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Properties of Hermitian, Skew — Hermitian & Unitary matrices

Hermitian matrix :

1. Principal diagonal elements of Hermitian matrices are always real.

2. Maximum number of real elements for the most general n x n Hermitian matrix is n.

3. If 4 i1s Hermitian matrix, the iA & - iA will be Anti-Hermitian.
4. If A is Hermitian matrix, kA will be Hermitian.

Skew — Hermitian matrix :

1. Principal diagonal elements of Skew-Hermitian are either zero or imaginary.

2. Maximum number of real elements for the most general
n x n Skew — Hermitian matrix is 0.

Unitary matrix :

1. Each row and column of an Unitary matrix is a normalized vector.
2. Any two rows or any two column of an Unitary matrix are orthogonal to each other.

3. If A & B are Unitary matrices then AB& BA will be always unitary.



Orthogonal
1. Det(4) = +1
2.AT = A1
3. Each row and column of an orthogonal matrix is a normalized vector.

4. Any two rows or any two column of an orthogonal matrices are orthogonal to each other.
5.1f A & B are orthogonal matrices then AB& BA will be always orthogonal.

Adjoint

1. (Adj A)A =A(Adj A) = |A]|I
2. If A is a square matrix of order n having determinant m then |Adj A| = m™!

Rank

. The rank of a null matrix is zero.
. The rank of a non-zero matrix is > 1.

1
2
3. The rank of any non-singular matrix of order n isn.
4

. The rank of a matrix that results from the product of two matrices cannot exceed the
rank of either of matrix.



Rank of a Matrix
Example 1: Find the rank of the following matrix

2 1 1
A=<0 3 0)
3 1 2

ANS |t js a square matrix. Find the determinant of it

2 1 1
Al=10 3 ol =2(6)-10)+(=9)=12-9 =0
3 1 2
Rank of matrix = 3
Example2:  Find the rank of the following matrix
6 1 3 8
4 2 6 -1
A= 10 3 9 7
Step 1 16 4 12 15
2 6 -1 4 6 -1 4 2 -1
Al= 6|3 9 7|-1|]10 9 7|+3[10 3 7|-8
4 12 15 16 12 15 16 4 15
=6( )—1( )+3()—8()
=0

|A| = 0 .~ The rank should be less than 4.

4 2 6
10 3 9
16 4 12




Step 2  Now consider are 3 x 3 matrices from A.

6 1 3 8
a4 2 6 -1
A=110 3 9 7
16 4 12 15

(]

6
a4

1
4
10
16
6
4

16

o
o=,

BN RPN W

|14;]=0, i=12,..,12

~ All determinants vanish.

Step 3

A =12—4 =8 %0

The determinant value is not zero.

1 3 6 1 8
6) A2=<4 2 —1>A3=<

3 9 10 3 7

6 4 2 -1

9>A5=<10 3 7>A6:<

12 16 4 15

3 6 1 8
6>A8= 4 2 -1 A9=<
12 16 4 15

4 12

4 12 15

. Rank of the given matrix = 2.

10 9 7

6 —1 6 3 8
15 16 12 15

1 3 8 6 3 8
26—1>A1o=46—1

3 9 7

2
3 8 4 6 -1
6 —1) Ay = <10 9 7)
16 12 15

. The rank should not be 3.

Now consider are 2 X 2 matrices from A.

m=(5 5) 2= §)

A= %)



Example 3 :

Find the rank of the matrix

1 -1 3 6
A= (1 3 -3 —4)
5 3 3 11

The given matrix is of the order 3 X 4. ( not a square matrix).

Hence Rank cannot be 4. The rank can b

Step 1

Consider are 3 x 3 matrices from A.

1 -1 3 1 3 6 —1 3 6
5 3 3 5 3 11 3 3 11

1A,] =1(9 + 9) + 1(3 + 15) + 3(3 — 15)

=18+18—-36 =0

1(=33 + 12) — 3(11 + 20) + 6(3 + 15)
= ~21-93+108 Rank is 3




Rank of the Matrix

Properties

(i) The rank of a null matrix is zero.

(ii) The rank of every non-zero matrix is > 1.
(iii) The rank of every n -square non-singular matrix is n.

