
Centre for Differently Abled Persons

Bharathidasan University

III BCA – V SEMESTER

PYTHON PROGRAMMING
(20UCA5CC6)

Prepared by
Dr. M. Prabavathy
Ms. M. Hemalatha

UNIT – V

UNIT – V

Abstract Data Types:
 The abstract data type is special kind of data type, whose

behavior is defined by a set of values and set of operations.

 “Abstract” is used as we can use these data types, we

can perform different operations. But how those operations

are working that is totally hidden from the user.

 The ADT is made of primitive data types, but operation logics

are hidden.

 Some examples of ADT are Stack, Queue, List etc.

Classes:

 Python is an object oriented programming language.

 Almost everything in Python is an object, with its properties

and methods.

 A Class is like an object constructor, or a "blueprint" for

creating objects.

 To create a class, use the keyword class.

o Example:
•class MyClass:
•x = 5

Example:

• class Person:

• def init (self, name, age):

self.name = name

• self.age = age
• p1 = Person("John",

36)print(p1.name) print(p1.age)

 Create Object:

o Now we can use the class named MyClass to

createobjects:

o Example:

 p1 = MyClass()

 print(p1.x)

 The init () Function:

o All classes have a function called init (), which is
always executed when the class is being initiated.

o Use the init () function to assign values to object

properties, or other

operations that are necessary to do when the object is

being created.

Python Inheritance

 Inheritance allows us to define a class that inherits all the methods and properties

from another class.

 Parent class is the class being inherited from, also called base class.

 Child class is the class that inherits from another class, also called derived class.

 Create a Parent Class:

o Any class can be a parent class, so the syntax is the same as creating any other

class:

Example

• class Person:

•def init (self, fname,

lname): self.firstname =

fname

• self.lastname = lname

def printname(self):

• print(self.firstname, self.lastname)

• x = Person("John",

"Doe") x.printname()

Create a Child Class:

o To create a class that inherits the functionality from another class,
send the parent class as a parameter when creating the child class:

o Example:

class Student(Person):

pass

o Note: Use the pass keyword when you do not want to add any other

properties or methods to the class.

 Create an object, and then execute the method:

oExample:

• x = Student("Mike",

"Olsen")

x.printname()

Encapsulation

 Encapsulation is a mechanism of wrapping the data

(variables) and code acting on the data (methods)

together as a single unit.

 In encapsulation, the variables of a class will be hidden

from other classes, and can be accessed only through

the methods of their current class.

Example:

class Students:
def init (self, name, rank,

points): self.name = name

self.rank = rank self.points =
points defdemofunc(self):
print("I am "+self.name)

print("I got Rank ",+self.rank)

create 4 objects
st1 = Students("Steve", 1, 100)
st2 = Students("Chris", 2, 90)

st3 = Students("Mark", 3, 76)

st4 = Students("Kate", 4, 60)

call the functions using the

objects created above

st1.demofunc()

st2.demo

func()

st3.demo

func()

st4.demo

func()

Output

• I am Steve

• I got Rank 1 I am Chris
• I got Rank 2 I am Mark
• I got Rank 3 I am Kate

• I got Rank 4

Python Access Modifiers

 There are three access modifiers are available in Python:

o Public

 The public member is accessible from inside or outside the

class.

o Private

 The private member is accessible only inside class.

 Define a private member by prefixing the member name with

two underscores.

 Example: age

o Protected
 The protected member is accessible from inside the class and

its sub-class.

 Define a protected member by prefixing the member name with

an underscore.

 Example:_points

Information Hiding

 In the official Python documentation, Data hiding isolates the client

from a part of program implementation.

 Some of the essential members must be hidden from the user.

 Programs or modules only reflected how we could use them, but

users cannot be familiar with how the application works.

 Thus it provides security and avoiding dependency as well.

 We can perform data hiding in Python using the double underscore

before prefix.

 This makes the class members private and inaccessible to the other

classes.

Example:

• class CounterClass:
• privateCount =

0 def count(self):
• self. privateCount += 1

• print(self.

privateCount) counter =

CounterClass()

counter.count()

counter.count()
• print(counter. privateCount)

o The class objects are disconnected from the irrelevant

data.
o It enhances the security against hackers that are unable

to access important data.

o It isolates object as the basic concept of OOP.

o It helps programmer from incorrect linking to the corrupt

data.

o We can isolate the object from the basic concept of OOP.
o It provides the high security which stops damage to

violate data by hiding it from the public.

Advantages of Information Hiding

Disadvantages of Information Hiding

o Sometimes programmers need to write the extra lien of the

code.

o The data hiding prevents linkage that act as link between

visible and invisible data makes the object faster.

o It forces the programmers to write extra code to hide the

important data from the common users.

 An exception is an event, which occurs during the

execution of a program that disrupts the normal flow of the

program's instructions.

 In general, when a Python script encounters a situation

that it cannot cope with, it raises an exception. An

exception is a Python object that represents an error.

Exception

Handling an exception
 If you have some suspicious code that may raise an

exception, you can defend your program by placing the
suspicious code in a try: block.

 After the try: block, include an “except” statement, followed
by a block of code which handles the problem as elegantly as
possible.

• try:
•You do your operations
here; exceptExceptionI:
• If there is ExceptionI, then execute this block.

• else:
• If there is no exception then execute this block.

 Example 1:
o This example opens a file, writes content in the, file and comes out gracefully

because there is no problem at all −

try:

fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
exceptIOError:

print "Error: can\'t find file or read data"

else:

print "Written content in the file successfully" fh.close()

o This produces the following result: Written content

in the file successfully

