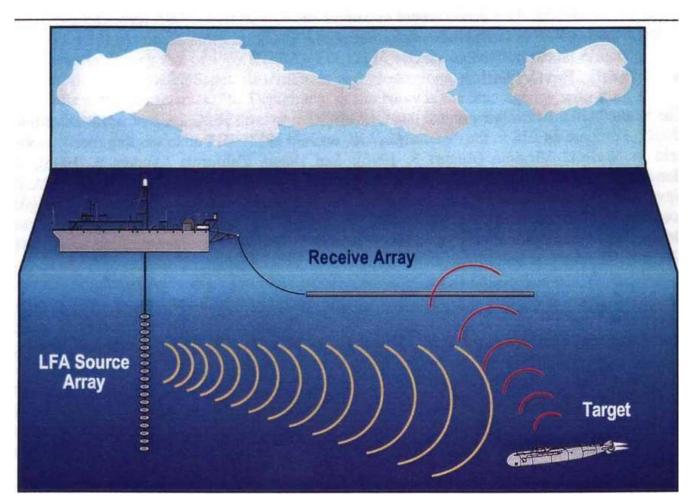
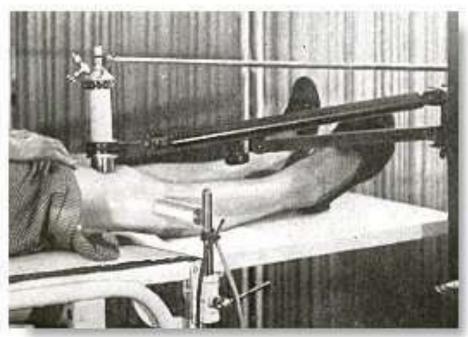
ULTRASOUND IMAGING


Outline

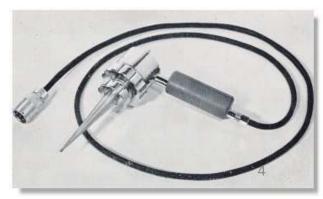
Part 1 \geq History \triangleright Physics of Ultrasound \triangleright Interactions of Ultrasound with tissue Principles of Ultrasound Production of Ultrasound \triangleright Part 2 **Ultrasound Machine** \succ \triangleright Parts of Ultrasound Machines Transducer and its Types Image Construction **Block Diagram** 2D, 3D, 4D Ultrasound machines \triangleright Part 3 Applications of Ultrasounds \succ >Advantages of Ultrasounds Future of Ultrasounds

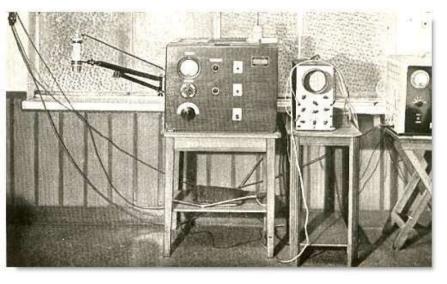

History


First successful application \longrightarrow SONAR in world war 2 (Sound

Navigation And Ranging)

History




Uses of ultrasonic energy in the 1940s. Left, in gastric ulcers. Right, in arthritis

Ultrasonic therapy generator, the "Medi-Sonar" in the 1950s. A British ultrasonic apparatus for the treatment of Meniere's disease in the late 1950s

History

Denier's Ultrasonoscopic apparatus with ultrasound generator, emitter transducer and oscilloscope. This can be adapted for both therapeutic and diagnostic purposes

The first hand-held imaging instrument was developed by John Wild and John Reid in the early 1950's