(iv) (a) Therank of any m X n matrixis < m if m < n.
(b) Therank of any m x n matrixis<n if n < m.

(iv) The rank of a product of two matrices cannot exceed the rank of either of matrix,
that is

rank (AB) < rank (A); rank (AB) < rank (B)

10



Characteristic EQUATIONS, EIGENVALUES &

Eigenvectors

«» Consider the solutions of the homogeneous
system of algebraic equations

AX =AX
A IS an nxn matrix
(A—21)X =0

tells us that X 1s a solution of a homogeneous
system of equations with coefficient matrix (A-Al)

11



% Let P,(A) be the polynomial of degree ‘n’ in A
defined by the determinant

a -4 A, ..,
P () - a.21 a,, - Ao a.2n
. Y T . A

“* The polynomial P (A) Is called the characteristic

polynomial of A



* The associated polynomial equation P (A)=0
IS the characteristic equation of A

“» The characteristic equation of A Is of degree
nin A, itwill have ‘n’ roots. The roots are

called Eigenvalues.

< The set of all Eigenvalues A, , A, ... A, 0of Als
called the spectrum of A.

13



¢ An Eigenvector of an n x n matrix A corresponding
to an Eigenvalue A=A, Is a non zero n-element
column-vector X; that satisfy the matrix

AX. =A4. X,

| i i



Eigenvalues and Eigenvectors

Example 1 :

Find eigenvalues and normalized eigenvectors of the matrix

1 0 0
A=<0 1 1
0 1 1

Determination of Eigenvalues
Step1l Characteristic equation |[A—All =0

1 0 O 1 0 O
A—/’II:<0 1 1>—A 0 1 O)
0 1 1 0 0 1
1 0 O A 0 O 1—-4 0 0
={0 1 1]—{0 A O =< 0 1—2 1 )
0 1 1 0 0 A 0 1 1—2
1—2 0 0
|A — Al|l = 0 1—-4 1
0 1 1—2

A-A=0=>00-D[A-D?>-1]=1-D[1+22-22-1] =0
= 1-2DA?*=-21)=0
=(1-DAA-2)=0

Eigenvalues | 4, =0, A,=1, A3=2

15



Determination of Eigenvectors

Eigenvalue equation (A—ADX =0

1-4 0 0 x
( 0 1-4 1 ><y>=0
0 1 1-A/ \z

(i) Construction of Eigenvector for A, = 0

Substitute A; = 0 in the above equation and determine the value of (x,y,z). The associated
column matrix is called eigenvector forA; =0

Substituting A; = 0 in the above equation

1 0 0\ /x 0 x=0
(O 1 1)()/):(0) = y+z=0 = x=0 z=-Yy
0 1 1/ \z 0 y+z=0

Letuschoose y =1, =~ z=-1

()

Normalized Eigenvector

Eigenvector

1 0
X1=\/0+12+(—1)2=\/§ X1=_X1, Xl:\/_i< 1)



(ii) Construction of Eigenvector for 4, = 1

Substituting A, = 1 in the equation

1-2 0 0
<o 121 1 )(
0 1 1-1
0 0 O
G
0O 1 0

Letuschoose x =1

Eigenvector

o

Normalized Eigenvector

X, =412 402 +02 = 1

X
y

Z

X

y
Z

|

|

(

(

0
0
0

0
0
0

|

) =

z=20
y=0

} = x arbitrary.

17



(iii) Construction of Eigenvector for A;= 2

Substituting A;= 2 in the equation

1-4 0 0 X 0 —1
(0" =2 1 )(5)=(0) = (0
0 1 1-A/ \z 0 0

x=0 —y+z=0, y—z=0 = x=0, z=y=1

Normalized Eigenvector

Given matrix

Eigenvalues 1

Normalized Eigenvectors

=) ()

0
—1
1

0
1
—1

I

X

y
Z

(say)

|

(

18

0
0
0
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Example 2 :
Find eigenvalues and eigenvectors of

4= (cos@ — sin 0)
sin 6 cos 6

Characteristicequation : 32 _ 93 559 + 1 = 0

Eigenvalues (complex) : Al =cosO +isinf = et
/11=ei9 ) /12=e_i9

Eigenvectors (complex) :

Equation (cos@ —A)x —sinfy=0;

sinf x — (cosf@ —A)y =0;

= y=—Iix

(=cos€+isin9
@cos@—isin@

Eigenvectors

ax=1 y=-—i

= y=1Iix

cx=1 y=i

) w




Eigenvalues & Eigenvectors

1. Sum of the eigenvalues of a matrix is equal to trace of the matrix.

2. Product of the eigenvalues of a matrix = determinant.
3. Any square matrix A and its transpose have same eigenvalues.

4.1f A4, Ay, A3 are the eigenvalues of 4, then

(a) Eigenvalues of kA are kAq, kA,, kAs....

