

Bharathidasan University

Centre for Differently Abled Persons Tiruchirappalli - 620024.

Programme Name : Bachelor of Computer Applications

- Course Code : Operating Systems
- Course Title : 20UCA5CC5

Unit : Unit IV

Compiled by : Dr. M. Prabavathy

Associate Professor

Ms. G. Maya Prakash

Guest Faculty

OPERATING SYSTEM UNIT-I

Introduction

OS is a Software program and acts as an **interface** between **user** and **computer hardware**.

It is used to controls the execution of application programs.

It is used to allocate resources such as **memory**, **processors**, and **devices**

History of Operating System

1. First Generation [1945-1955]

Electronic devices used – Vacuum Tubes

2. Second Generation [1955-1965] Electronic devices used – Transistors

Second Generation of Computers

3. Third Generation [1965-1980] Electronic devices used – Integrated Circuits(IC)

Third Generation of Computers

Integrated Circuit

4. Fourth Generation – Since 1980 Electronic devices used – Microprocessor.

Fourth Generation of Computers

TYPES OF OPERATING SYSTEM

1. Batch Operating System

Sequence of jobs in a program on a computer without manual interventions.

It **does not interact** with the computer directly.

Duty of operator to sort the jobs with **similar needs** and **group** them into **batches**.

Multiple users can Access
Idle time is very less
Easy to manage large work repeatedly.

Disadvantages

Hard to debug
Costly
The other jobs wait for an unknown time, if any job fails.

Examples

Payroll System, Bank Statements etc

2. Time Sharing Operating System

Allows single or many users to **share the computer resources.** (Max utilization of the resources).

Each task is given some time to execute. It is called time quantum.

After this time interval is over **OS switches over to next task.**

(Job / Task / Process)	Time quantum	OS switch	Aft Gen and Cone of
Job 1 (E-mail)	3 ms		CPU /
Job 2 (Ms-word)	4 ms	K	Processor
Job 3	7 ms	-	Ex,
	7 113		(Intel Core i3)
Job 4	2 ms	-	L

Each task gets an equal opportunity. CPU idle time is less.

Disadvantages

Reliability problem. Security Data communication problem.

Examples Unix.

3. Distributed Operating System or loosely coupled systems

Manages a group of different computers

It makes appear to be a single computer.

These system's resources differ in size and function

Resources means disk, memory, CPU, etc...

Fault tolerance - Failure of one will not affect the other network communication computation is highly fast and durable Delay in data processing reduces

Disadvantages:

Failure of the main network will stop the entire System Very expensive.

Examples : LOCUS etc. 4. Network Operating System or Tightly Coupled Systems.

Computers running in **different operating system** can participate in common network.

These systems run on a server.

It manages data, users, groups, security, applications, etc.

It allows shared access of files, printers, security, applications, over a small private network.

centralized servers Provide Security Remote Access

Disadvantages:

Servers are costly User has to depend on central location for most operations Maintenance and updates are required regularly

Examples :

Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD etc 4. Real-Time Operating System:

It serves the **real-time systems**.

The time interval required to process and respond to inputs is very small.

This time interval is called **response time**.

Meant applications to fix the deadlines.

Examples:

Scientific experiments, medical imaging systems, weapon systems, robots, air traffic control systems, etc.

OS Components

- Process Management
- Main Memory management
- Secondary-Storage Management
- □ File Management
- □ I/O Device Management
- Network Management
- Security Management

OS structure:

THANK YOU