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UNIT – I 

MULTIVARIATE NORMAL DISTRIBUTION AND PROPERTIES 

Introduction to Multivariate Analysis 

 Multivariate analysis is a set of techniques used for analysis of data that contain more 

than one variable.  

 Multivariate analysis is a branch of statistics concerned with the analysis of multiple 

measurements, made on one or several samples of individuals. For example, we may 

wish to measure length, width, and weight of a product. 

 Multivariate analysis provides a more accurate view of the behavior between 

variables that are highly correlated, and can detect potential problems in a product or 

process.  

 Many decisions are based on univariate analysis, but only multivariate analysis 

reveals relationships that help you detect problems that are not obvious by looking at 

the variables individually. 

 Multivariate analysis is a statistical technique used to examine relationships among 

multiple variables (three or more) simultaneously. It helps to identify patterns, 

correlations and dependencies between variables, and to understand how they interact 

and influence each other. 

Types of Data 

Data 

 Data can be defined as a systematic record of a particular quantity. It is the different 

values of that quantity represented together in a set. It is a collection of facts and figures to be 

used for a specific purpose such as a survey or analysis. When arranged in an organized form, 

can be called information. The source of data (primary data, secondary data) is also an 

important factor. Data can be classified into two types. these are 

 Qualitative Data: Qualitative Data represent some characteristics or attributes. They 

depict descriptions that may be observed but cannot be computed or calculated. For 

example, data on attributes such as intelligence, honesty, wisdom and cleanliness. 

They are more exploratory than conclusive in nature. 



Page 3 
 

 Quantitative Data: These can be measured and not simply observed. They can be 

numerically represented and calculations can be performed on them. For example, 

data on the number of students playing different sports from your class gives an 

estimate of how many of the total students play which sport. This information is 

numerical and can be classified as quantitative. 

 

Types of measurements 

Nominal Data 

 Nominal Data is used to label variables without any order or quantitative value. for 

example, the color of hair can be considered nominal data, as one color can’t be compared 

with another color. 

 Examples of Nominal Data  

 Colour of hair (Blonde, red, Brown, Black, etc.,) 

 Marital status (Single, Widowed, Married) 

 Nationality (Indian, German, American, etc.,) 

 Gender (Male, Female, Others) 

 Eye Color (Black, Brown, etc.,) 
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Ordinal Data 

 Ordinal data have natural ordering where a number is present in some kind of order 

by their position on the scale. These data are used for observation like customer satisfaction, 

happiness, etc., 

 Examples of Ordinal Data  

 When companies ask for feedback, experience, or satisfaction on a scale  

of 1 to 10 

 Letter grades in the exam (A, B, C, D, etc.) 

 Ranking of people in a competition (First, Second, Third, etc.) 

 Economic Status (High, Medium, and Low) 

 Education Level (Higher, Secondary, Primary) 

Interval data 

 Interval data refers to information measured along a scale with equal distances. The 

distances or spaces in between the adjacent values are called intervals. So, the interval scale 

represents information about the order and it gives meaning to the difference between two 

values. 

 Examples of Interval Data 

 Celsius and Fahrenheit are examples of interval scales. Each value on these 

scales differs from the adjacent values by intervals of exactly 1 degree.  

 The difference between 20 and 21 degrees is identical to the difference 

between 225 and 226 degrees. 

Ratio data 

 Ratio data is quantitative data that has an equal and definitive ratio between each 

value. Unlike interval data, ratio data has an absolute zero. It means ratio variables can’t have 

negative values, and zero means none of that variable is present. 

 Examples of Ratio Data 

 The measurement of height is considered ratio data, and it’s not applicable to 

have a negative number for height.  

 Age is a ratio variable, and a 40-year-old person is twice the age of someone 

who’s 20. 
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Multiple measurement or observation as row or column vector 

 A multiple measurement or observation may be expressed as 

 6.024x   

referring to the physical properties of length, width, and weight, respectively. 

 The collection of measurements on x is called a vector. In this case it is a row vector. 

We could have written x as a column vector. 
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Multivariate Distributions 

 A multivariate distribution describes the underlying random structure of a vector of 

random variables. 

 From it we can derive marginal properties of the individual variables. 

 It also describes relationships between variables or groups of variables. 

 As in much of statistics, we are generally interested in making inferences about this 

distribution based on a sample 
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Structure of Multivariate Data 

 Suppose that we have measurements on p variables for each of n experimental units. 

