
 Programme Name : Bachelor of Computer Applications

 Course Code : 20UCA6CC10

 Course Title : Data Structures

 Unit : Unit I

 Compiled by : Dr. M. Prabavathy
Associate Professor

Ms. Patric Matharasi
Guest Faculty

UNIT I

 Data is a collection of facts and
figures or a set of values or
values of a specific format that
refers to a single set of item
values.

 The data items are then
classified into sub-items, which
is the group of items that are not
known as the simple primary
form of the item.

 Data Structure is a branch of Computer
Science.

 Data Structure is a particular way of storing
and organizing data in the memory of the
computer.

 These data can easily be retrieved and
efficiently utilized in the future when
required.

 The data can be managed in various ways,
like the logical or mathematical model for a
specific organization of data is known as a
data structure.

1. Data Structures allow us to organize and
store data, whereas Algorithms allow us to
process that data meaningfully.

2. Learning Data Structures and Algorithms
will help us become better Programmers.

3. We will be able to write code that is more
effective and reliable.

4. We will also be able to solve problems
more quickly and efficiently.

1. Correctness: Data Structures are
designed to operate correctly for all
kinds of inputs based on the domain
of interest.

2. Efficiency: It should process the data
quickly without utilizing many
computer resources like memory
space.

1. Robustness: Generally, all computer
programmers aim to produce software that
yields correct output for every possible
input, along with efficient execution on all
hardware platforms.

2. Adaptability: Building software
applications like Web Browsers, Word
Processors, and Internet Search Engine
include huge software systems that require
correct and efficient working or execution
for many years.

3. Reusability: However, if the software
is developed in a reusable and
adaptable way, then it can be applied
in most future applications. Thus, by
executing quality data structures, it is
possible to build reusable software,
which appears to be cost-effective and
timesaving.

 We can classify Data Structures into
two categories:

1. Primitive Data Structure

2. Non-Primitive Data Structure

 A set of finite number of homogeneous
elements or same data items

 An array can contain one type of data
only

 Declaration of array is : int arr[10]
 The number specified inside the square
brackets [] is the number of elements
an array can be store.

 The elements of array can be stored in
the consecutive (continues) memory
location.

This length is given by the following
equation:

 Array is classified into 3 types

 An array with only one row or
column is called one dimensional
array.

 Syntax: datatype
array_name[Size];

 Example: int arr[3];

 In two dimensional arrays the array is
divided into rows and columns.

 Syntax: datatype
array_name[row_size][col_size];

 Example: int arr[3][3];

 Array with Multiple subscripts

 Multidimensional arrays are often known as
array of the arrays

 Syntax: datatype array_name[size 1][size
2][size 3]------[size N];

 Traverse
Processing each element in the array.

 Search
Finding the location of an element with a

given value.
 Insertion

Adding a new element to an array.
 Deletion

Removing an element from an array.
 Sorting

Organizing the elements in some order.
 Merging

Combining two arrays into a single array.

 Collection of similar types of
data.

 2 dimensional array is used to
represent a matrix .

 It is used to other data
structure like linked lists ,
stacks , queue , etc

 The time complexity increase in
insertion and deletion operation.

 Wastage of memory because arrays are
fixed in size.

 Linked list is a linear data structure that
includes a series of connected nodes.

 Linked list can be defined as the nodes that
are randomly stored in the memory.

 A node in the linked list contains two parts,
i.e., first is the data part and second is the
address part. o The last node of the list
contains a pointer to the null.

 After array, linked list is the second most used
data structure.

 In a linked list, every link contains a
connection to another link.

 Linked list can be represented as the
connection of nodes in which each node
points to the next node of the list.

 The representation of the linked list is
shown below

 Singly-linked list

 Doubly linked list

 Circular singly linked list

 Circular doubly linked list

 Singly linked list can be defined as the
collection of an ordered set of elements.

 A node in the singly linked list consists of
two parts: data part and link part.

 Data part of the node stores actual
information that is to be represented by the
node, while the link part of the node stores
the address of its immediate successor.

 Doubly linked list is a complex type of linked
list in which a node contains a pointer to the
previous as well as the next node in the
sequence.

 Therefore, in a doubly-linked list, a node
consists of three parts: node data, pointer to
the next node in sequence (next pointer), and
pointer to the previous node (previous
pointer).

 In a circular singly linked list, the
last node of the list contains a
pointer to the first node of the list.

 We can have circular singly linked
list as well as circular doubly linked
list.

 Circular doubly linked list is a more complex
type of data structure in which a node contains
pointers to its previous node as well as the next
node.

 Circular doubly linked list doesn't contain NULL
in any of the nodes.

 The last node of the list contains the address of
the first node of the list.

 The first node of the list also contains the
address of the last node in its previous pointer.

 Dynamic data structure - The size of the linked
list may vary according to the requirements.
Linked list does not have a fixed size.

 Insertion and deletion - Insertion, and deletion
in linked list is easier. The elements in the
linked list are stored at a random location.

 Memory efficient - The size of a linked list can
grow or shrink according to the requirements,
so memory consumption in linked list is
efficient.

 Implementation - We can implement both
stacks and queues using linked list.

 Memory usage - In linked list, node occupies
more memory than array. Each node of the
linked list occupies two types of variables, i.e.,
one is a simple variable, and another one is the
pointer variable.

 Traversal - Traversal is not easy in the linked
list. The time required to access a particular
node is large.

 Reverse traversing - Backtracking or reverse
traversing is difficult in a linked list. In a
doubly-linked list, it is easier but requires
more memory to store the back pointer

THANK YOU

