis 

H0: There is no significant difference between the two shoe models. 

H1: There is a significant difference between the two shoe models.  

Calculation of difference between model 1 and model 2 

 
Model 1 Model 2 Z = Model 1 - Model 2 

Subjects x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 z1 z2 z3 z4 z5 

1 6 8 3 5 19 8 6 5 6 10 -2 2 -2 -1 9 

2 6 7 3 4 9 8 6 3 6 4 -2 1 0 -2 5 

3 5 7 1 4 16 7 5 6 4 17 -2 2 -5 0 -1 

4 10 9 8 4 4 9 8 6 3 4 1 1 2 1 0 

5 7 9 7 6 9 8 5 6 8 11 -1 4 1 -2 -2 

6 6 6 3 9 17 8 7 4 4 13 -2 -1 -1 5 4 

7 5 8 6 7 6 7 3 6 3 8 -2 5 0 4 -2 

8 3 7 3 6 16 6 6 5 8 14 -3 1 -2 -2 2 

9 8 8 9 3 8 6 9 7 5 12 2 -1 2 -2 -4 

10 8 6 5 3 13 7 5 9 6 11 1 1 -4 -3 2 

11 5 9 5 4 17 7 5 4 6 15 -2 4 1 -2 2 

12 8 8 2 3 5 5 7 4 4 6 3 1 -2 -1 -1 

13 5 8 7 5 8 6 4 6 4 12 -1 4 1 1 -4 

14 4 9 10 2 16 8 7 8 5 12 -4 2 2 -3 4 

15 2 9 4 10 14 5 6 5 7 12 -3 3 -1 3 2 

16 7 5 8 6 15 10 5 7 6 6 -3 0 1 0 9 

17 4 8 8 2 16 9 6 9 5 11 -5 2 -1 -3 5 

18 5 10 9 3 11 8 7 10 5 5 -3 3 -1 -2 6 

19 7 7 3 7 12 6 2 5 3 8 1 5 -2 4 4 

20 1 5 2 7 17 5 7 5 5 8 -4 -2 -3 2 9 

21 5 6 7 7 20 8 4 8 8 10 -3 2 -1 -1 10 

22 4 3 1 2 15 3 2 4 4 15 1 1 -3 -2 0 

23 7 9 6 6 9 8 6 3 6 12 -1 3 3 0 -3 

24 4 5 2 4 12 5 4 6 5 9 -1 1 -4 -1 3 

25 8 9 5 7 18 6 3 4 8 8 2 6 1 -1 10 

 

Calculation of Mean vector and Variance covariance Matrix 
Subjects z1 z2 z3 z4 z5 z1

