
Bharathidasan University 
Centre for Differently Abled Persons

Tiruchirappalli - 620024

Programme Name : Bachelor of Computer Applications

Course Code : Operating Systems 

Course Title : 20UCA5CC5

Unit : Unit III

Compiled by : Dr. M. Prabavathy

Associate Professor

Ms. G. Maya Prakash

Guest Faculty 



PROCESS 
SYNCHRONIZATION



PROCESS SYNCHRONIZATION

 Coordinating the execution of processes so that no

two processes access the same shared resources

and data is known as process synchronization.

 The main objective of process synchronization is to

ensure that multiple processes access shared

resources without interfering with each other.



On the basis of synchronization, processes are categorized as one of the 

following two types:

Independent Process: The execution of one process does not affect the 

execution of other processes.

Cooperative Process: A process that can affect or be affected by other 

processes executing in the system.



CRITICAL SECTION PROBLEM

 A critical section is a code segment that can be

accessed by only one process at a time.

 The critical section contains shared variables that need

to be synchronized to maintain the consistency of data

variables.

 So the critical section problem means designing a way

for cooperative processes to access shared resources

without creating data inconsistencies.





Mutual Exclusion: If a process is executing in its critical section,

then no other process is allowed to execute in the critical section.

Progress: If no process is executing in the critical section and other

processes are waiting outside the critical section, then only those

processes that are not executing in their remainder section can

participate in deciding which will enter in the critical section next, and

the selection can not be postponed indefinitely.

Bounded Waiting: A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before

that request is granted.



SEMAPHORE

 A semaphore is a signaling mechanism and a thread that

is waiting on a semaphore can be signaled by another

thread.

 A semaphore uses two atomic operations, wait and

signal for process synchronization.

 A Semaphore is an integer variable, which can be

accessed only through two operations wait() and

signal().



There are two types of semaphores: Binary Semaphores and 

Counting Semaphores.

Binary Semaphores: 

 They can only be either 0 or 1. 

 They are also known as mutex locks, as the locks can 

provide mutual exclusion.

 All the processes can share the same mutex semaphore 

that is initialized to 1. 

 Then, a process has to wait until the lock becomes 0. 

 Then, the process can make the mutex semaphore 1 and 

start its critical section. 



Counting Semaphores: 

 They can have any value and are not restricted over a certain domain. 

 They can be used to control access to a resource that has a limitation on 

the number of simultaneous accesses. 

 The semaphore can be initialized to the number of instances of the 

resource. 

 Whenever a process wants to use that resource, it checks if the number of 

remaining instances is more than zero, i.e., the process has an instance 

available. 

 Then, the process can enter its critical section thereby decreasing the value 

of the counting semaphore by 1. 

 After the process is over with the use of the instance of the resource, it can 

leave the critical section thereby adding 1 to the number of available 

instances of the resource.



MONITORS

 Monitors are a synchronization construct that were created

to overcome the problems caused by semaphores such as

timing errors.

 Monitors are abstract data types and contain shared data

variables and procedures.

 The shared data variables cannot be directly accessed by a

process and procedures are required to allow a single

process to access the shared data variables at a time.



DEADLOCK



INTRODUCTION TO DEADLOCK

 Deadlock is a situation where a set of processes are

blocked because each process is holding a resource and

waiting for another resource used by some other

process.





Resources

 A process in operating systems uses different resources 

and uses resources in following way.

 1) Requests a resource

 2) Use the resource

 2) Releases the resource



DEADLOCK PREVENTION

Deadlock arise if four condition holds simultaneously

1. Mutual Exclusion: One or more than one resource is 

non-sharable (Only one process can use at a time)



2. Hold and Wait: A process is holding at least one

resource and waiting for resources.

3. No Preemption: A resource cannot be taken from a

process unless the process releases the resource.



4. Circular Wait: A set of processes are waiting for each 

other in circular form.



DEADLOCK AVOIDANCE

The system must know the total needed resources

1. Safe State

 A sequence of requests exists can be satisfied without 

deadlock

 Safe State  no deadlock

2. Unsafe State

 A sequence of requests cannot be satisfied

 Unsafe state  possibility of deadlock





 Avoidance  ensure that system will never enter a unsafe state

 Algorithms Pseudo code explain about deadlock avoidance

1. System is initially Safe

2. At each Request for a resource

 i. IF allocation causes an unsafe state

 ii. THEN block the process

 iii. ELSE grant the allocation

3. At each resource release

 i. WHILE a block request can be granted safely

 Grant Allocation

4. Unlock the Process. 



DEADLOCK 
DETECTION 



Deadlock Detection

Deadlock Detection is an important task of OS

The OS periodically checks if there is any existing

deadlock in the system

Take measures to remove the deadlocks.

There are 2 types of detection



1. If resources have single instance:

 A wait-for graph is made.

 A Wait-for graph vertex denotes process.

 A deadlock is detected if one wait-for graph contains a cycle.

 In the above wait-for graph P1 is waiting for resource

currently in use by P2

 P2 is waiting for resource currently in use by P3 and so on…

 P5 is waiting for resource currently in use by P1 which

creates a cycle thus deadlock is confirmed.





2. Several Instances of a Resource Type 

 They are implemented using 4 data structure.

 Let n be the number of process in system.

 Let m be no of resources in system.

Available

 1 D Array of Size m.

 Each element Available[i] indicates the number of 

resources of i type available. Denoted by Ri



Maximum

 2 D Array of size n*m

 Determines maximum demand of each process.

 Maximum[i,j] tells the maximum demand an ith process will 

request of jth type resource.

Allocation

 2 D Array of size n*m

 Defines number of resources of each type currently allocated 

to each process.

 Allocation[i,j] means i th process has current k instance of j 

th type resource



Need

 2D Array of size n*m

 Tells about remaining resources type which are required 

by each process.

 Need[i,j] means i th process needs k instance of j th

resource type.

 Need[i,j] = Maximum[i,j] – Allocation[i,j]





DEADLOCK 
RECOVERY



Deadlock Recovery

Killing the process:

 I. killing all the process involved in the deadlock. 

 II. Killing process one by one. 

 III. After killing each process check for deadlock again 

 IV. keep repeating the process till system recover from 

deadlock.



Resource Preemption:

 Resources are preempted from the processes involved in 

the deadlock, 

 preempted resources are allocated to other processes 

 By doing so, there is a possibility of recovering the 

system from deadlock. 

 In this case, the system goes into starvation.



Rollback

 The OS maintains a database of all different states 

of system

 A state when the system is not in deadlock is called 

safe state. 

 A rollback to previous ‘n’ number of safe states in 

iterations can help in the recover.





THANK YOU 