Present

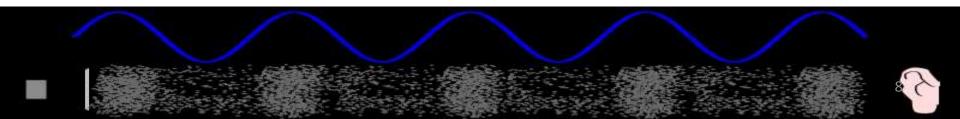
Medical Ultrasound

- High frequency sound waves
- Can't hear but can be emitted and detected
- To see internal soft body structures
- > Tendons, muscles, joints, blood vessels etc.
- Find a source of a disease or to exclude any pathology
- The practice of examining pregnant women using ultrasound is called obstetric ultrasound, and is widely used

Physics of Ultrasound

Sound

Ultrasound

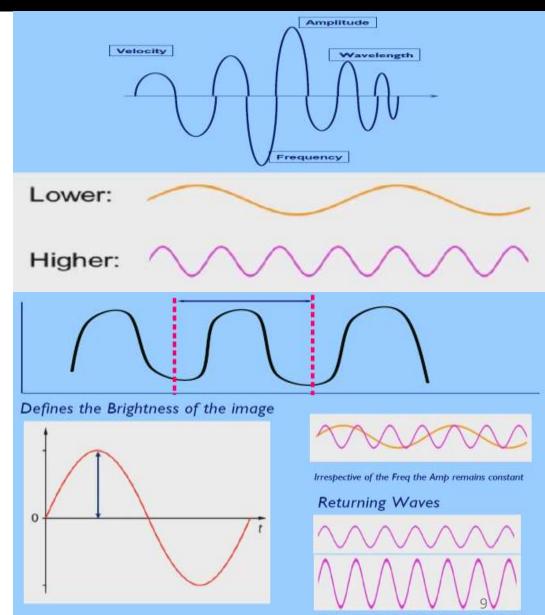

Mechanical &

Longitudinal wave

- Travels in a straight Line
- Human ear range is 20Hz
 20kHz
- Cannot travel through

Vacuum

- Mechanical & Longitudinal wave
- Exceeding the upper limit of human hearing
- > 20,000H or 20kHz.



Characteristics of Ultrasounds

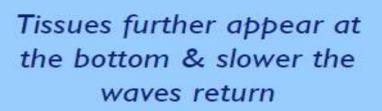
- Velocity
- Frequency
- Wavelength
- > Amplitude
- The Relationship b/w v, f and λ is:

 $v = f \lambda$

- Average speed of ultrasound in body is 1540m/sec
- Imaging range is 2 to 20MHz

The Higher the Amp the brighter the image and the lower the more darker the images

Characteristics of Ultrasounds


Velocity

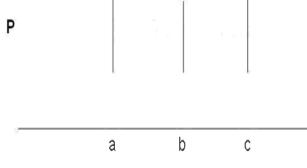
Near Field Imaging

Far Field Imaging

Tissues closer appear on top and faster the waves return

Interactions of Ultrasound with tissue

- Reflection
- Transmission
- Attenuation
- Scattering

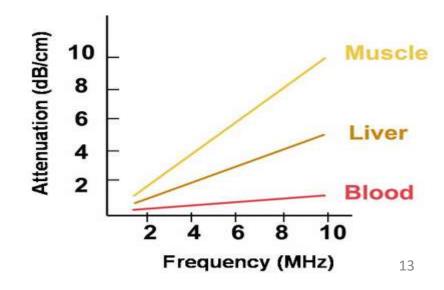

Interactions of Ultrasound with tissue

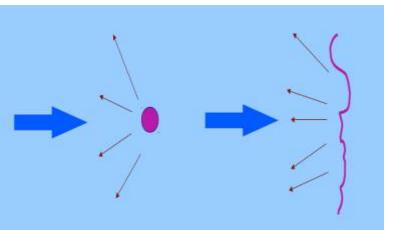
Reflection

Transmission

- Occurs at a boundary between 2 adjacent tissues or Media.
- Acoustic impedance (z)
- The ultrasound image is formed from reflected echoes