 We will use xij to denote the observed value of the jth variable (j = 1,..., p) on the ith 

unit (i = 1,...,n). 

 We will typically gather the information into a n× p matrix. 

 

Singular and non-singular  

 If A is square matrix and of full rank, then A is said to be nonsingular, and A has a 

unique inverse denoted by A−1 with the property that AA−1 = A−1A = I. If A is square and of 

less than full rank, then an inverse does not exist and A is said to be singular. 

Example (Singular) 

 Let 









21

21
A  = (1×2) - (1×2) = 2 - 2 = 0 

Now, Matrix A said to be a singular, because its determinant is equal to zero. 

Example (Non-Singular) 

 Let 









23

21
A  = (3×2) - (1×2) = 6 - 2 = 4 

Now, Matrix A said to be a non-singular, because its determinant is 4 (Which is not equal to 

zero). 

Types of Multivariate Techniques 

 There are many different techniques for multivariate analysis and they can be divided 

into two categories: 

 Dependence techniques 

 Interdependence techniques 
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Dependence methods 

 Dependence methods are used when one or some of the variables are dependent on 

others. Dependence looks at cause and effect; in other words, can the values of two or 

more independent variables be used to explain, describe, or predict the value of 

another, dependent variable? To give a simple example, the dependent variable of “weight” 

might be predicted by independent variables such as “height” and “age.” 

Interdependence methods 

 Interdependence methods are used to understand the structural makeup and 

underlying patterns within a dataset. In this case, no variables are dependent on others, so you 

are not looking for causal relationships. Rather, interdependence methods seek to give 

meaning to a set of variables or to group them together in meaningful ways. 

 The classifications of Multivariate Techniques are, 

 Principal Components and Common Factor Analysis 

 Cluster Analysis 

 Multidimensional Scaling (perceptual mapping) 

 Correspondence Analysis 

 Canonical Correlation 

 Multiple Discriminant Analysis 

 Logit/Logistic Regression 

 Multivariate Analysis of Variance (MANOVA) and Covariance 

 Conjoint Analysis 

 Canonical Correlation 

 Multiple Regression 

 Structural Equations Modeling (SEM) 

 

 A variable or set of variables is identified as the dependent variable to be predicted or 

explained by other variables known as independent variables. 
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Example of Dependence: (No. Sons, House Type) = f(Income, Social Status, Studies) 

Example of Interdependence: Who is similar to whom? (No. Sons, House Type, Income, 

Social Status, Studies, …) 
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Multivariate Techniques help to: 

 Reduce dimensionality 

 Identify patterns and relationships 

 Predict outcomes 

 Classify observations 

 Identify correlations and dependencies 

Applications of Multivariate Analysis 

 Multivariate analysis is used in various fields including: 

 Social sciences: to study relationships between demographic, economic and 

social variables. 

 Marketing: to analyze customer behavior, preferences and demographics. 

 Healthcare: to investigate relationships between symptoms, treatments and 

outcomes. 

 Finance: to analyze portfolio performance, risk management and asset 

pricing. 

 Biology: to study genetic associations, protein interactions and ecological 

relationships. 

Multivariate normal distributions 

 The multivariate normal distribution (also known as the multivariate Gaussian 

distribution) is a generalization of the univariate normal distribution to multiple variables.  A 

multivariate normal distribution is a vector in multiple normally distributed variables, such 

that any linear combination of the variables is also normally distributed. 

 It is mostly useful in extending the central limit theorem to multiple variables, but 

also has applications to Bayesian inference and thus machine learning, where the multivariate 

normal distribution is used to approximate the features of some characteristics. 

Applications 

 Multivariate normal distributions are widely used in various fields, including: 

• Statistics: to model correlated data and perform inference 

• Machine learning: as a prior distribution for Bayesian models 

• Finance: to model asset returns and portfolio risk 

• Engineering: to model complex systems with correlated variables 
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• Data analysis and visualization 

• Regression analysis and prediction 

• Cluster analysis and classification 

• Dimensionality reduction and feature extraction 

Multivariate normal density and its Properties  

 The multivariate normal density is a generalization of the univariate normal density to 

p ≥ 2 dimensions. The univariate normal distribution, with mean μ and variance σ2 has the 

probability density 
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This can be generalized for p×1 vector x of observations on several variables as  

)()( 1    xx  

The p×1 vector µ represents the expected value of the random vector X and the  

p× q matrix Σ is the variance-covariance matrix of X. 

