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UNIT -1
MULTIVARIATE NORMAL DISTRIBUTION AND PROPERTIES

Introduction to Multivariate Analysis

Multivariate analysis is a set of techniques used for analysis of data that contain more

than one variable.

Multivariate analysis is a branch of statistics concerned with the analysis of multiple
measurements, made on one or several samples of individuals. For example, we may

wish to measure length, width, and weight of a product.

Multivariate analysis provides a more accurate view of the behavior between
variables that are highly correlated, and can detect potential problems in a product or

process.

Many decisions are based on univariate analysis, but only multivariate analysis
reveals relationships that help you detect problems that are not obvious by looking at
the variables individually.

Multivariate analysis is a statistical technique used to examine relationships among
multiple variables (three or more) simultaneously. It helps to identify patterns,
correlations and dependencies between variables, and to understand how they interact

and influence each other.

Types of Data

Data

Data can be defined as a systematic record of a particular quantity. It is the different

values of that quantity represented together in a set. It is a collection of facts and figures to be

used for a specific purpose such as a survey or analysis. When arranged in an organized form,

can be called information. The source of data (primary data, secondary data) is also an

important factor. Data can be classified into two types. these are

Qualitative Data: Qualitative Data represent some characteristics or attributes. They
depict descriptions that may be observed but cannot be computed or calculated. For
example, data on attributes such as intelligence, honesty, wisdom and cleanliness.

They are more exploratory than conclusive in nature.
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e Quantitative Data: These can be measured and not simply observed. They can be
numerically represented and calculations can be performed on them. For example,
data on the number of students playing different sports from your class gives an
estimate of how many of the total students play which sport. This information is
numerical and can be classified as quantitative.

Data

Discrete Sexc{Male,Female}
No. Sonse{0,1,2,3,...}

Continuous Temperaturee[0,00)

2=Neither like nor dislike

Nonmetric
or
Qualitative
Nominal/ Ordinal
Categorical Scale
Scale 0=Love
0=Male 1=Like
1=Female 3=Dislike
4=Hate

Types of measurements

Nominal Data

Nominal Data is used to label variables without any order or quantitative value. for

example, the color of hair can be considered nominal data, as one color can’t be compared

with another color.

Examples of Nominal Data

Metric
or
Quantitative
Interval Ratio
Scale Scale
Temperature: Years:
OOK -
1°K 2006
2007

e Colour of hair (Blonde, red, Brown, Black, etc.,)

e Marital status (Single, Widowed, Married)

e Nationality (Indian, German, American, etc.,)

e Gender (Male, Female, Others)

e Eye Color (Black, Brown, etc.,)
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Ordinal Data

Ordinal data have natural ordering where a number is present in some kind of order
by their position on the scale. These data are used for observation like customer satisfaction,

happiness, etc.,

Examples of Ordinal Data

e When companies ask for feedback, experience, or satisfaction on a scale
of1to 10

e Letter grades in the exam (A, B, C, D, etc.)

e Ranking of people in a competition (First, Second, Third, etc.)

e Economic Status (High, Medium, and Low)

e Education Level (Higher, Secondary, Primary)

Interval data

Interval data refers to information measured along a scale with equal distances. The
distances or spaces in between the adjacent values are called intervals. So, the interval scale
represents information about the order and it gives meaning to the difference between two

values.
Examples of Interval Data

e Celsius and Fahrenheit are examples of interval scales. Each value on these
scales differs from the adjacent values by intervals of exactly 1 degree.
e The difference between 20 and 21 degrees is identical to the difference
between 225 and 226 degrees.
Ratio data

Ratio data is quantitative data that has an equal and definitive ratio between each
value. Unlike interval data, ratio data has an absolute zero. It means ratio variables can’t have

negative values, and zero means none of that variable is present.
Examples of Ratio Data

e The measurement of height is considered ratio data, and it’s not applicable to
have a negative number for height.

e Age is a ratio variable, and a 40-year-old person is twice the age of someone
who’s 20.
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LEVELS OF MEASUREMENT

Named
+
Ordered
+
Propotionate

interval
between variables

Named
+
Ordered
+
Propotionate

interval
between variables

+
can accommodate
absolute zero

Named
+
Ordered variables

Named variables

Multiple measurement or observation as row or column vector

referring to the physical properties of length, width, and weight, respectively.

A multiple measurement or observation may be expressed as

x=[4 2 0.6]

The collection of measurements on X is called a vector. In this case it is a row vector.

We could have written x as a column vector.

Multivariate Distributions

A multivariate distribution describes the underlying random structure of a vector of
random variables.
From it we can derive marginal properties of the individual variables.

It also describes relationships between variables or groups of variables.

As in much of statistics, we are generally interested in making inferences about this

distribution based on a sample

Normal Curve (n=1000000, Mean=0,5d=1)

sity
00 01 02 03 04

‘l"ll"ll"lu.._
T
2

T
1] 1

Normal curve with n = 10000004 =0,0 =1
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Structure of Multivariate Data
e Suppose that we have measurements on p variables for each of n experimental units.

e We will use xj to denote the observed value of the j*" variable (j = 1,..., p) on the i*"

unit (i = 1,...,n).

e We will typically gather the information into a nx p matrix.