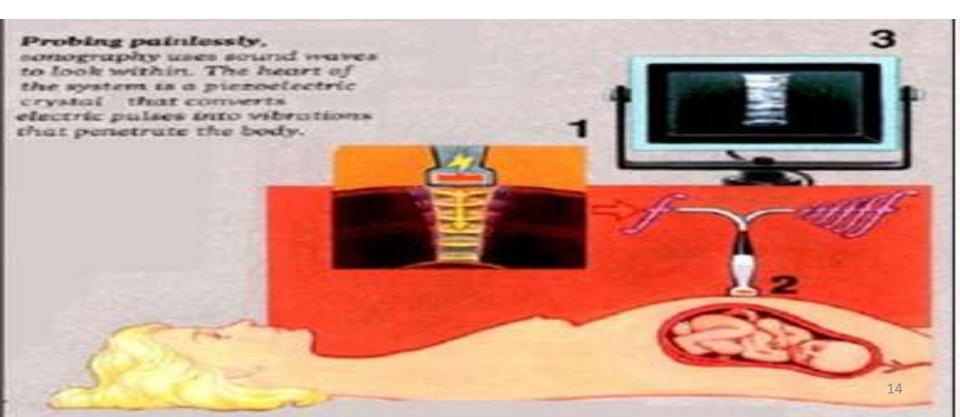
- Not all the sound wave is reflected, some continues deeper into the body
- These waves will reflect from deeper tissue structures


Principle of Ultrasound


Scattering

- Redirection of sound in several directions
- Caused by interaction with small reflector or rough surface
- Only portion of sound wave returns to transducer

Attenuation


- The deeper the wave travels in the body, the weaker it becomes
- The amplitude of the wave decreases with increasing depth

Principle of Ultrasound

- Ultrasound Imaging is based on the same principles involved in the SONAR used by bats, ships, fishermen and the weather services
- When a sound wave strike a object, it bonces back or echoes

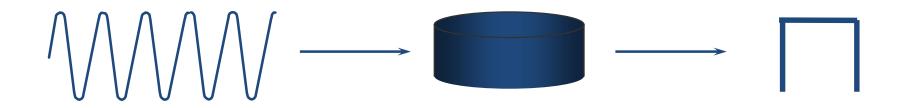
Principle of Ultrasound

Using known information about the speed of sound in the tissues

- By measuring these echo waves it is possible to determine
- How far away the object is and its size, shape and consistency

- Measured time for the echo to be received
- Distance from the transmitter to organ
- can be calculated, and used to create an image.

Ultrasound Production

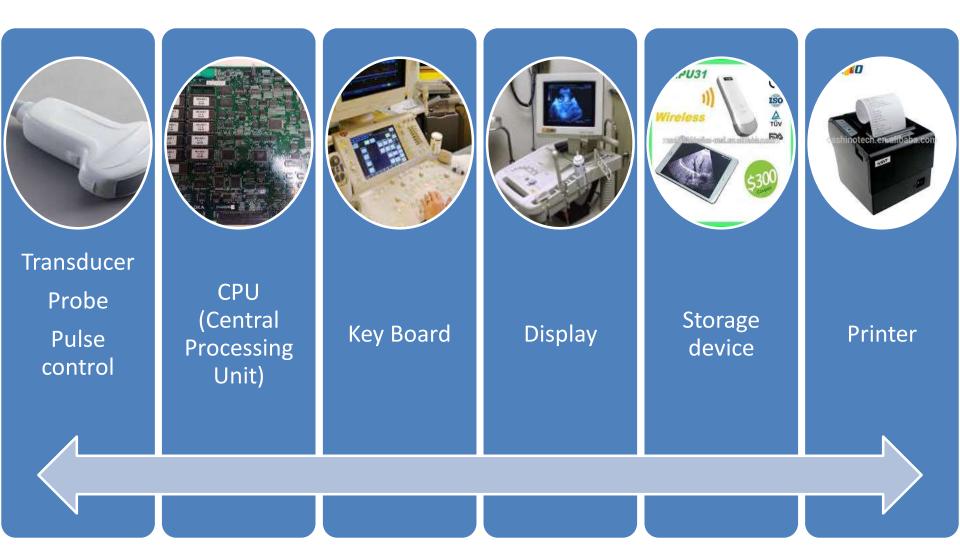

Transducer contains

- Piezoelectric elements/crystals
- > One form of energy to another
- Produces Ultrasound pulses
- These elements convert electrical energy into a mechanical ultrasound wave