(b) Eigenvalues of the matrix A=! will be —,—,— ...
A Az A

(c) Eigenvalues of the matrix A™ will be AT, A%, ALY, ..
5. Eigenvalues of a real symmetric/ Hermitian matrix are always real.
6. Eigenvalues of a Skew-Hermitian matrix is either zero or pure imaginary.
7. Eigenvalues of real orthogonal matrix / unitary matrix are of unit modulus.

8. Eigenvalues of a diagonal / upper triangular / lower triangular matrix are the principal
diagonal.



Eigenvalues & Eigenvectors

9. Two eigenvectors corresponding to two distinct eigenvalues of Hermitian matrix and a
Unitary matrix are orthogonal to each other.

10. Eigenvalues of a nilpotent matrix are always zero.

11. Eigenvalues of an idempotent matrix are either O or unity.

12. Consider an x n matrix having all elements equal to 1. One of the eigenvalues of the
matrix will be equal to order of the matrix and all other eigenvalues are zero, that

n,0,0,0...

13. Considera n x n matrix having rows and columns which are scalar multiple
of a particular row & column respectively. One of the eigenvalues of the matrix
will be equal to the trace of the matrix and all eigenvalues are zero, (i.e.,) trace,0,0,0....



Cayley-Hamilton theorem

Statement

“Every square matrix satisfies Its own
characteristic equation”

CIf JA-21=(-D)"(A" +a A +a,A " +.....+a,)
be the characteristic polynomial of n x n matrix

A=a; , then the matrix equation,
X"+a X" +a, X" ... +a 1=0

Is satisfied by X = A l.e.

A" +a, A"t +a, A"+, +a, 1=0

22



Proof

< Since the elements of A — Al are at most of the
first degree in A, the elements of adj (A — Al) are
at most degree (n-1) in A. Thus, adj (A — Al) may
be written as a matrix polynomial in A, given by A,

adj (A—Al) =B, A1 +B,A"?+...+B_,

where B, B, ..., B, are nxn matrices, their
elements being polynomial in A



« Asweknowthat (A-Al)adj(A-Al1)=|A—Al1]l

(A—21) (B,A™ + B, A" +........ +B, )
=(-D" (A" +a A" +a,A" +.., +a,) |

“+ Equating coefficients of like powers of A on
both sides we get

—1B,=(-1)"I
AB,— 1B, =(-1)"a,l

AB,— 1B, =(-1)"a,l

A Bn—l — (_1)n an |



On multiplying the equation by A", A™1 .|
respectively and adding, we obtain

0=(-1)" (A" +a,A" " +a,A"* +.......... +a, )



Example

Verify the Cayley - Hamilton theorem for the matrix

4

26



Cayley — Hamilton theorem

Applications

Application 1 :Using Cayley-Hamilton theorem, we can find inverse of the given matrix.
1 2 0

Example : Prove that the matrix A = [ 2 —1 0 | satisfies its own eigenvalue equation
0O 0 1

and hence find A~1,

Answer: (i) Characteristic equation
A3 —A% =51 +5=0 (Homework)
(if) Check
A® —A*—-54 +51 =0 (Home work)

1
Inverse : I = g(—A3 + A% + 54)

1
Pre-multiplying this equation by A=, we obtain A~! = = (—A%+ A +51)

1(/-5 0 0 1 2 0 1 00 1/1 2 0
A‘1=§ 0 -5 0 |+(2 -1 0J+5(0 1 0)r=|2 -1 0 (HW)
0 0 -1 0 0 1 0 0 1 0 0 5



Application of Determinants

Cramer’s Rule

The solution of the following equations,
a1 X + by +cz=d;
a,x + b,y +c,z=d,
asx + b3y + c3z = dj

IS given by,

D d1 bl C1 aq bl
x =— wWwhere, D;=]|d, b, ¢, D=|a, b,
D d3 b3 C3 a3 b3

D aq dl C1

y = 32 where, D, =|a, d, ¢

as dsz 3

D a4 bl d1

7z =— where, D;=|a, b, d,

D as bz dj




Example : Solve the following system of equations using Cramer’s rule,
5x =7y +z =11, 6x — 8y —z =15, 3x+2y—6z=17.