X1 x1z ... Xlj .- x”,

X721 X227 ... x2j .. xzp
X =

Xil  Xj e Xijo o Xip

Xpl Xpl - .- Xnj - xp

Singular and non-singular

If A is square matrix and of full rank, then A is said to be nonsingular, and A has a
unique inverse denoted by A~! with the property that AA™ = A™A = . If A is square and of

less than full rank, then an inverse does not exist and A is said to be singular.

Example (Singular)
1 2
Let Az[l 2} = (1x2)-(1x2)=2-2=0

Now, Matrix A said to be a singular, because its determinant is equal to zero.
Example (Non-Singular)
1 2
Let A= =(3x2) - (1x2)=6-2=4
3 2
Now, Matrix A said to be a non-singular, because its determinant is 4 (Which is not equal to
zZero).

Types of Multivariate Techniques

There are many different techniques for multivariate analysis and they can be divided
into two categories:

e Dependence techniques

¢ Interdependence techniques
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Dependence methods

Dependence methods are used when one or some of the variables are dependent on
others. Dependence looks at cause and effect; in other words, can the values of two or
more independent variables be used to explain, describe, or predict the value of
another, dependent variable? To give a simple example, the dependent variable of “weight”

might be predicted by independent variables such as “height” and “age.”
Interdependence methods

Interdependence methods are used to understand the structural makeup and
underlying patterns within a dataset. In this case, no variables are dependent on others, so you
are not looking for causal relationships. Rather, interdependence methods seek to give

meaning to a set of variables or to group them together in meaningful ways.
The classifications of Multivariate Techniques are,

e Principal Components and Common Factor Analysis
e Cluster Analysis

e Multidimensional Scaling (perceptual mapping)

e Correspondence Analysis

e Canonical Correlation

e Multiple Discriminant Analysis

e Logit/Logistic Regression

e Multivariate Analysis of Variance (MANOVA) and Covariance
e Conjoint Analysis

e Canonical Correlation

e Multiple Regression

e Structural Equations Modeling (SEM)

Analysis

Y=f(X) f(X.1)=0

Dependence Interdependence

A variable or set of variables is identified as the dependent variable to be predicted or

explained by other variables known as independent variables.
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Example of Dependence: (No. Sons, House Type) = f(Income, Social Status, Studies)

Example of Interdependence: Who is similar to whom? (No. Sons, House Type, Income,
Social Status, Studies, ...)

Dependence
How many
variables are
being
predicled?
AL el ]
i i = One d pendent variable:
of dependent and variable in singhe P bl
ndi X - Apticmah a ingle relationship

Interdependence
I the struciure
of relationships
AT
r 1
Wariables (hl:lf'linlq:rﬂtdm Ot
'
How ane the
Confirmatory
Ractor analysis i analysis Clus r nalysis '::t:buna?
Metric MNonmetric
\ r Nonmetric 4[
s
Correny
scaling analysis
.
Multivariate
techmigque
selected
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Multivariate Techniques help to:

e Reduce dimensionality

e ldentify patterns and relationships
e Predict outcomes

e Classify observations

e ldentify correlations and dependencies
Applications of Multivariate Analysis

Multivariate analysis is used in various fields including:

e Social sciences: to study relationships between demographic, economic and
social variables.

e Marketing: to analyze customer behavior, preferences and demographics.

e Healthcare: to investigate relationships between symptoms, treatments and
outcomes.

e Finance: to analyze portfolio performance, risk management and asset
pricing.

e Biology: to study genetic associations, protein interactions and ecological
relationships.

Multivariate normal distributions

The multivariate normal distribution (also known as the multivariate Gaussian
distribution) is a generalization of the univariate normal distribution to multiple variables. A
multivariate normal distribution is a vector in multiple normally distributed variables, such

that any linear combination of the variables is also normally distributed.

It is mostly useful in extending the central limit theorem to multiple variables, but
also has applications to Bayesian inference and thus machine learning, where the multivariate

normal distribution is used to approximate the features of some characteristics.
Applications
Multivariate normal distributions are widely used in various fields, including:

« Statistics: to model correlated data and perform inference
» Machine learning: as a prior distribution for Bayesian models
 Finance: to model asset returns and portfolio risk

« Engineering: to model complex systems with correlated variables
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Data analysis and visualization

* Regression analysis and prediction

Cluster analysis and classification

Dimensionality reduction and feature extraction
Multivariate normal density and its Properties

The multivariate normal density is a generalization of the univariate normal density to
p > 2 dimensions. The univariate normal distribution, with mean p and variance o has the

probability density

f(x)= 271m2 exp{—%(%)} —00 < X <00

2
X— ,
(—”) = (x=#)(0*) (x- 1)
(o2
This can be generalized for px1 vector x of observations on several variables as

(X—p) =7 (X = p1)

The px1 vector W represents the expected value of the random vector X and the

px g matrix 2 is the variance-covariance matrix of X.
A p-dimensional vector of random variables, X = X1,X2,...,.Xp, —0 < Xij< o0, i =1,..., p

is said to have a multivariate normal distribution if its density function f(X) is of the form

0= () = o) =5 ) 2 - )

20y

where i = (Us,...,Mp) IS the vector of means and X' is the variance-covariance matrix of

the multivariate normal distribution. The shortcut notation for this density is X = Np(l, 2).




