
Bharathidasan University
Centre for Differently Abled Persons

Tiruchirappalli - 620024.

 Programme Name: Bachelor of Computer Applications

 Course Code : 23UCACC04

 Course Title : Programming in Java

 Semester : IV

 Unit : Unit IV

 Compiled by : Dr. M. Prabavathy
Associate Professor

Ms. M. Hemalatha
Guest Faculty

EXCEPTION
HANDLING

Exception Handling

 The Exception Handling in Java handle the

runtime errors so that normal flow of the

application can be maintained.

 An exception is an unwanted or unexpected

event.

Try and Catch Block

The try statement test block of code for errors

while it is being executed.

The catch statement executes block of code, if an

error occurs in the try block.

The try and catch keywords come in pairs.

Syntax

try

{

// Block of code to try

}

catch(Exception e)

{

// Block of code to handle errors

}

Example

public class Main

{

public static void main(String[] args)

{

int[] myNumbers = {1, 2, 3};

System.out.println(myNumbers[10]);

}

}

It throws ArrayIndexOutOf Bound Exception.

USE OF THROW KEYWORD

The throw statement allows you to create acustom

error.

The throw statement is used together with an

exception type.

Throw is used within the method.

Cannot throw multiple exceptions.

There are many exception types available in

Java:

Arithmetic Exception,

FileNotFoundException,

ArrayIndexOutOfBoundsException,

SecurityException, etc…,

Example
public class TestThrow1

{

static void validate(int age)

{

if(age<18)

throw new ArithmeticException("not valid");

else

System.out.println("welcome to vote");

}

public static void main(String args[])

{

validate(13);

}

}

Output:

Exception in thread main java.lang.ArithmeticException:not valid

USE OF THROWS KEYWORDS

Java throws keyword is used to declare an

exception.

Throws is followed by class.

Can declare multiple exceptions.

Example

void m()throws ArithmeticException

{

//method code

}

FINALLY KEYWORD

Java finally block is always executed whether exception is

handled or not.

Java finally block follows try or catch block.

Example

import java.io.*;

classTestFinallyBlock

{

public static void main(String args[])

{

Try

{

int data=25/5;

System.out.println(data);

}

catch(NullPointerException e)

{

System.out.println(e);

}

finally{

System.out.println("finally block is always executed");

}

System.out.println("rest of the code...");

}

}

OUTPUT:

5

finally block is always executed

rest of the code.

USER DEFINED EXCEPTION

 Creating own Exception that is known as custom
exception or user-defined exception.

 Java custom exceptions are used to customize the
exception according to user need.

Example

classJavaException

{

public static void main(String args[])

{

try

{

throw new MyException(2);

}

catch(MyException e)

{

System.out.println(e) ;

}

}

}

classMyException extends Exception

{

int a;

MyException(int b)

{

a=b;

}

public String toString()

{

return ("Exception Number = "+a) ;

}

}

Output:

Exception Number = 2

INPUT – OUTPUT
(FILES)

Files
The File class is an abstract representation of file and

directory pathname.

The File class have several methods for working with

directories and files such as

- creating new directories or files

- deleting files or directories

- Renaming directories or files

- listing the contents of a directory etc.

FILE PERMISSION

Java FilePermission class contains the permission related

to a directory or file.

All the permissions are related with path.

The path can be of two types:

1) D:\\IO\\-: permission with all sub directories and files.

2) D:\\IO*: permission is associated with all directory

and files within this directory excluding sub directories.

A file can be in any combination of following permissible

permissions:

1. Executable:

Tests whether the application can execute the file

denoted by this abstract path name.

2. Readable:

Tests whether the application can read the file

denoted by this abstract path name.

3. Writable:

Tests whether the application can modify the file

denoted by this abstract path name.

CREATE A FILE

To create a file in Java, use method

createNewFile()

This method returns a boolean value:

True if the file was successfully created

False if the file already exists.

Example:

public class CreateFile

{

public static void main(String[] args)

{

Try

{

File myObj = new File("filename.txt");

if (myObj.createNewFile())

{

System.out.println("File created: " +
myObj.getName());

}

else

{

System.out.println("File already exists.");

}

}

catch (IOException e)

{

System.out.println("An error occurred.");

e.printStackTrace();

}

}

}

WRITE TO A FILE

- Use the FileWriter class together with its write()

method to write some text to the file.