2 z2
2 z3

2 z4
2 z5

2 z1z2 z1z3 z1z4 z1z5 z2z3 z2z4 z2z5 z3z4 z3z5 z4z5 

1 -2 2 -2 -1 9 4 4 4 1 81 -4 4 2 -18 -4 -2 18 2 -18 -9 

2 -2 1 0 -2 5 4 1 0 4 25 -2 0 4 -10 0 -2 5 0 0 -10 

3 -2 2 -5 0 -1 4 4 25 0 1 -4 10 0 2 -10 0 -2 0 5 0 

4 1 1 2 1 0 1 1 4 1 0 1 2 1 0 2 1 0 2 0 0 

5 -1 4 1 -2 -2 1 16 1 4 4 -4 -1 2 2 4 -8 -8 -2 -2 4 

6 -2 -1 -1 5 4 4 1 1 25 16 2 2 -10 -8 1 -5 -4 -5 -4 20 

7 -2 5 0 4 -2 4 25 0 16 4 -10 0 -8 4 0 20 -10 0 0 -8 

8 -3 1 -2 -2 2 9 1 4 4 4 -3 6 6 -6 -2 -2 2 4 -4 -4 

9 2 -1 2 -2 -4 4 1 4 4 16 -2 4 -4 -8 -2 2 4 -4 -8 8 

10 1 1 -4 -3 2 1 1 16 9 4 1 -4 -3 2 -4 -3 2 12 -8 -6 

11 -2 4 1 -2 2 4 16 1 4 4 -8 -2 4 -4 4 -8 8 -2 2 -4 

12 3 1 -2 -1 -1 9 1 4 1 1 3 -6 -3 -3 -2 -1 -1 2 2 1 

13 -1 4 1 1 -4 1 16 1 1 16 -4 -1 -1 4 4 4 -16 1 -4 -4 

14 -4 2 2 -3 4 16 4 4 9 16 -8 -8 12 -16 4 -6 8 -6 8 -12 

15 -3 3 -1 3 2 9 9 1 9 4 -9 3 -9 -6 -3 9 6 -3 -2 6 

16 -3 0 1 0 9 9 0 1 0 81 0 -3 0 -27 0 0 0 0 9 0 

17 -5 2 -1 -3 5 25 4 1 9 25 -10 5 15 -25 -2 -6 10 3 -5 -15 

18 -3 3 -1 -2 6 9 9 1 4 36 -9 3 6 -18 -3 -6 18 2 -6 -12 

19 1 5 -2 4 4 1 25 4 16 16 5 -2 4 4 -10 20 20 -8 -8 16 

20 -4 -2 -3 2 9 16 4 9 4 81 8 12 -8 -36 6 -4 -18 -6 -27 18 

21 -3 2 -1 -1 10 9 4 1 1 100 -6 3 3 -30 -2 -2 20 1 -10 -10 

22 1 1 -3 -2 0 1 1 9 4 0 1 -3 -2 0 -3 -2 0 6 0 0 

23 -1 3 3 0 -3 1 9 9 0 9 -3 -3 0 3 9 0 -9 0 -9 0 

24 -1 1 -4 -1 3 1 1 16 1 9 -1 4 1 -3 -4 -1 3 4 -12 -3 

25 2 6 1 -1 10 4 36 1 1 100 12 2 -2 20 6 -6 60 -1 10 -10 

Total -33 50 -18 -8 69 151 194 122 132 653 -54 27 10 -177 -11 -8 116 2 -91 -34 
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Mean Vector 

Style 32.1
25

33
1 


z   Comfort 2

25

50
2 z  

Stability 72.0
25

18
3 


z   Cushion 32.0

25

8
4 


z  

Durability 76.2
25

69
5 z  

Mean Vector = 
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Covariance Matrix 
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00.1))72.0(2(
25

11
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32.0))32.0(2(
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88.0)76.22(
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116
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15.0))32.0(72.0(
25

2
34   

65.1)76.272.0(
25

91
35 
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25

34
45 
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Covariance Matrix = 

































50.1848.065.188.044.3

48.018.515.032.002.0

65.115.036.400.113.0

88.032.000.176.348.0

44.302.013.048.030.4

 

here,  

n = 25, k = 5 

zSznT T 12   
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10.0

10.0

28.0

72.0

29.0
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01000

00100

00010
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29.01 b , 72.02 b , 28.03 b , 10.04 b  and 10.05 b  

 































10.0

10.0

28.0

72.0

29.0

76.232.072.000.232.1252T  

= 25× [-1.32×(-0.29) + 2)×(0.72) + (-0.72)×(-0.28) + (-0.32)×(-0.10) + 2.76×(0.10)] 

=25×[0.39+1.44+0.20+0.03+0.27] = 25×2.33 

T2 = 58.36 

Under the null hypothesis, 

),(~
)1(

2 knkFT
nk

kn
F 




  

)20,5(~36.58
)125(5

525
FF 




  

73.9calF  

 

Table Value 

Degrees of freedom = F(k, n-k) 

        = F(5, 20) 

Fcrit = 2.71 

 

Conclusion 

Since, the calculated value is greater than the critical table value (9.73 > 2.71), we 

reject the null hypothesis. Hence, we conclude that there is a significant difference between 

the two shoe models.  
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4. Test for Mahalanobis D2 Statistic 

Calculate Mahalanobis distance for the following data: 

Months (2021) Jan Feb Mar Apr May Jun Jul Aug Sep Oct 

Stocks (X1) 5.00% 1.90% 9.80% -2.00% 2.10% 2.50% 1.60% 6.20% 5.30% -0.40% 

Bonds (X2) -0.30% 1.20% 1.30% 0.30% 0.00% 2.10% 0.90% 1.40% 0.60% 0.70% 

 

Procedure 

 To calculating Mean vector (µ). 