A plot of this function yields the familiar bell-shaped curve. Also shown in the figure
are appropriate areas under curve with in £1 standard deviations and +2 standard deviations

of the mean.
The areas represent the probabilities, and thus, for the normal random variable X.
P(u—-o0<X<p+o0)=0.68
P(u—20<X<p+20)=0.95

The multivariate normal distribution has several important properties:

» Marginal distributions: Each individual variable follows a univariate normal

distribution.

» Linear combinations: Any linear combination of the variables also follows a

univariate normal distribution.
» Independence: If the covariance matrix is diagonal, the variables are independent.
» Correlation: The correlation matrix can be derived from the covariance matrix.
Additional Properties of Multivariate normal distributions
The following are true for a random vector X having a multivariate normal distribution:

« Linear combinations of the components of X are normally distributed.
» All Subsets of the components of X have a Multivariate Normal distribution.

« Zero covariance implies that the corresponding components are independently
distributed.

« The conditional distribution of the components are Multivariate Normal.

Result — 1

If X is distributed as Np(u, 2), then any linear combination of variables
a' X = aiXgtaXo+: - -+apX; is distributed as N(a'y, a'2a). Also if a" X is distributed as
N(a'y, a'Za) for every a, then X must be Np(u, X).

Example-1: The distribution of a linear combination of the component of a normal

random vector.
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Consider the linear combination a' X of a multivariate normal random vector

determined by the choice a'=[1, 0, . . ., 0]. Since

X, H
a’X =[1,0,---,0] X:Z =X,and a'u=[1,0,---,0] Afz =1,
Xy Ho
o, Oy, oy,
a’sa=[10,---,0]| .7 6:22 Ufp =0y,
O-lp O-Zp O-pp

Note that X is distributed as N(u1, o11). Generally, the marginal distribution of any
component X (i=1, 2, ..., p) of Xp is N(Up, opp).

Example-2: Considers several linear combinations of a multivariate normal vector X.

If X is distributed as Np(p, ¥), the g linear combinations

A(pxq)x(pxl) =

are distributed as Nq(4u, AXA"). Also Xpx1 + dpx1, Where d is a vector of constants, is
distributed as Np(u + d, X).

Example-3: The distribution of two linear combinations of the components of a normal

random vector.

For X distributed as N3(u, 2), find the distribution of

Xl
X,-X,] [1 -1 0
- X, |=AX
X,-X,| [0 1 -
X3

The distribution of AX is multivariate normal with mean
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1 -10 # Hh—H,

Ap= Hy
0 1 -1 Hy — Mg

Hs

And covariance matrix

1 -1 0 oy 0y, ol 0
AZA’z{O L _J O, O, On|l-1 1
O3 Oy 03| 0 -1

1 0
-1 1

AZA’:{
0 -1

0117015 O, =0y 0-13_0-23}

O1p =013 Oy — 0, Oy3~ 033
_{ 011 =201, + 0y O1p 703 —0p, _0_13:|
Oy + 0,3 =0, — 053 Oy — 20,3+ 0y

Alternatively, the mean vector A and covariance matrix 4> A’ may be verified by
direct calculation of the means and covariances of the two random variables Y1 = X; - X, and
Y, =Xs - Xs-

Result — 2: The distribution of a subset of a normal random vector

All subsets of X are normally distributed. If we respectively partition X, its mean

vector |, and its covariance matrix X as

I X, ] I Hy ] I 2y 2y, |
(qx1) (ax1) (qx1) (ax(p—-a))
X(pxl) = e v My =] and x(pxl) = e
X, Hy 2y 2,
L (P—-q)x1] [(P-q)x1] [((p—a)xa) ((p—a)x(p—a)),

Then Xy is distributed as Ng(p1, X11).

Example-3: The distribution of a subset of a normal random vector

X X
If X is distributed as Ns(u, ), find the distribution of {XZ} We set X, :{XZ}’

4 4

z z
m :VZ] 2:{ 2 24} and note that with this assignment, X, g and Y can
Hy 2o 2y

respectively be rearranged and partitioned as
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_Xz_ _,uz_ _0'22 Oy 01, Oy 0_25_
X, Hy Oy Oy O14 O34 Oy
X = y /,[ = y Z =
X, H O, Oy O;; Oj13 Ops
X, Hs Oy Oz O3 Oz O35
_xs_ | Hs 1025 Oys O15 O3z O
or
I X, ] i H | I b 2 ]
(2x1) (2x1) (2x2) (2x3)
X = | ececee , /’l = | ececeee and X(le) =] ececees  ceeeas
X, Hy 2y 2y
| (3x1) | | (3x1) | | (3x2) (3x3)]
X . > >
Thus, Xlz{ 2] Then X is distributed as Nz(yl,zﬂ):quﬂz} [ 2 24D.
X, Hy 2y Zy

Therefore, the normal distribution for any subset can be expressed by simply selecting the
appropriate means and covariances from the original pand 3.

Theorem

If the variance covariance matrix of p-variates normal random vector X=(Xz, Xz, ... Xp)"

is diagonal matrix, then the components of X are independently normally distributed random

variables.

