
Bharathidasan University
Centre for Differently Abled Persons

Tiruchirappalli - 620024.

 Programme Name : Bachelor of Computer Applications

 Course Code : 23UCACC04

 Course Title : Programming in Java

 Semester : IV

 Unit : Unit I

 Compiled by : Dr. M. Prabavathy
Associate Professor

Ms. M. Hemalatha
Guest Faculty

Introduction to
JAVA

Introduction to JAVA

 Java is a Object Oriented programming

language

 Java works on different platforms

(Windows, Mac, Linux)

 It is easy to learn and simple to use

 It is open-source and free

Applications of JAVA

 Mobile application (Android applications)

 Desktop applications

 Web applications

 Games

 Database connection

Java and Internet

 Java is associated with the internet

because of the first application program

is written in Java was hot Java.

 Internet users can use Java to create

applet programs & run then locally using

a Java-enabled browser such as hot Java.

Byte Codes

 Byte code in Java is platform-independent

 When Java program is compiled, bytecode

is generated.

 When a Java program is executed, the

compiler compiles that piece of code.

 Thus Byte code generates . class file for

every Java program.

 The bytecode is a non-runnable code that

requires an interpreter.

 This is where JVM plays an important

part.

Java Development Kit(JDK)

 The Java Development Kit (JDK) is a

software development environment which

is used to develop java applications and

applets.

 JDK = JRE + Development tool.

(JRE Java Runtime Environment)

 JDK is a package of tools for developing

Java-based software

 The JDK is one of three core technology

packages used in Java programming,

along with the JVM (Java Virtual

Machine) and the JRE (Java Runtime

Environment).

 The JVM is the Java platform component

that executes programs.

 The JRE is the on-disk part of Java that

creates the JVM.

 The JDK allows developers to create Java

programs that can be executed and run

by the JVM and JRE.

The JDK contains

- a private Java Virtual Machine (JVM)

- interpreter/loader (Java),

- a compiler (javac),

- an archiver (jar),

- a documentation generator (Javadoc)

Java Character Set

 The Character set in java is a set of
alphabets, letters and some special
characters.

 The Character set consists of

- Alphabets – a, b, c.....z

- Digits – 0,1,2,3......

- Special Character - + _ () { } []<>;

- White spaces - tab, new line, Spaces.

OPERATORS

OPERATORS

 An operator is a symbol that operates on a

value or a variable.

 There are different types of operators.

1. Arithmetic Operators

◦ It is used to perform

arithmetic/mathematical operations on

operands.

Operator Description Example

+ Addition A + B

− Subtraction A − B

* Multiplication A * B

/ Division A/ B

% Modulus A % B

2. Relational Operator

◦ A relational operator checks the relationship

between two operands.

◦ If the relation is true, it returns 1;

◦ if the relation is false, it returns value 0.

Operator Description Example

== Equal to 5 == 3

> Greater than 5 > 3

< Less than 5 < 3

!= Not equal to 5 != 3

>= Greater than or equal to 5 >= 3

<= Less than or equal to 5 <= 3

3. Logical Operator

◦ Logical operator returns either 0 or 1 depends on

whether expression results true or false.

OPERATOR MEANING EXAMPLE

&& Logical AND. True only if all
operands are true

(c==5) &&(d>5)

|| Logical OR. True only if either
one operand is true

(c==5) || (d>5)

! Logical NOT. True only if the
operand is 0

!(c==5)

4. Assignment Operator

 An assignment operator is used for assigning a

value to a variable.

Operator Example Same as

= a = b a = b

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

5. Increment / Decrement Operator

These operators are used to increase or decrease by

one value.

Operator Description Example

++ Increment A++

-- Decrement A--

6. Bitwise Operator

 Bitwise operators are used to perform bit-level

operations.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

CONTROL
STATEMENT

CONTROL STATEMENT

The statements that control the execution

flow of the program are known as control

statements.

1. Branching Statement

2. Looping Statement

BRANCHING STATEMENT

IF Statement

The Java if statement is used to test the

condition.

It checks Boolean condition: true or false.

