
 Programme Name : Bachelor of Computer Applications

 Course Code : 20UCA6CC10

 Course Title : Data Structures

 Unit : Unit II

 Compiled by :Dr. M. Prabavathy
Associate Professor

Ms. Patric Matharasi
Guest Faculty

Stack and Its Operation

 A Stack is a linear data structure that
follows the LIFO (Last-In-First-Out)
principle.

 Stack has one end, whereas the Queue
has two ends (front and rear).

 It contains only one pointer top pointer
pointing to the topmost element of the
stack.

 Whenever an element is added in the
stack, it is added on the top of the
stack, and the element can be deleted
only from the stack.

 In other words, a stack can be defined
as a container in which insertion and
deletion can be done from the one end
known as the top of the stack.

 push(): When we insert an element in a
stack then the operation is known as a
push. If the stack is full then the overflow
condition occurs.

 pop(): When we delete an element from the
stack, the operation is known as a pop. If the
stack is empty means that no element exists in
the stack, this state is known as an underflow
state.

 isEmpty(): It determines whether the stack is
empty or not.

 isFull(): It determines whether the stack is full
or not.

 In array implementation, the stack is
formed by using the array.

 All the operations regarding the stack
are performed using arrays.

1. Increment the variable Top so that it

can now referred to the next memory

location.

2. Add element at the position of

incremented top. This is referred to as

adding new element at the top of the

stack.

begin

if top = n then stack full

top = top + 1

stack (top) : = item;

end

1. The value of the variable top will be
incremented by 1 whenever an item is
deleted

from the stack.

2. The top most element of the stack is
stored in another variable and then the top
is decremented by 1.

3. The operation returns the deleted value
that was stored in another variable as the
result

begin

if top = 0 then stack empty

item := stack(top)

top = top - 1

end

 A queue can be defined as an ordered list

which enables insert operations to be

performed at one end called REAR and delete

operations to be performed at another end

called FRONT.

 Queue is referred to be as First In First Out list.

 For example, people waiting in line for a rail

ticket form a queue.

 We can easily represent queue by
using linear arrays.

 There are two variables i.e. front and
rear, that are implemented in the case
of every queue.

 Front and rear variables point to the
position from where insertions and
deletions are performed in a queue.

 Initially, the value of front and queue is
-1 which represents an empty queue.

 Array representation of a queue
containing 5 elements along with the
respective

values of front and rear, is shown in the
following figure.

 The value of rear increases by one every
time an insertion is performed in the
queue.

 After inserting an element into the
queue shown in the above figure, the
queue will look something like
following.

 The value of rear will become 5 while
the value of front remains same

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and
REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] =
NUM

Step 4: EXIT

 After deleting an element, the value of
front will increase from -1 to 0.

 However, the queue will look
something like following.

Step 1: IF FRONT = -

1 or FRONT > REAR

Write UNDERFLOW

ELSE SET VAL =

QUEUE[FRONT] SET

FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

 An arithmetic expression can be written in
three different but equivalent notations,
without changing the essence or output of an
expression.

These notations are

 Infix Notation

 Prefix (Polish) Notation

 Postfix (Reverse-Polish) Notation

These notations are named as how they use
operator in expression.

 We write expression in infix notation,
e.g. a - b + c, where operators are
used in between operands.

 It is easy for us humans to read, write,
and speak in infix notation but the
same does not go well with computing
devices.

 In this notation, operator is prefixed to
operands, i.e. operator is written ahead
of operands.

 For example, +ab. This is equivalent to
its infix notation a + b.

 Prefix notation is also known as Polish
Notation.

 This notation style is known as
Reversed Polish Notation.

 In this notation style, the operator is
post fixed to the operands i.e., the
operator is

 written after the operands.

 For example, ab+. This is equivalent to
its infix notation a + b.

 A single stack is sometimes not
sufficient to store a large amount of
data.

 To overcome this problem, we can use
multiple stack.

 For this, we have used a single array
having more than one stack.

 The array is divided for multiple
stacks.

 Suppose there is an array STACK[n] divided into
two stack STACK A and STACK B, where n = 10.

 STACK A expands from the left to the right, i.e.,
from 0th element.

 STACK B expands from the right to the left, i.e.,
from 10th element.

 The combined size of both STACK A and STACK
B never exceeds 10.

 Polynomials are the expressions that
contain the number of terms with non-
zero exponents and coefficients.

 Linked List is widely used for
Representing and Manipulating the
polynomials.

 Such as the linked representation of
polynomials, each term considered as a
node, therefore these node contains
three fields.

 Coefficient Field – The coefficient field
holds the value of the coefficient of a
term o Exponent Field – The Exponent
field contains the exponent value of the
term

 Link Field – The linked field contains the
address of the next term in the
polynomial