Proof

The probability density function of p-variates normal random vector is

1 1
f()=——— ¢ ——(x— Tz_l X —
(x) 2o xp[ S (x= )= u)}

Given

o 0
X=| : ... i |, then the quadratic form (x— ) T (x — 1) will be

0 0'5

1/612 0 (Xl_lul) X — 1 2
[(Xl_lul)f""(xp_lup)](lxp) =Z(—'O_ ']
0 1/0-2 (Xp_lup) i=1 i

P d(pxp) (px)
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p
and [3|=]]o7 (a square matrix A is said to be diagonal), if aj = 0, i # j , then
i=1

Thus, [g["* = ﬁci.
i=1
Hence,

! L& (x-m ) |ty 1 (%~
Fo)=— b e IS [ X | 1(%-n
X 0" [ o, exp[ Zg( % ” e exp{ 2[ o ”

= (%) T(x)--- T(x,).

Therefore, X1, X, ... Xp are independently normally distributed random variable with

mean 4, , and variance o7 .
Theorem

If X (with p components) be distributed according to N(u, 2). Then Y = CX

(nonsingular transformation) is distributed according to N (Cp, CXC") for C nonsingular.

Proof
We have

1 1
f(x)= ——— —Z(x= )" > x -
() 2o exp[ S (=) 27 (x u)}

Consider the transformation Y = CX or X = C1Y. The Jacobian of the transformation
is [C™Y|, therefore,

1 1
- = __exp|l-=(Cly— )"z HCly— ) |lCc?t
a(y) (zﬁ)p’2|z|”2 exp{ 2( y—u)' = (Cly )}\ \

The quadratic form in the exponent of g( y) is

(Cly-p)' = (Cly—pu)=(Cy-C'Cu)' =™ (C'y—C™'Cp)
=[c*y-cw] =ciy-cu)
=(y—Cu)'C* = (y—Cu)C™, Since (AB)" = BT AT
=(y—Cp)' C" = C™(y—Cp), Since (C*)"=(C")*

=(y—Cu)" (CZC")™*(y-Cu), Since (AB)* =B AL
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And the Jacobian of the transformation, which is

\c-1\=i=\/1 T I B ™ , Since |AB| = |B| |A|
[l e yielle™| ylel=le| fesc”

Thus, the density function of Y is

a(y) = S exp{—i(y—c;zf © ZCT)l(Y—Cﬂ)}
(27)®?|czCT| 2

Therefore, Y ~ N(Cy, CXC")
Transformation of variables

Let X1, X2, ..., Xp have the joint density function f(x, X2, ... Xp). Consider p real-valued
functions yi = yi(xy, X2, ..., Xp), I=1, 2, . . ., p. We assumed that the transformation of Y to X be
one-to-one, the inverse transformation is xi = Xi(y1, Y2, ..., ¥p), 1=1, 2, . . ., p. Let the random
variable Y1, Y2, ... Yp be defined by

Yi = Vyi(X1, X2, ..., Xp)
Then the joint density function of Y1, Y2, ... Yp is

g(yl’ y2, e yp) = f[Xl(yl, yZ, Sy yp), e Xp(yl, Y2, ] yp)] |‘]|

ay:l. 8yp

Where, J =mod| : --- : |=Jacobian of transformation.
8xp 8xp
8yl 8yp

Joint and Marginal cumulative distribution function

Let X = (X1, . . . Xp) be an p-dimensional vector of random variables. We have the

following definitions and statements.
Joint CDF

Let X and Y be two random variables. The joint cumulative distribution function of X

and Y is given by,

Fx,y) = PriX<x, Y<y),
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defined for every pair of real numbers (X, y). We are interested in cases where F(X, y)
is absolutely continuous. If F(x, y) is absolutely continuous, then

O’ F(x,Y) . . . .
ax—a;/ = f(x,y), and is called the joint density function of X and Y, and

F(x,y)= i Tf(u,v)du dv.

—00 —00

Now, we consider p random variables X, . . . Xp. The cumulative distribution function is

Fu (X) = F (X, X, ) = P(X, <X, X, £X,)

p

defined for every set of real numbers xi, X2, ..., Xp, and the density function, if F(xz, X2, ..., Xp)

is absolutely continuous, is

a"F(xl,xz,-u,xp)
X, OX, - X

= f(x,X,,--+,X,)and
p

F(X, Xy, X,) = _[ ---.[f(ul,uz,---,up)dulduz---dup.

Marginal CDF

Let F(x, y) be the cumulative distribution function of two random variables X and Y,

the marginal cumulative distribution function of X is

PrX<x) =Pr{X<x, Y<o! = F(xx).
Therefore,

F(x) = j T f(u,v)dudv.

Let us consider,

o0

jumwwsz)

—00

Where f(u) is called the marginal density function of X is
F()=[ f(u)du.

Similarly we define G(y), the marginal cumulative distribution function of Y, and

g(y), the marginal density function of Y.
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Let F(xz, X2, ..., Xp) be the cumulative distribution function of the random variables
X1, . .. Xp. The marginal cumulative distribution function of some of Xy, . .. X;, say Xy, ..., X,
(r<p)is

=F (X, %+, X, 00,+++,00)

_-[ .[.[ _[f(ubuzv : 1Up)dul---du

and the marginal density function of Xy, ... Xr is

o0 o0

_["'jf(Ul,"',Up)dUm'“dUp-
The marginal distribution and density of any other subset of Xy, . . . X, are obtained in
the obvious similar fashion.