The Returning Echo

Reflected echoes return to the scan head

- Convert Ultrasound wave into electrical signal
- The electrical signal is then processed by the ultrasound system


Procedure of Ultrasound

- Place a probe on your skin over the part of body to be examined
- Lubricating jelly is put on skin for batter contact with body
- Probe is connected to the wire to the ultrasound machine, which is linked to monitor
- Pluses are sent from the probe through the skin into body

Procedure of Ultrasound

- Ultrasound waves are back as echoes from various structures in the body
- Echoes are detected by probe and sent to ultrasound machine through wire
- > They are displayed as a picture on monitor
- Operator moves probe around over surface of the skin to obtain views of different angles
- It can be used to measures the different size

Parts of Ultrasound Machine

Parts of Ultrasound Machine

TRANSDUCER

DISPLAY (LCD)

CONTROLS

CPU -

DISK

PRINTER

Transducer Probe

- \succ Mouth and ears of the machine.
- It makes the sound waves and receives the echoes
- Piezoelectric crystals
- Electric current is applied and change shape rapidly
- When sound waves hit the crystals, they emit electrical currents

Transducer (pulse controls)

The operator, called the ultra sonographer, changes the amplitude, frequency and duration of the pulses emitted from the transducer probe

Ultrasonic Transducers: Historical Perspective

1880 The Discovery of piezoelectricity By Curie Brothers 1917 The ultrasonic submarine detector By P. Langevin 1940 Piezoelectric ceramics 1969 A piezoelectric polymer: PVDF 1980 Piezocomposites

1915

Electrostatic transducers considered for the ultrasonic submarine detector by P. Langevin

1970-1990

Advances in microelectronics 1994 Micromachined electrostatic

transducers by M. Haller and B T Khuri-Yakub

Matching Layer

- Has acoustic impedance between that of tissue and the Piezoelectric elements
- Reduces the reflection of ultrasound at the scan head

