
Centre for Differently Abled Persons

Bharathidasan University

III BCA – V SEMESTER

PYTHON PROGRAMMING
(20UCA5CC6)

Prepared by
Dr. M. Prabavathy
Ms. M. Hemalatha

UNIT – V

UNIT – V

Abstract Data Types:
 The abstract data type is special kind of data type, whose

behavior is defined by a set of values and set of operations.

 “Abstract” is used as we can use these data types, we

can perform different operations. But how those operations

are working that is totally hidden from the user.

 The ADT is made of primitive data types, but operation logics

are hidden.

 Some examples of ADT are Stack, Queue, List etc.

Classes:

 Python is an object oriented programming language.

 Almost everything in Python is an object, with its properties

and methods.

 A Class is like an object constructor, or a "blueprint" for

creating objects.

 To create a class, use the keyword class.

o Example:
•class MyClass:
•x = 5

Example:

• class Person:

• def init (self, name, age):

self.name = name

• self.age = age
• p1 = Person("John",

36)print(p1.name) print(p1.age)

 Create Object:

o Now we can use the class named MyClass to

createobjects:

o Example:

 p1 = MyClass()

 print(p1.x)

 The init () Function:

o All classes have a function called init (), which is
always executed when the class is being initiated.

o Use the init () function to assign values to object

properties, or other

operations that are necessary to do when the object is

being created.

Python Inheritance

 Inheritance allows us to define a class that inherits all the methods and properties

from another class.

 Parent class is the class being inherited from, also called base class.

 Child class is the class that inherits from another class, also called derived class.

 Create a Parent Class:

o Any class can be a parent class, so the syntax is the same as creating any other

class:

Example

• class Person:

•def init (self, fname,

lname): self.firstname =

fname

• self.lastname = lname

def printname(self):

• print(self.firstname, self.lastname)

• x = Person("John",

"Doe") x.printname()

Create a Child Class:

o To create a class that inherits the functionality from another class,
send the parent class as a parameter when creating the child class:

o Example:

class Student(Person):

pass

o Note: Use the pass keyword when you do not want to add any other

properties or methods to the class.

 Create an object, and then execute the method:

oExample:

• x = Student("Mike",

"Olsen")

x.printname()

Encapsulation

 Encapsulation is a mechanism of wrapping the data

(variables) and code acting on the data (methods)

together as a single unit.

 In encapsulation, the variables of a class will be hidden

from other classes, and can be accessed only through

the methods of their current class.

Example:

class Students:
def init (self, name, rank,

points): self.name = name

self.rank = rank self.points =
points defdemofunc(self):
print("I am "+self.name)

print("I got Rank ",+self.rank)

create 4 objects
st1 = Students("Steve", 1, 100)
st2 = Students("Chris", 2, 90)

st3 = Students("Mark", 3, 76)

st4 = Students("Kate", 4, 60)

call the functions using the

objects created above

st1.demofunc()

st2.demo

func()

st3.demo

func()

st4.demo

func()

Output

• I am Steve

• I got Rank 1 I am Chris
• I got Rank 2 I am Mark
• I got Rank 3 I am Kate

• I got Rank 4

Python Access Modifiers

 There are three access modifiers are available in Python:

o Public

 The public member is accessible from inside or outside the

class.

o Private

 The private member is accessible only inside class.

 Define a private member by prefixing the member name with

two underscores.

 Example: age

o Protected
 The protected member is accessible from inside the class and

its sub-class.

 Define a protected member by prefixing the member name with

an underscore.

 Example:_points

Information Hiding

 In the official Python documentation, Data hiding isolates the client

from a part of program implementation.

 Some of the essential members must be hidden from the user.

 Programs or modules only reflected how we could use them, but

users cannot be familiar with how the application works.

 Thus it provides security and avoiding dependency as well.

 We can perform data hiding in Python using the double underscore

before prefix.

 This makes the class members private and inaccessible to the other

classes.

Example:

• class CounterClass:
• privateCount =

0 def count(self):
• self. privateCount += 1

• print(self.

privateCount) counter =

CounterClass()

counter.count()

counter.count()
• print(counter. privateCount)

o The class objects are disconnected from the irrelevant

data.
o It enhances the security against hackers that are unable

to access important data.

o It isolates object as the basic concept of OOP.

o It helps programmer from incorrect linking to the corrupt

data.

o We can isolate the object from the basic concept of OOP.
o It provides the high security which stops damage to

violate data by hiding it from the public.

Advantages of Information Hiding

Disadvantages of Information Hiding

o Sometimes programmers need to write the extra lien of the

code.

o The data hiding prevents linkage that act as link between

visible and invisible data makes the object faster.

o It forces the programmers to write extra code to hide the

important data from the common users.

 An exception is an event, which occurs during the

execution of a program that disrupts the normal flow of the

program's instructions.

 In general, when a Python script encounters a situation

that it cannot cope with, it raises an exception. An

exception is a Python object that represents an error.

Exception

Handling an exception
 If you have some suspicious code that may raise an

exception, you can defend your program by placing the
suspicious code in a try: block.

 After the try: block, include an “except” statement, followed
by a block of code which handles the problem as elegantly as
possible.

• try:
•You do your operations
here; exceptExceptionI:
• If there is ExceptionI, then execute this block.

• else:
• If there is no exception then execute this block.

 Example 1:
o This example opens a file, writes content in the, file and comes out gracefully

because there is no problem at all −

try:

fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
exceptIOError:

print "Error: can\'t find file or read data"

else:

print "Written content in the file successfully" fh.close()

o This produces the following result: Written content

in the file successfully