Marginal and Conditional distribution of Multivariate normal distribution

X
Let p dimensional random vector x = {xl} has a normal distribution N(x, u, ~) with
2

2. 2 . . .
= {ﬂl }and z :{ H 12}Where x1 and x, are two subvectors of respective dimensions p
Hs 21 22

and gwithp +qg=n.
Note: that X = XTand %, = %,.
Statement

e The marginal distributions of x1 and x. are also normal with mean vector p; and

covariance matrix Zj; (i = 1,2) respectively.
e The conditional distribution of x; given x; is also normal with mean vector
My = i+ 2 ZT (X; = 45)
and covariance matrix

T v-1
Zi|j = Zij _Eij Zii Zij
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Proof

The joint density of is

0= £ )= el =3 () 2 (x=a)
(2ny o P2

EQ(xl,xz)}

1
(27)"'2| 5" p{ 2
where Q is defined as

QX %) =(x— ) Z™H(x—u)

2u 2 || %
:[(Xl_’ul)T,(xz—#z)T]{Z21 gzj{:(:—iﬂ

:(Xl_/ui)Tle(Xl_ﬂl)"‘z(xl_ﬂl)Tle(Xz_ﬂz)"‘(xz_ﬂz)TZZZ(Xz _ﬂz)
Here we have assumed

2_1 :|:211 2,12:|1 _ |:211 212:|
221 222 221 222
we have

S = (5, -2, = st v 50, (5, - ALEEL ) S s

32 =(5, - 5,50 = 2t 55, - D, ) a5

25y (5, - s,r0l )t = (2]

Substituting the second expression for X', first expression for X% and X*into

Q(x,,x,) to get
QX %)= (% — )" lfl‘f + 05, (5, - AT, )_lffzfl?J (X =)
2% - ) [2111212(222 _ 3, I )1} X, — i)
H% = 1) (= 202 ) (% - 11,)
= (X =) T (% =)+ (% — )] [2{11212(222 - AL, )_12122111k X, — 44
2%, = 1) [T T (5, - 2,205, )‘1]( X, = ;)
H% = 1) (Z5 — 22050 ) (%, - 1)
= (%= ) Z = 1) + (% = 1) = SRE (0 — )] (25, - 2,502 )

[( X, — H, )— 21221711( X, — 1 )]

Page 19



The last equal sign is due to the following equations for any vectors u and v and a

symmetric matrix A = AT
UTAu—2u"Av+v'Av=u'Au—u'Av—-u' Av+v' Av
=Uu Au-v)—(u-v)Av=u"Au—u"Av—u'Av+Vv'Av
=((u-v) Au-v)=(u-v) A(u-v)

We define

4
b=, + 21T221_11( X, — 14)

A
A= 222 - 2;22111212

and
Q1(X1)i( X — My )T 21_11( X, —44)
Q, (Xl 1 X5 )i [( Xy = Hy)— ZlTZZl_ll( X =1y )]r (222 - 21221_11212 )_l [( X, = My ) — 21T221_11( Xp — My )]
:(Xz _b)T Ail(xz _b)
and get
Q(Xl’XZ):Ql(X1)+Q2(Xl’X2)

Now the joint distribution can be written as

1 1
f(x)= f(Xqu)ZW@(D{—EQ(XM)}
1 1
= exp[——Q(X X )}
(22)"2 |5, ¥z, - 2pisyl” L 2T

1 1 ) . . )
:(27[)p/2|2 |1/2 exp|:_E(X1_,uj_)T2111 Xl_lul):l(zﬂ,)q/z|Alllz eXpl:—E(Xz_b)TAl(Xz_b):|
11

= N(Xl’/ul ’211) N(x,,b,A)
The third equal sign is due to theorem
|2| = |211| ‘222 - 2122111212‘

The marginal distribution of x; is

f00) = [ Fx%, ) dx, =

1 1 _
(27[)pl2|2 |1/2 EXp[_E( X, =) 2 (X — g )}
1

and the conditional distribution of x given x1 is
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fx %) 1 1 Ay
(%) _(Zﬂ)q/zwl/zeXp{ 2(X2 b)" A™(x, b)}

with
b=u,+ 21221_11( X, = 14 )
A= 222 - 21T221_11212

Hence the proof.

Characteristic function
The characteristic function of a random vector X is defined as @, (t) = E[eit'x],

where t is a vector of reals, i =~+/—1
Theorem

Let X = (X1, X2, . . ., Xp )" be normally distributed random vector with mean p and
positive definite covariance matrix 2, then the characteristic function of X is given by

. 1
it'—=t'St
g,(t)=e 2 wheret=(ts, t, ... tp)" is a real vector of order p x1.

Proof

We have

(= op] 5 ) T )

(27)"2y
Since X' is a symmetric and positive definite, there exists a non-singular matrix C such
that C' 2*C =l and 2=CC".

Let X —u = CY, so that Y = C*}(X — 1) a nonsingular transformation and the Jacobian

of the transformation is | J | = | C |, therefore, the density function of Y is

1 1
F(Y) = ———exp| == (Cy+ = ) S ™ (Cy+u—p) |IC
(y) PRCaS eXp{ 5 (CY+u—u)=  (Cy+p ﬂ)}| |

! Xp —%(y'C’Z@y)} Since [C|=[z|

_#e ‘:—1( ')i|— Le (_E 2) —1 e (_E 2)
"o L 2T TR T2 )) (e TP 2
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It shows that Y1, Y2, . . ., Yp are independently normally distributed each with mean
zero and variance one.

