

Tiruchirappalli - 620024.

- Programme Name : Bachelor of Computer Applications
- Course Code : 23UCAEC04A
- Course Title : Database Management Systems
- Sem : IV
- Unit : Unit IV
- Compiled by : Dr. M. Prabavathy Associate Professor
 Ms. G. Maya Prakash Guest Faculty

DATABASE NORMALIZATION

Normalization

- Normalization is the process of organizing the data in the database.
- Normalization divides the larger table into the smaller table and links them using relationship.

Types of Normal Form

First Normal Form (1NF)

- A relation will be 1NF if it contains an atomic value.
- It must hold only single-valued attribute.

EXAMPLE: (Not 1NF \rightarrow Contain multi value)

S.NO	NAME	PHONE_NUMBER
1	PRIYA	<mark>8901234567, 8976543201</mark>
2	RIYA	7890123456

S.NO	NAME	PHONE_NUMBER
1	PRIYA	8901234567
1	PRIYA	8976543201
2	RIYA	7890123456

Second Normal Form (2NF)

- In the 2NF, relational must be in 1NF.
- In the second normal form, all non-key attributes are fully functional dependent on the primary key

SECOND NORMAL FORM

ld	Name	Subjects		And Address of the
			Id	Subjects
1289	Ramesh Sawant	Math, Science	1289	Math
5678	Shruti Shah	English	1289	Science
			5678	English
Id	Name	Subjects	Let Id	Name
1289	Ramesh Sawant	Math	1289	Ramesh Sawa
1289	Ramesh Sawant	Science	1280	Ramach Sawa
5678	Shruti Shah	English	5678	Shruti Shah

Third Normal Form (3NF)

- A relation will be in 3NF if it is in 2NF and not contain any transitive functional dependency.
- EXAMPLE: Book Details (Not in 3NF)

Book ID	Genre ID	Genre Type	Price
1	1	DBMS	30
2	2	C++	35
3	1	DBMS	25
4	3	OS	20
5	2	C++	35

Book ID →Genre ID Genre Id → Genre Type Book ID → Genre Type (Via) Genre Id So Split table to satisfy 3NF

Book:

Book Id	Genre Id	Price
1	1	30
2	2	35
3	1	25
4	3	20
5	2	35

Genre:

Genre Id	Genre Type
1	DBMS
2	C++
3	OS

Boyce Codd Normal Form (BCNF)

- It is in 3NF
- For Every Function Dependencies X→ Y, X should be super key

EXAMPLE:

Student number	Course	Professor
1	DBMS	Prem
1	JAVA	Santhosh
2	C++	Kavin
3	JAVA	Keerthana
4	С	Hari

- Super key is dependent on non-primary key
- This is not allowed in BCNF, so split table to form BCNF

Student Number	Professor Id
1	P1
1	P2
2	P3
3	P4
4	P5

Professor Id	Professor Name	Course
P1	Prem	DBMS
P2	Santhosh	JAVA
P3	Kavin	C++
P4	Keerthana	JAVA
P5	Hari	С

Fourth Normal Form (4NF)

- It Should be BCNF
- It should not have Multi-valued Dependency.
- Multi value dependency is not allowed in table with 2 column

ST_ID	COURSE	HOBBY
100	Computer	Dancing
100	Maths	Dancing
100	Computer	Cricket
100	Maths	Cricket
150	Physics	Hockey

- Here occur Multi value dependency.
- Split the table to avoid Multi value

ST_ID	COURSE
100	Computer
100	Maths
150	Physics

ST_ID	HOBBY
100	Dancing
100	Cricket
150	Hockey

Fifth Normal Form (5NF)

- A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should be lossless.
- 5NF broken into as many tables as possible in order to avoid redundancy.
- 5NF is also known as Project-join normal form (PJ/NF).

5NF Example

<u>EmpID</u>	<u>ProjectID</u>	<u>Skill</u>
101	A	Program
101	В	Design
102	В	Program

<u>EmpID</u>	ProjectID	Skill
101	A	Program
101	A	Design
101	B	Program
101	В	Design
102	В	Program

<u>EmpID</u>	<u>Skill</u>	1
101	Program	1
101	Design	
102	Program	

<u>EmpID</u>	ProjectID
101	A
101	В
102	В

Query Processing

Query Processing is the activity performed in extracting data from the database.

The steps involved are:

1. Parsing and translation

Queries get translated in high-level database languages such as SQL.

2. Optimization

It executes a given query by considering the possible query plans.

3. Evaluation

Translated relational algebra expression with the instructions used for specifying and evaluating each operation.

Syntax Analyzer

- A Syntax Analyzer create the syntactic structure.
- It is also called as parser.
- In parse tree, all terminals are leaves

EXAMPLE:

C = a + b * 5

Query Decomposition

- It transfers High-level query into a relational algebra query.
- It is correct way to retrieve data from the database.

Query Decomposition consists of 4 stage

- 1. Normalization: Query into normalized forms
- 2. Analysis: Detect and reject incorrect queries
- 3. Elimination of Redundancy: Eliminate repeated data
- 4. Rewriting: Transform query to RA

Thank You