 A p-dimensional vector of random variables, X = X1,X2,...,Xp, −∞ < Xi < ∞, i = 1,..., p 

is said to have a multivariate normal distribution if its density function f(X) is of the form 
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 where µ = (µ1,...,µp) is the vector of means and Σ is the variance-covariance matrix of 

the multivariate normal distribution. The shortcut notation for this density is X = Np(µ, Σ). 
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 A plot of this function yields the familiar bell-shaped curve. Also shown in the figure 

are appropriate areas under curve with in ±1 standard deviations and ±2 standard deviations 

of the mean. 

 The areas represent the probabilities, and thus, for the normal random variable X. 

  P(µ − σ ≤ X ≤ µ + σ) = 0.68 

  P(µ − 2σ ≤ X ≤ µ + 2σ) = 0.95 

The multivariate normal distribution has several important properties: 

• Marginal distributions: Each individual variable follows a univariate normal 

distribution. 

• Linear combinations: Any linear combination of the variables also follows a 

univariate normal distribution. 

• Independence: If the covariance matrix is diagonal, the variables are independent. 

• Correlation: The correlation matrix can be derived from the covariance matrix. 

Additional Properties of Multivariate normal distributions 

The following are true for a random vector X having a multivariate normal distribution: 

• Linear combinations of the components of X are normally distributed. 

• All Subsets of the components of X have a Multivariate Normal distribution. 

• Zero covariance implies that the corresponding components are independently 

distributed. 

• The conditional distribution of the components are Multivariate Normal. 

Result – 1  

If X is distributed as Np(µ, Σ), then any linear combination of variables  

a' X = a1X1+a2X2+· · ·+apXp is distributed as N(a'µ, a'Σa). Also if a' X is distributed as  

N(a'µ, a'Σa) for every a, then X must be Np(µ, Σ). 

Example-1: The distribution of a linear combination of the component of a normal 

random vector. 
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Consider the linear combination a' X of a multivariate normal random vector 

determined by the choice a'=[1, 0, . . . , 0]. Since  
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Note that X1 is distributed as N(µ1, σ11). Generally, the marginal distribution of any 

component Xi (i = 1, 2, . . ., p) of Xp is N(µp, σpp).  

 

Example-2: Considers several linear combinations of a multivariate normal vector X. 

If X is distributed as Np(µ, Σ), the q linear combinations 
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are distributed as Nq(Aµ, AΣA'). Also Xp×1 + dp×1, where d is a vector of constants, is 

distributed as Np(µ + d, Σ). 

Example-3: The distribution of two linear combinations of the components of a normal 

random vector. 

For X distributed as N3(µ, Σ), find the distribution of 
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The distribution of AX is multivariate normal with mean 
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And covariance matrix 
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Alternatively, the mean vector Aµ and covariance matrix A∑A' may be verified by 

direct calculation of the means and covariances of the two random variables Y1 = X1 - X2 and 

Y2 = X2 - X3· 

Result – 2: The distribution of a subset of a normal random vector 

All subsets of X are normally distributed. If we respectively partition X, its mean 

vector µ, and its covariance matrix Σ as 
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Then X1 is distributed as Nq(µ1, Σ11). 

Example-3: The distribution of a subset of a normal random vector 

If X is distributed as N5(µ, ∑), find the distribution of .
4

2










X

X
 We set 










4

2

1
X

X
X ,

 









4

2

1



 , 














4424

2422
 and note that with this assignment, X, µ and  ∑ can 

respectively be rearranged and partitioned as 
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Therefore, the normal distribution for any subset can be expressed by simply selecting the 

appropriate means and covariances from the original µ and ∑. 

Theorem 

If the variance covariance matrix of p-variates normal random vector X=(X1, X2, ... Xp)' 

is diagonal matrix, then the components of X are independently normally distributed random 

variables. 

Proof 

The probability density function of p-variates normal random vector is 
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and 



p

i

i

1
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Therefore, X1, X2, ... Xp are independently normally distributed random variable with 

mean i , and variance 2

i . 

Theorem 

If X (with p components) be distributed according to N(µ, Σ). Then Y = CX 

(nonsingular transformation) is distributed according to N (Cµ, CΣCT) for C nonsingular. 