Now the characteristic function of Y is
@ (U) _ E[eiu'Y ]: Eei(U1Y1+"'+Upr) _ Eeiu1Y1 .. EeiuplYp --- (1)
Since Y1,Y2, .. .,Yp are independent and distributed according to N(0, 1),

1
tu—=t?c?

@, (u) :{exp(—%ulzﬂ-{exp(—%uf,ﬂ, since X ~ N(, ¢), and ¢, (t) :ei 2
=e ? =e2’. ---(2)

&, (t) = E[eit’x ]: E[eit'(CY +,u):|: ait E[e"'(CY)]

-Zey'en

— @lth E@l (CDY _ @itk o from equation (1) and (2)

l r r i+ _i r
_ eitlﬂ e_Et CC't _ elt,u 2t >t
Hence the proof.

Distribution of linear combinations of multivariate normal vector

Theorem

If every linear combination of the components of a vector X is normally distributed,

then X has normal distribution.
Proof

Consider a vector X of p-components with density function f(x) and characteristic

function ¢, (t) = E[ei”'x] and suppose the mean of X is x and the covariance matrix is X.

Since u' X is normally distributed for every u. Then the characteristic function of u' X is

it(ux) itu’,u—ltzu’Zu . )
Ee =e 2 , taking t = 1, this reduces to
S N
Eei(”'x) _ e|u 'U_Eu Su

Therefore, X ~ Np(i, 2).
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Moment generating function
The moment generating function of a vector X, this is distributed according to
B t’y+1t'2t
Np(u, 2)is M, (t)=e 2

Proof

Since X' is a symmetric and positive definite, then there exists a non-singular matrix C
such that

cx'C=land X = CC.
Make the nonsingular transformation
X—u=CY,thenY=C*(X-wand|J|=|C]|.

Therefore, the density function of Y is

1 1
f(y)=————exp| —=(Cy+u— )2 (Cy+u—p) |IC
(y) (272')p/2|2|1/2 Xp{ 2( Y+ u— ) Cy+u ,U)}| |
1 1, . 12
:WeXp__EC y'E 1Cy} , since |C|=[z]|
:#ex __1 !
(27)""2 IO_ > y'y
It shows that Y1, Y2, ..., Yp are independently normally distributed each with mean

zero and variance one.

Now the moment generating function of Y is

MY (U) — Eeu'Y _ Ee(ulY1+m+Upr) — Ee(ulYl) . Ee(qup)
P 1u'u
H Ee"" =e2 , since Yi~ N(O, 1).
i=1
Thus we can say
60 =Bl |- el | e e

Ly e tu+ircCt s L5t
2 —p 2 _ 2

— e E[e©YY |zt e =e
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Note

2yr 2 ryvr
Mx(t):EetxZJ.etXf(X)dXZE{l—I-tX—i—t X + --+t X +}

20
:1+tE(X)+EE(X2)+-~+EE(Xr)+---
2! r!
=1+t ’+E '+---+£ A 1)
= H 2!;“2 I’!'ur

Differentiating r times equation (1) with respect to t and then putting t = 0, we get

2 r

ar ’ ’ ! t ’ a
|:8tr My (t):|t_0 =4, +:ur+1t+:ur+25+“':>:ur :EMX (t) |-

Raw Moments of multivariate normal distribution

First Moment

'1+£'
X, ]= M =0 { }|

o= a

p

1 p
t, 44, +Ezztktjo-kj ]} li-o

1 k=1 j=1

Il
2|
z—’r
5
VR
e

10& &
=M /un+Eat_Ztkztijj li-o0

n k=1 j=1

10
/un+__ +...+tn(t10n1+~--+tn0nn+"'+tp0np) |t:0

2 ot

bt (o 4o to o)

p
M +%(t161n +"'+th O-nj +tn6nn +'”+tpaan}
t=0

=

{ t (o, + o+ oy + o+ t0y,)

p p p
=M ﬂn+%(zt1 Tt Y an]} =M{#n+zt1 O-nj} =ty  a5€°=1
' ' =0 i t=0
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Second Moment

O*M 0 |oM 0 5
E[X, X|==—|o==—=—"tlow== My, +) to,
[ " '] ot ot oo A, {at }Lo 8t||: { " ;J nJHI_O

n

p p
:{M(M +thGIjJ(:un +th0an+ Mam} =y Hy + Oy
=0

j=L =L

Therefore,

V(X,)=E(X2)-[E(X,)F = 4 + 000 — 12 = 0,
COV(Xm XI): E(Xn X|)_ E(Xn)E(XI):/unlul TO L~ Mty = Oy

Third Moment

o°M o | 0°M
E[X, X, X]=—"—|o=— .
[ n | r] 8t| 8tn 8tr |t_0 8t { |}|t_0

P p p
=&—{M{M +th6“}{,un +tham}+ M0n|i|
r j=1 j=1

t=0

p p p p i
M{,ur +th0”}{,u, +tha“}{,un +thanj}+ M {,un +th0'm}6,r
j=1 =1 =1 =1

dt=0
:;ur /J| :un +/un O-Ir +/J| Gnr +:ur O-nl'

