

# BHARATHIDASAN UNIVERSITY

CENTRE FOR DIFFERENTLY ABLED PERSONS TIRUCHIRAPPALLI - 620024.

- Programme Name : Bachelor of Computer Applications
- Course Code : Discrete Mathematics
- Course Title : 20UCA1AC1
- Unit : U
- Compiled by

- : Unit I
- : Dr. M. Prabavathy Associate Professor Ms. G. Maya Prakash Guest Faculty



# SET

o Set is a collection of objects.
o Set is represented by → {}
Example: {1,2,3,4,5,6,7,8,9,10}

Here,

 $A = \{1, 2, 3, 4, 5\} \quad \text{can be written as} \rightarrow 1 \in A$  $A = \{2, 3, 4, 5\} \rightarrow 1 \notin A$ 

# **REPRESENATION OF SETS**

## **1. Statement Form**

The set is defined in statement form Example:

The set of all odd number less than 10.

#### 2. Roaster Form

The elements are listed within the pair of brackets {} and are separated by commas. Example:

Let N is the set of odd numbers less than 10.

 $N = \{1, 3, 5, 7, 9\}.$ 

3. Set Builder Form

Define a set by its property Example:

 ${x : x is odd number less than 10}.$ 

## **EMPTY SET**

- The set has no element inside.
- Count of element is 0 Example:

## FINITE SET

- The set has starting and ending point
- The set is countable

Example:

 $P=\{0, 2, 4, 6, ..., 98\}$ 

## **INFINITE SET**

• The set has no starting and ending point Example:

A set of all whole numbers.

 $W=\{0, 1, 2, 3, 4, \ldots\}$ 

#### **SUBSETS**

• If all element of set A is a part of set B, then A is subset of B.

Subset  $\rightarrow \subseteq$ 

'A  $\subseteq$  B 'denotes A is a subset of B.



## **POWER SETS**

• All possible subset of a set S.

Example:

What is the power set of  $\{0,1,2\}$ ?

Solution: All possible subsets

 $\{ \varnothing \}, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}.$ 

# **UNIVERSAL SETS**

Universal set contain all elements of other set including its own set Universal Set  $\rightarrow$  U

Here, there are three sets named as A, B and C. A={1,3,6,8} B={2,3,4,5} C={5,8,9}

Therefore, universal set of A, B, C is  $U=\{1,2,3,4,5,6,8,9\}$ 

If Universal set contains Sets A, B and C, then these sets are also called subsets of Universal set.

Denoted by;  $A \subset U$  (A subset of U)  $B \subset U$  (B subset of U)  $C \subset U$  (C subset of U)



# **OPERATION ON SETS**

Two or more set combine together to form a single set

There are four types

## 1. UNION ON SETS

• Union of two set contains all elements of both set. Union →U

• Repetition of elements is not allowed

#### **Example:**

A =  $\{1,2,3,4,5\}$ B =  $\{5,6,7,8,9\}$ AUB =  $\{1,2,3,4,5,6,7,8,9\}$ 

#### **EXERCISE 1:**

Answer:

A U B =  $\{1, 2, 4, 5, 6, 8\}$ 

### 2. INTERSECTION OF SETS

Common elements of two or more set are selected

Intersection  $\rightarrow \cap$ 

Example:  $A = \{1, 2, 3, 4, 5\}$   $B = \{1, 3, 6, 9\}$  $A \cap B = \{1, 3\}$ 

```
EXERCISE 1
```

A= {2,4,6,8,0} B= {1,2,3,4,5,6} Find A ∩B ? Answer:

 $A \cap B = \{2,4,6\}$ 

#### **3.DIFFERENCE OF SETS**

• If A and B are two sets, then their difference is A - B or B - A. If A = {1, 2, 4} and B = {4, 5, 6}

A - B means elements of A which are not the elements of B.

A - B =  $\{1,2\}$ 

#### **EXERCISE** 1

Let  $A = \{a, b, c, d, e, f\}$  and  $B = \{b, d, f, g\}$ .

Find the difference between the two sets:

(i) A and B

(ii) B and A

Solution:

(i) A - B = {a, c, e}→ belongs to Set A but not to B
(ii) B - A = {g) → belongs to Set B but not to A

## 4. COMPLEMENTS OF SETS

The complement of set A is the set of all elements in the universal set that are not in A. It is denoted by A'

#### **Example:**

If A =  $\{1, 2, 3, 4\}$  and U =  $\{1, 2, 3, 4, 5, 6, 7, 8\}$  then find A complement (A').

#### Solution:

A = {1, 2, 3, 4} and Universal set = U = {1, 2, 3, 4, 5, 6, 7, 8}

 $\therefore$  A complement = A' = {5, 6, 7, 8}.

# **PROPERTIES OF SET OPERATIONS**

## **1. Commutative Laws:**

o For any two finite sets A and B;
(i) A U B = B U A
(ii) A ∩ B = B ∩ A

# 2. Associative Laws:

• For any three finite sets A, B and C;
(i) (A U B) U C = A U (B U C)
(ii) (A ∩ B) ∩ C = A ∩ (B ∩ C)

Thus, union and intersection are associative.

## **3. Distributive Laws:**

o For any three finite sets A, B and C;
(i) A U (B ∩ C) = (A U B) ∩ (A U C)
(ii) A ∩ (B U C) = (A ∩ B) U (A ∩ C)
Thus, union and intersection are distributive
over intersection and union respectively.

# 4. De Morgan's Laws:

For any two finite sets A and B;

(i)  $A - (B U C) = (A - B) \cap (A - C)$ 

(ii) A - (B  $\cap$  C) = (A – B) U (A – C)

De Morgan's Laws can also we written as:

(i) (A U B)' = A'  $\cap$  B' (ii) (A  $\cap$  B)' = A' U B'



# **VENN DIAGRAM**

- It is pictorial representation of relation between two concepts
- Rectangle represents universal set.
- Circles or ovals represents other subsets of the universal set.

#### 1. If A is a subset of B



#### 2. If set A and set B have some elements in common



#### 3. If set A and set B are disjoint



## 4. AUB and $A \cap B$



5. A'



## 6. A U (B $\cap$ C) = (A U B) $\cap$ (A U C)



### 7. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$



### 8. (A U B) U C = A U (B U C)



#### SAMPLE SUM

1. If A = {a, b, c, d}, B = {c, d, e, f} and C = {b, d, f, g}; then (A  $\cap$  B) U (A  $\cap$  C) = A  $\cap$  (B U C)?

#### **SOLUTION:**

LHS:

(i) 
$$(A \cap B) = \{c,d\}$$
  
(ii)  $(A \cap C) = \{b,d\}$   
(iii)  $(A \cap B) \cup (A \cap C) = \{c, d\} \cup \{b, d\}$   
 $= \{b, c, d\}$ 

#### **RHS**:

(i) 
$$(B \cup C) = \{b, c, d, e, f, g\}$$
  
(ii)  $A \cap (B \cup C) = \{a, b, c, d\} \cap \{b, c, d, e, f, g\}$   
 $= \{b, c, d\}$ 

Thus LHS = RHS