 Proof 

We have 
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Consider the transformation Y = CX or X = C−1Y. The Jacobian of the transformation 

is |C−1|, therefore, 
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The quadratic form in the exponent of g( y) is 
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And the Jacobian of the transformation, which is 
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Thus, the density function of Y is 
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Therefore, Y ~ N(Cµ, CΣCT) 

Transformation of variables 

Let X1, X2, ..., Xp have the joint density function f(x1, x2, ... xp). Consider p real-valued 

functions yi = yi(x1, x2, ..., xp), i=1, 2, . . ., p. We assumed that the transformation of Y to X be 

one-to-one, the inverse transformation is xi = xi(y1, y2, ..., yp), i=1, 2, . . ., p. Let the random 

variable Y1, Y2, ... Yp be defined by 

Yi = yi(X1, X2, ..., Xp) 

Then the joint density function of Y1, Y2, ... Yp is 

g(y1, y2, ..., yp) = f[x1(y1, y2, ..., yp), . . ., xp(y1, y2, ..., yp)] |J| 

Where, 
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Joint and Marginal cumulative distribution function 

 Let X = (X1, . . . Xp) be an p-dimensional vector of random variables. We have the 

following definitions and statements. 

Joint CDF  

Let X and Y be two random variables. The joint cumulative distribution function of X 

and Y is given by,  

F(x, y) = Pr(X ≤ x, Y ≤ y), 
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defined for every pair of real numbers (x, y). We are interested in cases where F(x, y) 

is absolutely continuous. If F(x, y) is absolutely continuous, then  
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Marginal CDF  

Let F(x, y) be the cumulative distribution function of two random variables X and Y, 

the marginal cumulative distribution function of X is 

Pr(X ≤ x) = Pr{X ≤ x, Y ≤ ∞} = F(x,∞). 

Therefore,   
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Let us consider,  
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Where f(u) is called the marginal density function of X is 
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Similarly we define G(y), the marginal cumulative distribution function of Y, and 

g(y), the marginal density function of Y. 
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Let F(x1, x2, ..., xp) be the cumulative distribution function of the random variables  

X1, . . . Xp. The marginal cumulative distribution function of some of X1, . . . Xp, say X1, ..., Xr, 

(r < p) is 

),,,,,(),,( 11111   prrrrr XXxXxXPxXxXP   
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and the marginal density function of X1, . . . Xr is 
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The marginal distribution and density of any other subset of X1, . . . Xp are obtained in 

the obvious similar fashion. 

Marginal and Conditional distribution of Multivariate normal distribution 

 Let p dimensional random vector 
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Statement 

 The marginal distributions of x1 and x2 are also normal with mean vector µi and 

covariance matrix Σii (i = 1,2) respectively. 

 The conditional distribution of xi given xj is also normal with mean vector  
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Proof 

 The joint density of is 
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 The last equal sign is due to the following equations for any vectors u and v and a 

symmetric matrix A = AT  
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 AvvAvuAvuAuuAv)vu()vu(Au TTTTT   

 )vu(A)vu()vu(A)vu( TT   

We define 

 )x(b T

11

1

11122 


   

 12

1

111222 


 TA  

and 

  )x()x(xQ T

11

1

111111 


   

       )x()x()x()x(x,xQ TTTT

11

1

111222

1

12

1

11122211

1

111222212 


   

      )bx(A)bx( T  

2

1

2  

and get 

   )x,x(Q)x(Qx,xQ 2121121   

Now the joint distribution can be written as 
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The third equal sign is due to theorem 
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The marginal distribution of x1 is 
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and the conditional distribution of x2 given x1 is 
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Hence the proof. 

 

Characteristic function 

The characteristic function of a random vector X is defined as  Xti
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Theorem  

Let X = (X1, X2, . . . , Xp )' be normally distributed random vector with mean μ and 

positive definite covariance matrix Σ, then the characteristic function of X is given by 
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Since Σ is a symmetric and positive definite, there exists a non-singular matrix C such 

that C' Σ-1C = I and Σ=CC'. 

Let X – μ = CY, so that Y = C-1(X – μ) a nonsingular transformation and the Jacobian 

of the transformation is | J | = | C |, therefore, the density function of Y is 
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It shows that Y1, Y2, . . . , Yp are independently normally distributed each with mean 

zero and variance one. 

Now the characteristic function of Y is 

  pppp YiuYiuYuYuiYui

Y EeEeEeeEu 11111 )(
)( 




  - - - (1) 

Since Y1,Y2, . . . ,Yp are independent and distributed according to N(0, 1), 
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Thus, 
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 from equation (1) and (2)  
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Hence the proof. 