There are various types of if statement in Java.

 if Statement

 if...else Statement

 Else if Ladder

(&)

 Switch Statement

(i) if Statement

If statement tests the condition.

It executes the if block if condition is true.

Syntax:

if(condition)

{

//code to be executed

}

Example

int age=20;

if(age>18)

{

System.out.println("Age is greater than18");

}

(ii) if-else statement

The if-else statement also tests the condition.

It executes the if block if condition is true otherwise

else block is executed.

Syntax:

if (condition)

{

statement 1;

}

else

{

statement 2;

}

Example

int number=13;

if(number %2 ==0)

{

System.out.println("EVEN number");

}

else

{

System.out.println("ODD number");

}

(iii) Else- If Ladder
The if-else-if ladder statement executes one condition from

multiple statements.

Syntax:

if(condition1)

{

Statement 1;

}

else if(condition2)

{

Statement 2;

}

...

else

{

Statement n;

}

Example

int number= -13;

if(number>0)

{

System.out.println("POSITIVE");

}

else if(number<0)

{

System.out.println("NEGATIVE");

}

else

{

System.out.println("ZERO");

}

(iv) Switch Statement
Switch statement executes one statement from multiple

conditions.

Syntax:

switch(expression)

{
case value1:

Statement1;

break;

case value2:

Statement 2;

break;

…………

default:

Statement n;

}

Example

int number=20;

switch(number)

{

case 10:

System.out.println("10");

break;

case 20:

System.out.println("20");

break;

case 30:

System.out.println("30");

break;

default:

System.out.println("Not in 10, 20 or 30");

}

ARRAY
&

VECTOR

ARRAY

 Array is an object which contains

elements of a similar data type.

 Array is index-based,

◦ the first element of the array is stored at

the 0th index

◦ 2nd element is stored on 1st index and

so on.

Types of Array

There are two types of array.

One Dimensional Array

Multidimensional Array

One Dimensional Array

A one-dimensional array behaves likes a list of variables.

Index value should be an integer.

Syntax:

dataType[] arr; (or)

dataType arr[];

EXAMPLE

public class Testarray

{

public static void main(String args[])

{

int a[]=new int[3];

a[0]=10;

a[1]=20;

a[2]=70;

for(int i=0;i<a.length;i++)
System.out.println(a[i]);

}

}

Multidimensional Array

A multidimensional array is an array containing

one or more arrays.

Syntax:

dataType[][] arrayname;

EXAMPLE

public class Multiarray

{

public static void main(String args[])

{

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)

System.out.print(arr[i][j]+" ");

}

}

}

Vector

 Vector implements a dynamic array.

 Vector is a list that has one dimension.

 It is a row of data.

Vector Constructor

Vector() - creates a default vector, which

has an initial size of 10.

Vector(int size) - creates a vector whose

initial capacity is specified by size.

◦ Vector(int size, int incr) - creates a

vector whose initial capacity is specified

by size and increment is specified by

incr.

◦ Vector(Collection c) - creates a vector

that contains the elements of collection

c.

import java.io.*;

import java.util.*;

class Vector

{

public static void main(String[] args)

{

int n = 5;

Vector<Integer> v = new Vector<Integer>(n);

for (int i = 1; i <= n; i++)

v.add(i);

System.out.println(v);

v.remove(3);

System.out.println(v);

for (int i = 0; i < v.size(); i++)

System.out.println(v.get(i) + " ");

}

}

JAVA TOKENS

Java Tokens

 Java Tokens are the smallest individual
building block or smallest unit of a Java
program.

 The Java compiler uses it for constructing
expressions and statements.

 Java program is a collection of different
types of tokens, comments, and white
spaces.

There are 5 types of tokens

1. Keywords

In java, there are set of reserved words that

cannot be used as identifiers.

Those reserved words are called Keywords

Example:

int,

float…

2. Identifiers

Identifiers are used as variable names.

Example:

Sum,

Total.

3. Constants

A constant is a variable whose value cannot

change once it has been assigned.