surface

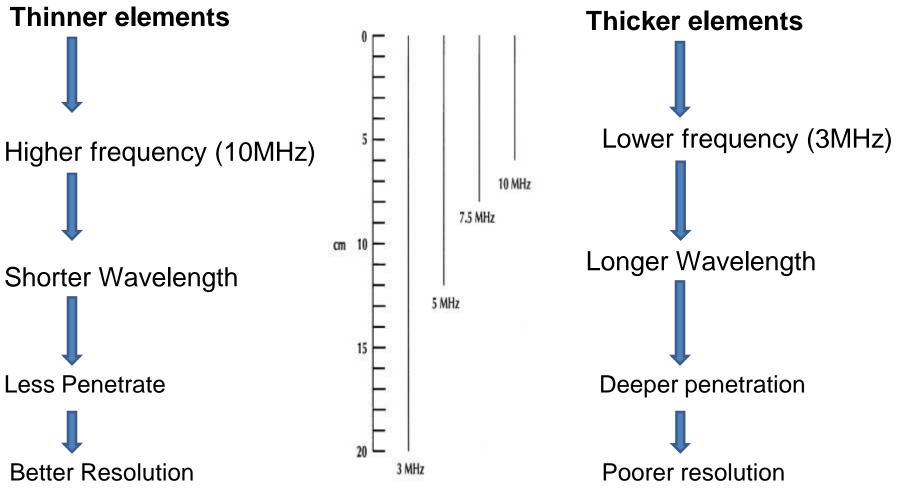
Piezoelectric Elements

Produce a voltage when

deformed by an applied

pressure

Quartz, ceramics, man-made

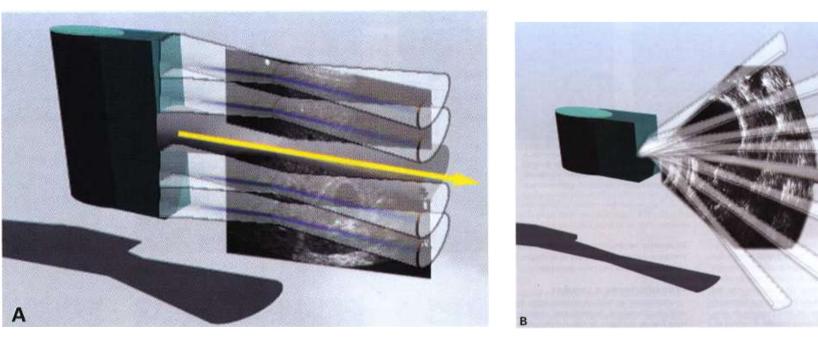

material

Reduces "ringing" of the element

Helps to produce very short pulses

Piezoelectric Crystals and Frequency

The frequency of the scan head is determined by the thickness of the crystals


Selection of Transducer

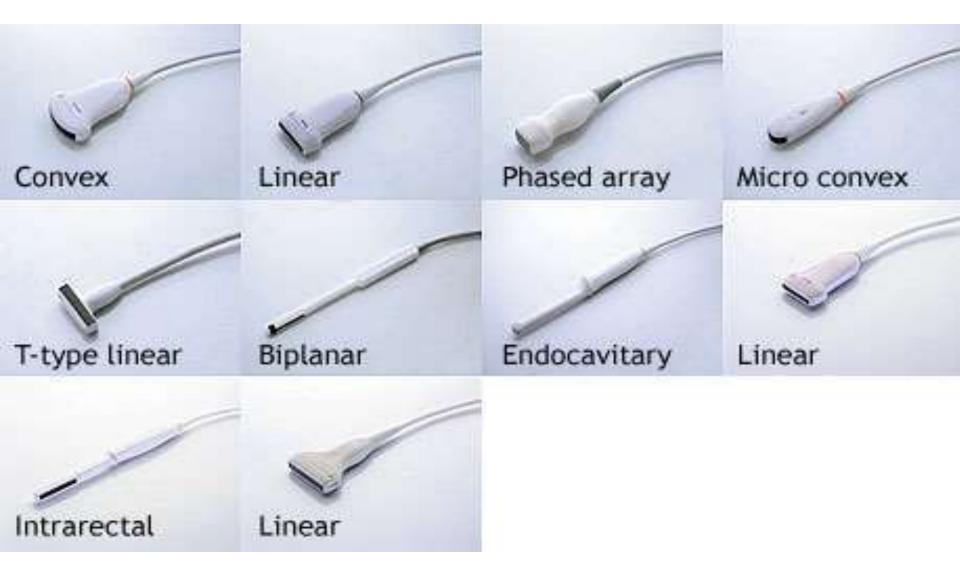
- Superficial vessels and organs (1 to 3cm depth)
- ➤ 7.5 to 15 MHz
- Deeper structures in abdomen and pelvis (12 to 15cm)➤ 2.25 to 3.5 MHz