 To finding Covariance Matrix (Σ). 

2

2

2

i

i

iij X
n

X



    and   ji

ji

ij XX
n

XX



  

 To calculate Mahalanobis Distance Components  

D2 = [xi – x̄)T Σ-1(xi – x̄)]0.5 

where, xi = an object vector 

x̄ = arithmetic mean vector 

Σ = variance covariance matrix 

 Mahalanobis Distance (DM) calculation 

Calculation 

Calculate Mean Vector and Variance-covariance Matrix 
X1 X1 X1

2 X2
2 X1X2 

5 -0.3 25 0.09 -1.5 

1.9 1.2 3.61 1.44 2.28 

9.8 1.3 96.04 1.69 12.74 

-2 0.3 4 0.09 -0.6 

2.1 0 4.41 0 0 

2.5 2.1 6.25 4.41 5.25 

1.6 0.9 2.56 0.81 1.44 

6.2 1.4 38.44 1.96 8.68 

5.3 0.6 28.09 0.36 3.18 

-0.4 0.7 0.16 0.49 -0.28 

32 8.2 208.56 11.34 31.19 

 

Mean Vector 

Stocks %2.3
10

%32
1 X  Bonds %82.0

10

%2.8
2 X  Mean Vector = 









82.0

2.3
 

Covariance Matrix 

616.10%)2.3(
10

%56.208 22

111   

4616.0)82.0(
10

34.11 22

222   

495.0)82.02.3(
10

19.31
12   

Covariance Matrix (Σ) = 








4616.0495.0

495.0616.10
 

Inverse of Covariance 

)(
11 


 adj
4616.0495.0

495.0616.10
 245.0900.4   655.4  
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T

adj 













616.10495.0

495.04616.0
 















616.10495.0

495.04616.0
adj  















616.10495.0

495.04616.0

655.4

11  















2806.21063.0

1063.00992.0
1  

Mahalanobis Distance Components  

D2 = [xi – x̄)T Σ-1(xi – x̄)]0.5 
5.0

12.022.058.008.028.182.052.048.038.012.1

6.31.20.36.17.01.12.56.63.18.1

2806.21063.0

1063.00992.0

12.022.058.008.028.182.052.048.038.012.1

6.31.20.36.17.01.12.56.63.18.1




































































T

 

c11 = 1.8 × 1.8 + (-1.3) × (-1.3) + 6.6 × 6.6 + (-5.2) × (-5.2) + (-1.1) × (-1.1) + (-0.7) × (-0.7) 

+ (-1.6) × (-1.6) + 3 × 3 + 2.1 × 2.1 + (-3.6) × (-3.6) = 106.16 

c12 = 1.8 × (-1.12) + (-1.3) × 0.38 + 6.6 × 0.48 + (-5.2) × (-0.52) + (-1.1) × (-0.82) + (-0.7) × 

1.28 + (-1.6) × 0.08 + 3 × 0.58 + 2.1 × (-0.22) + (-3.6) × (-0.12) = 4.95 

c21 = -1.12 × 1.8 + 0.38 × (-1.3) + 0.48 × 6.6 + (-0.52) × (-5.2) + (-0.82) × (-1.1) + 1.28 × 

 (-0.7) + 0.08 × (-1.6) + 0.58 × 3 + (-0.22) × 2.1 + (-0.12) × (-3.6) = 4.95 

c22 = -1.12 × (-1.12) + 0.38 × 0.38 + 0.48 × 0.48 + (-0.52) × (-0.52) + (-0.82) × (-0.82) + 1.28 

× 1.28 + 0.08 × 0.08 + 0.58 × 0.58 + (-0.22) × (-0.22) + (-0.12) × (-0.12) = 4.616 

5.0

2806.21063.0

1063.00992.0

616.495.4

95.416.106




























  

5.0

0011.100004.0

0042.00049.10








  











162.302.0

065.0163.3
2D  

Result 

The Mahalanobis distance is a positive value that quantifies are similar between a 

Stocks (X1) and Bonds (X2), and the mean of the data set. Hence, we conclude that two 

variables are correlated. 


	One Sample Hotelling’s T2
	Multivariate case

	1. Test for One Sample Hotelling’s T2
	3. Test for Paired Sample Hotelling’s T2