4. Separators

Separator is a token used to separate two

individual tokens

Separators are also called as punctuators

Example: () {} ; ,

5. Operators

Operator is a symbol that represent specific

mathematical operation

JAVA STATEMENT

Java Statement

 A statement specifies an action in a Java

program.

 Java statements can be broadly classified

into three categories:

1. Declaration statement

A declaration statement is used to declare a

variable.

For Example:

int n, int a = 100.

2. Expression statement

An expression with a semicolon at the end is

called an expression statement.

For example:

Sum = num1 + num2;

3. Control flow statement

The statements that control the execution flow

of the program are known as control

statements.

For Example:

If Statement, For Loop etc,..

LOOPING STATEMENT

LOOPING STATEMENT

Loops are used to execute a set of

instructions/functions repeatedly when some

conditions become true.

There are three types of loops in Java.

- while loop

- do..while loop

- for loop

While loop

 The While loop is used to iterate a part of the
program several times.

Syntax:

Initialization;

while(condition)

{

//code to be executed;

Increment / decrement;

}

Example:

int i=1;

while(i<=10)

{

System.out.println(i);

i++;

}

Do..While Loop

◦ The do-while loop is used to iterate a part of

the program several times.

◦ Syntax:

Initialization;

do

{

//code to be executed;

Increment / decrement;

}while(condition);

Example

int i=1;

do

{

System.out.println(i);

i++;

}while(i<=10);

For Loop

The for loop is used to iterate a part of the

program several times.

Syntax:

for(initialization; condition; incr/decr)

{

//code to be executed

}

Example

for(int i=1;i<=10;i++)

{

System.out.println(i);

}

Break Statement

The Java break statement is used to break loop

or switch statement.

It breaks the current flow of the program at

specified condition.

Syntax:

// loop or switch case;

Break;

Example

for (int i = 0; i < 10; i++)

{

if (i == 4)

{

break;

}

System.out.println(i);

}

OUTPUT:

0

1

2

3

Continue Statement

◦ The Continue statement is used to continue the

loop.

◦ It continues the current flow of the program

and skips the remaining code at the specified

condition.

Syntax:

// loop statement;

Continue;

Example

for(int i=1;i<=10;i++)

{

if(i==5)

{

Continue;

}

System.out.println(i);

}

OUTPUT:

1

2

3

4

6

7

8

9

10

STRING
&

String Buffer

STRING

In Java, string is a sequence of character.

An array of characters works same as Java

string.

Example:

char[] ch={'j','a','v','a','t','p','o','i','n','t'};

String s="CDAP";

Some of the String Methods

1. Length()

The length of a string can be found with the

length() method.

Example:

String txt = "CDAP";

System.out.println("The length of the txt string

is: " + txt.length());

2. toUpperCase() and toLowerCase()

To display string in upper and lower case.

Example:

String txt = "Hello World";

System.out.println(txt.toUpperCase());

System.out.println(txt.toLowerCase());

3. Indexof()

The indexOf() method returns the index (the

position) of the first occurrence of a specified

text in a string (including whitespace)

Example:

String txt = "Have a great day";

System.out.println(txt.indexOf("great"));

4. String Concatenation

The + operator can be used between strings to

combine them.

Example:

String firstName = "Good";

String lastName = "Morning";

System.out.println(firstName + " " +

lastName);

STRING BUFFER

String Buffer class is used to create mutable

(modifiable) string.

The String Buffer class in java is same as

String class except it is mutable i.e. it can

be changed.

Constructor of String Buffer:

(i) StringBuffer() - creates an empty string

buffer with the initial capacity of 16.

(ii) StringBuffer(String str) - creates a string

buffer with the specified string.

(iii) StringBuffer(int capacity) - creates an

empty string buffer with the specified

capacity as length

Methods in String – Buffer

 append() - concatenates the given argument

with this string.

 insert() - inserts the given string with this

string at the given position.

 replace() - replaces the given string from the

specified beginIndex and endIndex.

 delete() - deletes the string from the specified

beginIndex to endIndex.

 reverse() - reverses the current string.

 capacity() - returns the current capacity of the

buffer.