Distribution of linear combinations of multivariate normal vector 

Theorem 

If every linear combination of the components of a vector X is normally distributed, 

then X has normal distribution. 

Proof 

Consider a vector X of p-components with density function f(x) and characteristic 

function  Xui

X eEt


)(  and suppose the mean of X is μ and the covariance matrix is Σ. 

Since u' X is normally distributed for every u. Then the characteristic function of u' X is 

uutuit
Xuit eEe
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, taking t = 1, this reduces to 
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Therefore, X ~ Np(μ, Σ). 
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Moment generating function 

The moment generating function of a vector X, this is distributed according to  

Np(μ, Σ) is 
ttt

X etM
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1

)(


. 

Proof 

Since Σ is a symmetric and positive definite, then there exists a non-singular matrix C 

such that 

C'Σ−1C = I and Σ = CC'. 

Make the nonsingular transformation 

X − μ = CY, then Y = C-1 (X – μ) and | J | = | C |. 

Therefore, the density function of Y is 
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It shows that Y1, Y2 , . . . , Yp are independently normally distributed each with mean 

zero and variance one. 

Now the moment generating function of Y is 
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, since Yi ~ N(0, 1). 

Thus we can say 
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Note 
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Differentiating r times equation (1) with respect to t and then putting t = 0, we get 
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Raw Moments of multivariate normal distribution 
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Second Moment 
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Fourth Moment 
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Determination of mean and variance 
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Covariance matrix of multivariate normal distribution 

Theorem 

Let x follow a multivariate normal distribution 

x ~ N(μ, Σ)        - - - - (1) 

Then, the covariance matrix of x is 

Cov(x) = Σ        - - - - (2)  

Proof 

Consider a set of independent and standard normally distributed random variables 

zi ~ N(0, 1), i =1, 2, . . ., n.      - - - - (3) 
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Then, these variables together form a multivariate normally distributed random vector 

z ~ N(0n, In)        - - - - (4) 

Because the covariance is zero for independent random variables, we have 

Cov(zi, zj) = 0, for all i ≠ j     - - - - (5) 

Moreover, as the variance of all entries of the vector is one, we have 

Var(zi) = 1, for all i = 1, 2,. . ., n.    - - - - (6) 

Taking (5) and (6) together, the covariance matrix of z is  

nIzCov 



















10

01

)(







     - - - - (7) 

Next, consider an n×n matrix A solving the equation AAT = Σ. Such a matrix exists, 

because Σ is defined to be positive definite. Then, x can be represented as a linear 

transformation of z 

x =Az + μ ∼ N(A0n+μ, AInA
T) = N(μ, Σ).   - - - - (8) 

Thus, the covariance of x can be written as 

Cov(x) = Cov(Az + μ).     - - - - (9) 

With the invariance of the covariance matrix under addition 

Cov(x + a) = Cov(x).      - - - - (10) 

and the scaling of the covariance matrix upon multiplication 

Cov(Ax)=A Cov(x) AT,     - - - - (11) 

this becomes 

Cov(x) = Cov(Az + μ)  

= Cov(Az) = A Cov(z) AT  

= AInA
T=AAT = Σ. 

Hence Proved. 
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SCL PROBLEMS 

1. The equivalence of zero covariance and independence for normal variables 

Let X be distributed as N3(µ, Σ), where µT = (1, −1, 2) and 























201

050

104

. 

Which of the following random variables are independent? Explain. 

(a) X1 and X2, (b) X1 and X3, (c) (X1, X3) and X2, (d) X1 and X1 + 3X2 − 2X3,  

(e) 
2

31 XX 
 and X2, and (f) X2 and 312

2

5
XXX  . 

Procedure 

 To identify the covariance of X1 and X2. 

 To identify the covariance of X1 and X3. 

 To calculate the covariance of (X1, X3) and X2 using A ΣAT. 

 To calculate the covariance of X1 and X1 + 3X2 − 2X3 using A ΣAT. 

 To calculate the covariance of 
2

31 XX 
 and X2 using A ΣAT. 

 To calculate the covariance of X2 and 312
2

5
XXX   using A ΣAT. 

Calculation 

(a) X1 and X2  

Given 
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Since X1 and X2 have covariance, σ12 = σ21 = 0. Therefore the random 

variables X1 and X2 are independent 

(b) X1 and X3 

Since X1 and X3 have covariance, σ13 = σ31 = -1. Therefore the random 

variables X1 and X3 are not independent 
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(c) (X1, X3) and X2 

Rearrange the covariance matrix and partition it. The new covariance matrix is 

as following: 
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Now here, 
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 and X2 have covariance matrix 
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. Therefore (X1, X3) 

and X2 are independent. This implies X2 is independent of X1 and X3. 