Fourth Moment

o'M 0 o°M
XI Xr Xm]: |t:0: |t:0
ot ot ét, ot ot | et ot ét,

E[X

n

p p p p ]
M {,ur +th0”}{,u, +Zt]—o-,j}{,un +th0m}+ M{,un +tham}0'|r
9 = = = =
ot p p
+M< +tha” oy + M1, +th0,j On




p p p p
M {,um +Z:tj0'ij,ur +th0'”}{,u, +tho]j}{,un +th0'm}
j=1 j=1 j=1

=

p p p p
O'rm{,u, +tha”}{,un +Z:tj0'm}+0',m{,ur +th0er,un +th0'nj

= = j= =

p P
+ Gnm{lur + tharj }{ﬂl + thjo-”}
j=

-1

P p

+ M{,um +th0'mj}{,un +thanj}0'|, +Mo,, o,
-1 -1
p p

+Mq +Z:tj0'mj M, +Z:tj0'Ij o,+Mo,, o,

= =

+M

p p
+M{ym +thamj}{yr +th0”}am +Mo,, o
=1

j= i=

|

:/um :ur /ul /un + zulzun O-rm + /ur :un O-Im + :ur :uI O-nm + /um /un O-Ir + O-nm O-Ir + :um /Jl O-nr

+ Glm O-nr + :um :ur O-nl + O-rm o-nl'

Determination of mean and variance

ot |t:0= a

n

1, 1,
E[X, )= D} =2 {e} JEe' ) g2
t=0

_ ati{exp(%iitk t, o j}t_o - M (Zp:tj anj )

n k=1 j=1

0*M o |oM 0 P
E[Xn—#n][x|—M]=at—atl|to=at—{a} ZE{M{Z;H Gni:|}
n t=0 1= t=0

n

p p
={M{Zti alj](th Jm}+ Manl} =0,
= = t=0

o°M o [ o°Mm
X~ X ‘“'][Xf‘”r]:m't=°:at_{at at}
n = r n Y )i

P p p
=E M thalj _ tjo'nj +Mao,,
r j=1 j=1 t=0
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E1X, — i ]1X, — T, — 1, T — ] = O

p p
M| > tio || D0t
j=1 j=L

9
ot p
+M Zti alj}am +M
j=1

i
P P
M t, o t;
j=L j=L
p p
+Mio.,| Dt oy t,
j=1 j=1

1M e p
o [Ztj O'U.Hth Gm}
L= j=1

+M

+M

:Gnm O-Ir + O-Im O-nr + O-rm JnI .
Covariance matrix of multivariate normal distribution

Theorem

Let x follow a multivariate normal distribution
x~N(, 2)

Then, the covariance matrix of x is
Cov(x) =2

Proof

ot ot ot ot

-

t=0

t=0

p p p p
O'm}—i- Oim { t; 0'”}{2“ an} + 0 {th 0'”}{2“ GU}}
j= = j=1 j=1

- ()

-

Consider a set of independent and standard normally distributed random variables

zi~N(,1),1=12,...n.

- (3)

Page 27

t=0



Then, these variables together form a multivariate normally distributed random vector
2~ N(On, In) ----(4)
Because the covariance is zero for independent random variables, we have
Cov(zi, ) = 0, forall i #j ----(5)
Moreover, as the variance of all entries of the vector is one, we have
Var(z)=1,foralli=1,2,. .., n. ----(6)
Taking (5) and (6) together, the covariance matrix of z is

1 .- 0
Cov(z)=|: - :|=I ----(7)
0 --- 1

Next, consider an nxn matrix A solving the equation AAT = X. Such a matrix exists,
because X is defined to be positive definite. Then, x can be represented as a linear

transformation of z

x =Az + . ~N(AOh+1, AILAT) = N, ). ----(8)
Thus, the covariance of x can be written as

Cov(x) = Cov(Az + u). ----(9)
With the invariance of the covariance matrix under addition

Cov(x + a) = Cov(x). ----(10)
and the scaling of the covariance matrix upon multiplication

Cov(Ax)=A Cov(x) AT, ----(11)
this becomes

Cov(x) = Cov(Az + u)
= Cov(Az) = A Cov(z) AT
= AlLAT=AAT = X

Hence Proved.
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SCL PROBLEMS

1. The equivalence of zero covariance and independence for normal variables
4 0 -1
Let X be distributed as Na(p, X), where p" =(1,—-1,2)and X=|{ 0 5 0
-1 0 2

Which of the following random variables are independent? Explain.
(@) X1 and Xz, (b) X1 and Xz, (c) (X1, X3) and Xz, (d) X1 and X1 + 3X> — 2X3,

Kt Xy 5

(e) 2 and Xz, and (f) Xz and XZ—EXl—XS.

Procedure

e To identify the covariance of X1 and Xa.
e To identify the covariance of X1 and Xa.
e To calculate the covariance of (X1, X3) and X, using A ZAT.

e To calculate the covariance of X1 and X1 + 3Xz — 2X3 using A AT,

e To calculate the covariance of % and X, using A AT,

e To calculate the covariance of X, and X, —g X, — X, using AZAT,

Calculation

(a) X1 and X2

4 0 -1
GivenX=|0 5 0
-1 0 2

Since X1 and X, have covariance, ci2 = o21 = 0. Therefore the random

variables X and Xz are independent
(b) X1 and X3

Since X3 and Xs have covariance, o1z = o31 = -1. Therefore the random

variables X1 and Xs are not independent
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() (X1, X3) and X»

Rearrange the covariance matrix and partition it. The new covariance matrix is

as following:
X, 4 -1 : 0 s ix
X = Xs and " = -2 01 ) : .
Xz 0 0 5 stz

3

X . _ 0

Now here, {Xl} and Xz have covariance matrix %,, = {O} Therefore (X1, Xs)

and Xz are independent. This implies X> is independent of X; and Xa.
(d) Xz and X1 + 3X2 —2X3
10 O X
Let A= ,then AX = ! and AX ~ N(Au, AZA"),
1 3 -2 X, +3X,-2X,
Where

U
13 -2

Therefore Xy and X1 + 3X2 — 2X3 are not independent.

