
Bharathidasan University
Centre for Differently Abled Persons

Tiruchirappalli - 620024.

 Programme Name : Bachelor of Computer Applications

 Course Code : 23UCACC04

 Course Title : Programming in Java

 Semester : IV

 Unit : Unit II

 Compiled by : Dr. M. Prabavathy
Associate Professor

Ms. M. Hemalatha
Guest Faculty

CLASSES
&

OBJECTS

CLASSES

 Class is the blueprint of an Object.

 It is the basic building block of an object-

oriented language.

A class in Java can contain:

- Fields / Data Members

- Methods

- Constructors

- Blocks

- Nested class and interface.

Syntax:

class<class_name>

{

Field / Data Members;

Methods;

}

Example:
class Dog

{

String breed;

int size;

int age;

String color;

void eat()

{

System.out.println(“ The Dog is Eating”);

}

void sleep()

{

System.out.println(“ The Dog is Sleeping”);

}

}

OBJECTS

 An object is called an instance of a class.

 New keyword is used to create Object.

 Object allocates memory when it is created

Syntax:

ClassName ObjectName = New ClassName();

Creating an Object

There are three steps:

1. Declaration − Declare variable name

with an object type.

2. Instantiation − The 'new' keyword is

used to create the object.

3. Initialization − The 'new' keyword is

followed by a call to a constructor.

This call initializes the new object.

Example:

class Student

{

int rollno;

String name;

}

class TestStudent2

{

public static void main(String args[])

{

Student s1=new Student();

s1.rollno=101;

s1.name="CDAP";

System.out.println(s1.id+" "+s1.name);

}

}

OUTPUT

101 CDAP

CONSTRUCTOR

CONSTRUCTOR

 A constructor is a block of codes similar

to the method.

 It is called when an instance of the class

is created.

 At the time of calling constructor,

memory for the object is allocated in the

memory.

Rules for creating Java constructor

1. Constructor name must be the same as its

class name

2. A Constructor must have no explicit return

type

3. A Java constructor cannot be abstract, static,

final, and synchronized

Types of Java constructors

There are two types of constructors in Java:

- Default constructor

- Parameterized constructor

1. Default Constructor

A constructor is called "Default Constructor" when it

doesn't have any parameter.

Syntax

<class_name>()

{ code; }

classTest1

{

Test1() Default Constructor
{

System.out.println("Have a Good Day");

}

public static void main(String args[])

{

Test1 b=new Test1();

}

}

Output:

Have a Good Day

2. Parameterized Constructor

A constructor which has a specific number of parameters

Example

class Student4

{

int id;

String name;

Student4(int i, String n)  Parameterized Constructor

{
id = i;

name = n;

}

void display()

{

System.out.println(id+" "+name);

}

public static void main(String args[])

{

Student4 s1 = new Student4(101,"Aarthi");
Student4 s2 = new Student4(102,"Abinaya");
s1.display();

s2.display();

}

}

Output:

101 Aarthi

102 Abinaya

Wrapper classes

 The wrapper classes are used to convert

primitive types (int , char , float, etc.)

into corresponding objects.

Example

Autoboxing

The automatic conversion of primitive data

type into its corresponding wrapper class is

known as Autoboxing

Examples:

byte to Byte

char to Character

int to Integer

Unboxing

The automatic conversion of wrapper type

into its corresponding primitive type is

known as Unboxing.

It is the reverse process of Autoboxing.

INTERFACES

INTERFACES

- An interface is a blueprint of a class.

- It has static constants and abstract

methods.

- There can be only abstract methods in

the Java interface, not method body.

Declaring Interface

interface<interface_name>

{

// declare constant fields

// declare methods that abstract

// by default.

}

Example

interface printable

{

void print();

}

class A6 implements printable

{

public void print()

{

System.out.println("Hello");

}

public static void main(String args[])

{

A6 obj = new A6(); obj.print();

}

}

Relation between Class and Interface

A class extends another class, an interface

extends another interface, but a class

implements an interface.

Multiple Inheritance

If a class implements multiple interfaces,

or

an interface extends multiple interfaces,

it is known as multiple inheritance.

Example:

interface Printable

{

void print();

}

interface Showable

{

void show();

}

class A7 implements Printable, Showable

{

public void print()

{

System.out.println("Hello");

}

public void show()

{

System.out.println("Welcome");

}

public static void main(String args[])

{

A7 obj = new A7();

obj.print();

obj.show();

}

}

OUTPUT

Hello

Welcome

PACKAGES

Packages

- A java package is a group of similar types of

classes, interfaces and sub- packages.

- Package in java can be categorized in two:

built-in package.

user-defined package.

- There are many built-in packages such as

java,lang, awt, javax, swing, net, io, util,

sql etc.

- The package keyword is used to create a

package in java.

Built-in Packages

These packages consist of a large number of classes which are a

part of Java API.

Some of the commonly used built-in packages are:

1. java.lang

Contains language support classes

Example: classes which defines primitive data types, math

operations

2. java.io

Contains classed for supporting input / output operations.

3. java.util

Contains utility classes which implement data structures like

Linked List, Dictionary and support Date / Time operations.

4. java.applet

Contains classes for creating Applets.

5. Java.awt

Contain classes for implementing the components

for graphical user interfaces (like button, menus

etc).

6. java.net

Contain classes for supporting networking

operations.

User Defined Package

To create your own package

Java uses a file system directory to store them

Just like folders on computer

Example

└── root

└── mypack

└── MyPackageClass.java

To create a package, use the package keyword

Sample Program for Package

// A.java

package pack;

class A

{

public void msg()

{

System.out.println("WELCOME TO CDAP");

}

}

//B.java

import pack.*;

class B

{

public static void main(String args[])

{

A obj = new A(); obj.msg();

}

}

Output:

WELCOME TO CDAP

How to Run Java Package

1. Compile a java program which is defined as Package javac A.java

2. Create a folder and name it as pack(Package Name)

3. Copy the source file (A.java) and class file (A.class)

4. Paste the copied files into pack folder

5. Now write the program for class B

6. Compile and run the program

javac B.java

java B

7. Thus the user defined package (pack) was imported and display

the output as

WELCOME TO CDAP

THANK YOU