TYPES OF ELECTRONIC Probes

Linear Array

Phased Array

TYPES OF TRANSDUCERS

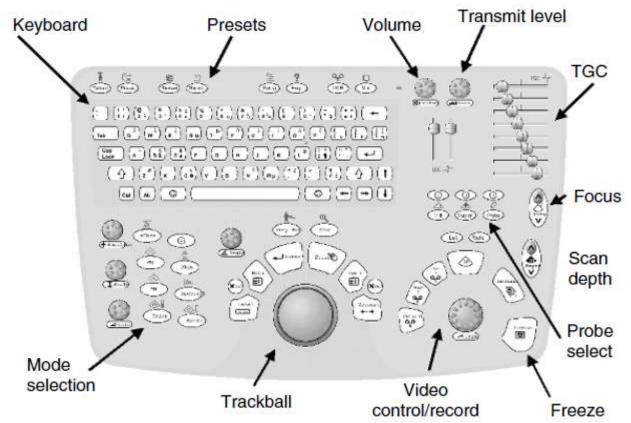

The ultrasound transducers differ in construction according to

- Piezoelectric crystal arrangement
- > Aperture (footprint)
- Operating frequency (which is directly related to the penetration depth)

Types of Ultrasound Transducer

	Sector Transducer	Linear Transducer	Convex Transducer
Crystal Arrangement	phased array	linear	Curvilinear
Footprint Size	small	Big (small for hockey transducers)	Big(small for the micro convex
Frequency	1-5 MHz	3-12 MHz	1-5 MHz
Beam Shape	sector, almost triangular	rectangular	Convex
Applications	small acoustic windows ,mainly ECHO, gynecological ultrasound, upper body ultrasound	USG of superficial structures e.g. obstetrics ultrasound , breast, thyroid, vascular ultrasound	useful in all USG types except ECHO, typically abdominal ,pelvic and lung (micro convex transducer

Types of Ultrasound Transducer


Central Processing Unit (CPU)

- Brain of an ultrasound machine
- Contains the microprocessor, memory and amplifiers
- The transducer receives electrical currents from the CPU and sends electrical pulses that are created by returning echoes

Keyboard/Cursor

It allows the operator to add notes and to take measurements of

the image

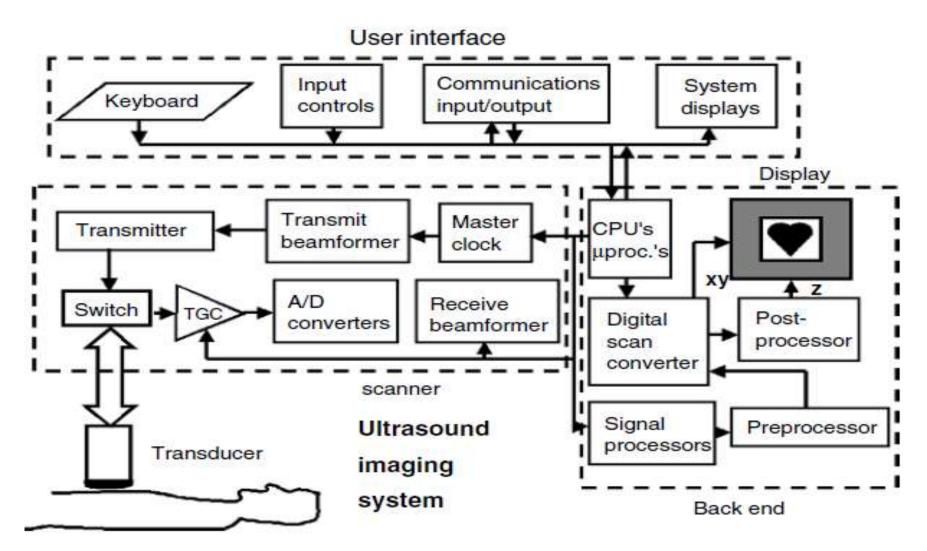
Display

- Displays the image from the ultrasound data processed by the CPU
- This image can be either in black-and-white or color, depending upon the model of the ultrasound machine

How is an image formed on the monitor?

- The amplitude of each reflected wave is represented by a dot
- The **position** of the dot represents the depth from which the echo is received
- The brightness of the dot represents the strength of the returning echo
- These dots are combined to form a complete image

How is an image formed on the monitor?