 

(d) X1 and X1 + 3X2 − 2X3 

Let 











231

001
A , then 










321

1

2X - 3X +X

X
AX  and AX ~ N(Aµ, AΣAT), 

Where 
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Therefore X1 and X1 + 3X2 − 2X3 are not independent.  

 

(e) 
2

31 XX 
 and X2 

Let partitioning X and Σ in 
2

31 XX 
 and X2, 
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Since the covariance matrix 









0

0
13  (which is the covariance between 

2

31 XX 
 and X2). Therefore 

2

31 XX 
 and X2 are independent. 

(f) X2 and 312
2

5
XXX   

Let partitioning X and Σ in 312
2

5
XXX   and X2, 
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Then 
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Therefore X2 and 312
2

5
XXX   are not independent. 

Result 

(a) X1 and X2 are independent. 

(b) X1 and X3 are not independent 

(c) (X1, X3) and X2 are independent 

(d) X1 and X1 + 3X2 − 2X3 are not independent 

(e) 
2

31 XX 
 and X2 are independent. 

(f) X2 and 312
2

5
XXX   are not independent. 
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2. Linear combinations of random vectors  

Let X1, X2, X3 and X4 be independent and identically distributed 3×1 random 

vectors with  



















1

1

3

  and 
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(a) Find the mean and variance of the linear combination a'X1 of the three 

components of X1 where a = [a1 a2 a3]'. 

(b) Consider two linear combinations of random vectors 

(i) 4321
2

1

2

1

2

1

2

1
XXXX   and  

(ii) X1 + X2 + X3 - 3X4  

Find the mean vector and covariance matrix for each linear combination of 

vectors and also the covariance between them.  

Procedure 

 To calculate the Mean vector is a'µ. 

 To calculate the covariance matrix is aΣa'. 

Calculation 

(a) Mean and variance of the linear combination a'X1 of the three components of X1  

Given 
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1

3

  , a = [a1 a2 a3]' and 
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Let us consider a linear combination a'X1 of the three components of X1. This is a 

random variable with mean 

 


















1

1

3

321 aaaa   3213 aaa   

and Variance  

 321

3

2

1

201

011

113

aaa

a

a

a

aa





































 3121

2

3

2

2

2

1 2223 aaaaaaa   

That is, a linear combination a'X1 of the components of a random vector is a 

single random variable consisting of a sum of terms that are each constant times a 

variable. This is very different from a linear combination of random vectors,  

c1X1 + c2X2 + c3X3 + c4X4  

 This is a random vector. Here each term in the sum is a constant times a 

random vector. 
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(b) Mean vector and covariance matrix for each linear combination of vectors and 

also the covariance between them  

Now consider two linear combinations of random vectors  

(i) 4321
2

1

2

1

2

1

2

1
XXXX    

By the result V1 = c1X1 + c2X2 + ... + cnXn with c1 = c2 = c3 = c4 =1/2, the 

linear combination has mean vector 

(c1 + c2 + c3 + c4)µ = 2µ  
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6

2  

and covariance matrix is  

 1)( 2
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1 cccc  

    























201

011

113

 

 

(ii)  X1 + X2 + X3 - 3X4  

The linear combination of random vectors, we apply V1 = c1X1 + c2X2 + ... + cnXn 

with bl = b2 = b3 = 1 and b4 = -3 to get mean vector 

(b1 + b2 + b3 + b4)µ = 0µ  
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and covariance matrix is  
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Finally, the covariance matrix for the two linear combinations of random 

vectors is 

(c1b1 + c2b2 + c3b3 + c4b4) Σ = 0 Σ 



















000

000

000

0  
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Result 

(a) Mean of the linear combination a'X1 of the three components of X1 is 3213 aaa   

and variance is 3121

2

3

2

2

2

1 2223 aaaaaaa   

(b) Mean vector and covariance matrix for each linear combination of vectors and also 

the covariance between them  

(i) 4321
2

1

2

1

2

1

2

1
XXXX  : Mean vector is 



















2

2

6

 and covariance matrix is 
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. 

(ii) X1 + X2 + X3 - 3X4 : Mean vector is 
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 and covariance matrix 
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