- Writing to the file should always have close() method

with it.

Example:

public class WriteToFile {

public static void main(String[] args) {

try

{

FileWriter myWriter = newFileWriter("filename.txt");

myWriter.write("Files in Java might be tricky, but it is fun

enough!");

myWriter.close();

System.out.println("Successfully wrote to the file.");

}

catch (IOException e)

{

System.out.println("An error occurred.");

e.printStackTrace();

}

}

}

INPUT – OUTPUT
(STREAM)

Input-Output

 Java I/O (Input and Output) is used to process

the input and produce the output.

 Java uses the concept of a stream to make I/O

operation fast.

 The java.io package contains all the classes

required for input and output operations

STREAM

A stream is a sequence of data.

In Java, a stream is composed of bytes.

It's called a stream because it is like a stream of water that

continues to flow.

In Java, 3 streams are created for us automatically.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

OUTPUTSTREAM CLASS

OutputStream class is an abstract class.

It is the superclass of all classes representing an

output stream of bytes.

An output stream accepts output bytes and sends

them to some sink.

Methods of OutputStream

1. public void write(int)throws IOException

write a byte to the current output stream.

2. public void write(byte[])throws IOException

write an array of byte to the current output stream.

3.public void flush()throws IOException

flushes the current output stream.

4. publicvoid close()throws IOException

close the current output stream.

INPUTSTREAM CLASS

InputStream class is an abstract class.

It is the superclass of all classes representing an input

stream of bytes.

Methods of InputStream

1. public abstract int read()throws IOException

- reads the next byte of data from the input stream.

- It returns -1 at the end of the file.

2) public int available()throws IOException

- returns an estimate of the number of bytes that can

be read from the current input stream.

3) public void close()throws IOException

- used to close the current input stream.

MULTITHREADING

Multithreading

Multithreading in Java is a process of executing

multiple threads simultaneously.

A thread is the smallest unit of processing.

Each of this process can be assigned either as a

single thread or multiple threads.

Java Multithreading is mostly used in games,

animation, etc.

Example: Single Thread

package demo;

public class thread

{

public static void main(String[] args)

{

System.out.println("Single Thread");

}

}

Life cycle of thread

There are various stages of life cycle of thread

1. New

 The thread is created using class "Thread class".

 It remains in this state till the program starts the thread.

 It is also known as born thread.

2. Runnable

 The instance of the thread is invoked with a start
method.

 The thread control is given to scheduler to finish the
execution.

 It depends on the scheduler, whether to run the thread.

3. Running

 When the thread starts executing, then the state is

changed to "running" state.

 The scheduler selects one thread from the thread

pool, and it starts executing in the application.

4. Waiting

 one thread has to wait, till the other thread gets

executed.

 Therefore, this state is referred as waiting state.

5. Dead

 This is the state when the thread is terminated.

 The thread is in running state and as soon as it

completed processing it is in "dead state”.

CREATING A THREAD

1. By extending Thread class

2. By implementing Runnable interface

Method used in Thread

getName(): Obtaining a thread’s name

getPriority(): Obtain a thread’s priority

isAlive(): Determine if a thread is still running

join(): Wait for a thread to terminate

run(): Entry point for the thread

sleep(): suspend a thread for a period of time

start(): start a thread by calling its run() method

Example:

importjava.awt.*;

importjava.applet.*;

public class car1 extends Applet implements Runnable

{

Thread m=null;

int p;

public void start()

{

m=new Thread(this);

m.start();

}

public void run()

{

while(true)

{

for(p=30;p<getSize().width;p+=5)

{

repaint();

try

{

m.sleep(100);

}

catch(InterruptedException e)

{}

}}

}

public void stop()

{

m.stop();

m=null;

}

public void paint(Graphics g)

{

g.setColor(Color.blue);

g.drawString("WELCOME",85,10);

g.setColor(Color.red);

g.drawLine(p,10,p+40,10);

g.drawLine(p-5,20,p+45,20);

g.drawLine(p,10,p-5,20);

g.drawLine(p+40,10,p+45,20);

g.setColor(Color.black);

g.fillOval(p,20,10,15);

g.fillOval(p+30,20,10,15);

}

}

//<applet code=car1.class width=400 height=500></applet>

