
Bharathidasan University
Centre for Differently Abled Persons

Tiruchirappalli - 620024.

 Programme Name : Bachelor of Computer Applications

 Course Code : 23UCACC04

 Course Title : Programming in Java

 Semester : IV

 Unit : Unit III

 Compiled by : Dr. M. Prabavathy
Associate Professor

Ms. M. Hemalatha
Guest Faculty

ABSTRACT CLASS

Abstract Class

 Abstraction is a process of hiding the

implementation details and showing only

functionality to the user.

 A class which is declared with the abstract

keyword is known as an abstract class

It can have abstract and non-abstract

methods (method with the body).

It can have constructors and static methods.

Syntax:

abstract className

{

code;

}

Abstract Method

A method which is declared as abstract and does

not have implementation is known as an abstract

method.

Syntax:

abstract void MethodName();

Example:

abstract class Bike

{

abstract void run();

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely");

}

public static void main(String args[])

{

Honda obj = new Honda();

obj.run();

}

}

FINAL CLASS

Final Class

 The final keyword in java is used to restrict the user.

 The java final keyword can be used in many context.

1. Java Final Variable

If variable is declared as final, variable value cannot be

changed

The values remain constant.

Example:

class Bike

{

final int speedlimit=90;

void run()

{

speedlimit=400; //Compile time error

}

public static void main(String args[])

{

Bike obj1 =new Bike();

obj1.run();

}

}

2. Java Final Method

If method declared as final, cannot override

that method.

Example

class Bike

{

final void run()

{

System.out.println("running");}

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

public static void main(String args[])

{

Honda honda= new Honda();

honda.run();

}

}

The program throws Compile time error, because final

method cannot be overridden.

3. Java Final Class

If any class declared as final, it cannot be

extended.

Example

final class Bike

{

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with
100kmph");

}

public static void main(String args[])

{

Honda obj= new Honda();

obj.run();

}

}

It throws compile time error as final class

cannot be extended.

INHERITANCE

Inheritance

- Inheritance can be defined as the process

where one class accesses the properties

(methods and fields) of another class.

Super Class / Parent Class:

- a subclass inherits the properties from
super class

- It is also called a base class or a parent

class.

Sub Class / Child Class:

- inherits the properties from other class.

- called a derived class, extended class, or child
class.

Syntax:

class Subclass-name extends Superclass-name

{

//methods and fields

}

The ‘extends’ keyword indicates deriving new class

from an existing class.

Example:

class A

{

int a,b;

public void get()

{

a=12;

b=5;

}

}

class B extends A

{

int c;

public void mul()

{

c = a*b;

System.out.println(“Product = “ + c);

}

public static void main(String args[])

{

B obj = new B();

obj.get();

obj.mul();

}

}

Output:

Product = 60

Types of Inheritance

1. Single Inheritance

 When an one class inherits from another

class, it is known as a single inheritance.

2. Multilevel Inheritance

 A class inherits properties from a class which again

has inherits properties.

EXAMPLE:

class A

{

int a;

public void assign()

{

a=12;

}

}

class B extends A

{

int b;

public void get()

{

b=5;

}

}

class C extends B

{

int c;

public void add()

{

c = a+b;

System.out.println(“ Sum = “ + c);

}

public static void main(String args[])

{

C obj = new C();

obj.assign();

obj.get();

obj.add();

}

}

Output:

Sum = 17

3. Hierarchical Inheritance

 When two or more classes inherits a single class, it is

known as hierarchical inheritance.

Example:

class A

{

int a,b;

public void get()

{

a=12;

b=5;

}

}

class B extends A

{

public void add()

{

System.out.println(“ Sum = “ + (a+b));

}

}

class C extends A

{

int d;

public void mul()

{

d = a*b;

System.out.println(“Product = “ + d);

}

public static void main(String args[])

{

C obj = new C();

obj.get();

obj.mul();

}

}

Output:

Product = 60

Interfaces
and

Inheritance

Interface and Inheritance

A class can extends another class and/ can

implement one and more than one interface.

Multiple Inheritance

If a class implements multiple interfaces, or

an interface extends multiple interfaces, it is

known as multiple inheritance.

Example

interface Printable

{

void print();

}

interface Showable

{

void show();

}

class A7 implements Printable, Showable

{

public void print()

{

System.out.println("Hello");

}

public void show()

{

System.out.println("Welcome");

}

public static void main(String args[])

{

A7 obj = new A7();

obj.print();

obj.show();

}

}

OUTPUT:

Hello

Welcome

POLYMORPHISM

Polymorphism

The word "poly" means many and "morphs“

means forms.

So polymorphism means many forms.

There are two types of polymorphism in Java

- Compile-time polymorphism

- Runtime polymorphism

Method Overloading

If a class has multiple methods having same name but

different in parameters, it is known as Method

Overloading.

There are two ways to overload the method in java

By changing number of arguments

By changing the data type

Example:
Method Overloading: changing no. of arguments

class Adder

{

static int add(int a,int b)

{

return a+b;

}

static int add(int a,int b,int c)

{

return a+b+c;

}

}

class TestOverloading1

{

public static void main(String[] args)

{

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(11,11,11));

}

}

OUTPUT:

22

33

Example:

Method Overloading: changing data type of arguments

class Adder

{

static int add(int a, int b)

{

return a+b;

}

static double add(double a, double b)

{

return a+b;

}

}

class TestOverloading2

{

public static void main(String[] args)

{

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(12.3,12.6));

}

}

OUTPUT:

22

24.9

Method Overriding

If subclass (child class) has the same method as declared

in the parent class, it is known as method overriding.

It is used for runtime polymorphism

Rules for Java Method Overriding

The method must have the same name as in the

parent class

The method must have the same parameter as in the

parent class

Example: Method Overriding

import java.io.*;

class A

{

public void show()

{

System.out.print("Welcome");

}

}

class B extends A

{

public void show()

{

super.show();

System.out.print(" to CDAP");

}

}

class C

{

public static void main(String args[])

{

B obj = new B();

obj.show();

}

}

Output:

Welcome to CDAP