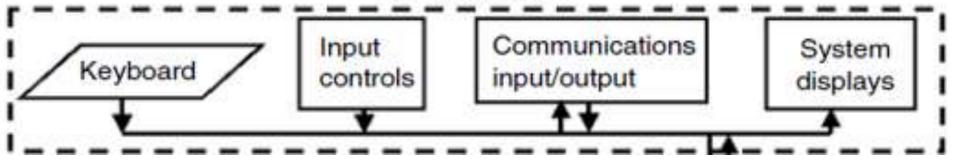

- Strong Reflections = White dots
- Pericardium, calcified structures, diaphragm
- Weaker Reflections = Grey dots
- Myocardium, valve tissue, vessel walls, liver
- > **No Reflections** = Black dots
- Intra-cardiac cavities, gall bladder

Disk Storage & Printers

The processed data and images can be stored on disks

- Hard disks, floppy disks, compact disks (CDs), or digital video disks (DVDs)
- Most of the time, ultrasound scans are filled on floppy disks and stored with the patient's medical records
- > Most ultrasound machines have printers which are thermal

Block Diagram


Main Parts of Block Diagram

- User interface
- Controller
- Front End
- Scanner(beamforming and signal processing)
- Back End

User interface

- Desired mode of operation
- Information in and out of the system through connectors to the system
- VCRs & memory storage devices such as read/write CD-ROMs and DAT drives

User interface

Controller

- > System have one or more microprocessors
- Senses the settings of the controls and input devices
- > Control the hardware to function in the desired mode.
- Estimate the level of acoustic output in real time

Front End

- This grouping within the scanner is the gateway of signals going in and out of the selected transducer
- > Pulses are sent to the transducer from the transmitter circuitry
- Pulse-echo signals from the body are received by array elements These signals then pass on to the receive beam former.

Front End

- > Organizing the many signals of the elements
- > The transmit beamformer sends pulses to the elements
- Analog to Digital Converter
- ➤ Filters

Scanner(beamforming and signal processing)

- This grouping of functions is associated with image formation, display and image metrics
- Image formation is achieved by organizing the lines and putting them through a digital scan converter that transforms them into a scan format for display on a video or PC monitor.
- Image overlays containing alpha-numeric characters and other information are added in image planes

2D Ultrasound

- Traditional ultrasound scanning
- Probe sends and receives ultrasound frequency waves in one plane
- Waves which are reflected back are black-and-white images of the fetus in a flat plane.
- ➤ The ultrasound transducer Toshiba is moved across the stomach to enable numerous viewing planes

3D Ultrasound

- More advanced development of imaging technology has promoted volume data or differing two-dimensional images which are created by reflected waves at angles which different from one another
- High-speed computing software then integrates this information to create a 3D image

4D Ultrasound

- This Ultrasound technology enables live streaming of 3D images
- In other words, patients can view the live motion of the fatal valves, heart wall blood flow, etc.
- 4D ultrasound technology is 3D ultras motion.
- A 3D transducer is utilized
- GE'sVoluson E10 4D ultrasound mac

Applications

- Gynecology
- Anesthesiology
- Cardiology
- Gastroenterology
- Obstetrics
- Urology

Gynecology

- Gynecologic sonography is used extensively
- > To assess pelvic organs
- To diagnose and manage gynecologic problems including, leiomyoma, ovarian cysts and lesions,
- ➤ To Identify Pregnancy,
- To Diagnose Gynecologic Cancer

Advantages of Ultrasounds

- > No needles or injections and they are usually painless
- They are less expensive
- No ionizing radiation
- Gives a clear picture of soft tissues
- > It has been used to evaluate pregnancy for nearly forty years.
- Doctors are provided with lots of useful information from the ultrasound

The Future OF Ultrasound

HIGH POWER ULTRASOUND TECHNOLOGY

- Reduce or eliminate the need for chemicals or heat application in a variety of industrial processes
- Food safety related areas
- Innovative Ultrasonic company
- The use of high-power ultrasonic in industry is rapidly expanding throughout Europe and North America