4 0 -1}|1 1 1 1
4 0 -1 4 6
0 5 0|0 3= 0 3 (=
6 15 -5 6 61
-1 0 2|0 -2 0 -

(e)MandXz
2
X, + X,
2
Let partitioning X and X in X, ; X and Xz, X =| -+
X2
then
X, + X,
2 1 1
-0 =
X, 010
1 1
10140—1503150
AsAT=|5 © S|l 0 5 0 1|=[2 “ 3|0
01 0]|_1 09 2/ ol [05 0]1
2 2
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. : : 0 . .
Since the covariance matrix 213={0} (which is the covariance between

X+ X,

and Xz). Therefore X, ; X and X; are independent.

(f) Xzand xz—gxl—xs
xz—gxl—x3
Let partitioning X and Z in X, —gxl— X5 and Xz, X =
XZ
Then
5
Xo =5 X=X, 5
X, 0 1 0
5
5 ][* Y2 Y] (e 2|2 0
ATA" =| o 0 5 0 1 1= 2111 1
0 1 0Jl-10 2||-1 0of LO 5 0Jl-10
27 51 |12, 5
5 51 1%, P
Therefore Xz and X, —g X, — X, are not independent.
Result

(a) X1 and X are independent.

(b) X1 and X3z are not independent

(c) (X1, X3) and X are independent

(d) X1 and X1 + 3X> — 2X3 are not independent
X+ X,

and Xz are independent.

(e)

(f) X2and X, —g X, — X, are not independent.
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2. Linear combinations of random vectors

Let Xy, Xz, X3 and X4 be independent and identically distributed 3x1 random
vectors with

3 3 -11
u=|-ljand 2=|-1 1 0
1 1 0 2

(@ Find the mean and variance of the linear combination a'X; of the three
components of X1 where a = [a; a; as]".

(b) Consider two linear combinations of random vectors
Q) %Xl +%X2 +%X3 +%X4 and
(1) X1 + Xo + X3 - 3X4

Find the mean vector and covariance matrix for each linear combination of
vectors and also the covariance between them.
Procedure

e To calculate the Mean vector is a'J.
e To calculate the covariance matrix is a2a’.

Calculation

() Mean and variance of the linear combination a'X; of the three components of X

3 3 -11
Given u=|-1|,a=Jara2a]'andX=|-1 1 O
1 1 0 2

Let us consider a linear combination a'X: of the three components of Xi. This is a
random variable with mean

3
a’/,l:[a1 a, as] -1 :Bai_a2+a3
1
and Variance
all[3 -1 1
a¥a'=|a,||-1 1 O0lla a, a,] =3a’+al+2a’-2aa,+2aa,
a,||1 0 2

That is, a linear combination a'X; of the components of a random vector is a
single random variable consisting of a sum of terms that are each constant times a
variable. This is very different from a linear combination of random vectors,
C1X1 + C2X2 + C3X3 + C4X4
This is a random vector. Here each term in the sum is a constant times a

random vector.
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(b) Mean vector and covariance matrix for each linear combination of vectors and
also the covariance between them
Now consider two linear combinations of random vectors
Q) %Xl+%X2 +%X3+%X4
By the result V1 = ciX1 + €2Xo + ... + CnXn With €1 = €2 = €3 = ¢4 =1/2, the
linear combination has mean vector

(CL+ C2+ C3+cCy=2p

2u=|-2
2

and covariance matrix is

(¢ +c2+c2+c2)Z=1xX

3 -11
¥=|-1 1
1 0 2

(1)) X1+ X2+ X3-3X4

The linear combination of random vectors, we apply Vi1 = ¢1X1 + C2X2 + ... + CaXn
with by = b2 = bs = 1 and bs = -3 to get mean vector
(b1 + bz + bz + ba)p = Op
0
Ou=10
0
and covariance matrix is
(b7 +bZ +bZ +b2)Z =12x X

36 -12 12
12xx=|-12 12 O
12 0 24
Finally, the covariance matrix for the two linear combinations of random
vectors is
(ciby + coby + c3bz +cabs)) T=02X
0 00O
OxX=|0 0 O
0 0O
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Result
(a) Mean of the linear combination a'X1 of the three components of X: is 3a, —a, +a,
and variance is 3a/ +a; +2aZ - 2a,a, + 2a,a,

(b) Mean vector and covariance matrix for each linear combination of vectors and also
the covariance between them

6
0] %X1+%X2+%X3+%X4: Mean vector is |—2| and covariance matrix is
2
3 -11
-1 1 0].
1 0 2
0 36 -12 12
(if) X1 + X2 + X3 - 3X4 : Mean vector is | 0 | and covariance matrix | -12 12 0
0 12 0 24
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