5 -7 1
D=6 -8 —1|=55
3 2 -6
11 -7 1
D1:15 —8 —1:55
7 2 -6
5 11 1
D, =|6 15 —1|=-55
3.7 -6
5 -7 11
Dy=|6 -8 15| =-55
3.2 7
DsS_ o
*Tp T T YT 7T

Cross—Check: 5x—7y+z=11C—) 5(1)—-7(-1)+(-1) =5+7-1 =11
6x—8y—z=15 =) 6(1)—8(-1)—(-1) =6+8+1 =15
3x +2y—62=7 C——p 3(1)+2(-1)—6(-1) =3-2+6 =7



Diagonalisation of a Matrix

Theorem

If a square matrix A of order n has n linearly
Independent eigenvectors, then a matrix P
(composed of the eigenvectors of A) can be found

such that P-A P is a diagonal matrix

30



¢ Let us consider a matrix A of order 3

% Letd, Ay, Ay

d; dy d
b, b, b,
KN

oe Its elgenvalues and X, ,

X, , X, the corresponding eigenvectors

where
_ . _
Xi=| Y
Zq

X= 1 Y X3=| Y3




Construct the matrix P composed of the
eigenvectors of A

Whose columns are the eigenvectors of A

32



Consider the diagonal matrix of A

[A, 0 O
_ A A, and A, are the
b=10 Ay 0 eigenvalues of A
0 0 A

Then diagonalisation Is given by

AP=PD Since PP =
PLAP=P1PD
PIAP=D |

D is the Diagonal matrix

33



Example

et us consider the matrix A =

Eigenvectors of matrix A are

X, =| 1 | X=] -1




Hence the matrix P IS

0 O
P=11 -1
0 1

35



As we know that diagonal matrix D Is
given by
D=P'AP

1 1 1 1 0 O 0 0 -1




Remarks

O An n x n matrix can be diagonalized provided it
possesses ‘n’ linearly independent eigenvectors

O A symmetric matrix can always be diagonalized

O The diagonalizing matrix for a real n X n matrix A may
contain complex elements. This is because although the
characteristic polynomials of A has real coefficients, its
zeros either will be real or will occur in complex conjugate
pairs

O A diagonalizing matrix is not unique, because its form
depends on the order in which the eigenvectors are used to
form its columns



Application
Powers of a Matrix

We can obtain powers of a matrix with the help of diagonalized matrix.

Recall, @: p—1% Eigen;/e_)ctor
matrix

Diagonal Given
matrix matrix

o2 = By CREI D= 150
\/

D? = DD? = P~ 1 A@PDaZ p = PTIA3P

I
Diagonal matrix

D" = p-1gqnp raised to power n
PD™ = pp~ignp =4 P

pp"p~1 = A" PP~ = 4" I:> A" =®@ p-1

Eigenvector matrix

38



4 2
s =
V2

3
Step 1: Eigenvalues A, =1,2 (H.W)

Example: A= ,  Calculate 4°°

w|l ool w

Step 2: Eigenvector (‘/?) (\/15) (H.W)

73 V2 -1
2 1 9 a
Step 3: P = < ) -1 3 3
P 1 3 P . (H.W.)
3 3
. . (1 0
Step 4: Diagonal matrix (0 2) (H.W.)

Step 5: 4°0 = pp>0 p-1
V2 -1
:<\/§ 1>(150 0) 3 3 :1< 250 4 2 (250—1)\/§>(HW)
~1 2J\0 2 V2 3\(2°° —1)vV2 251 +1 o
3

39



Orthogonality of Eigenvectors

0O -1 0
Demonstration: Consider the matrix A = (—1 —1 1)

0 1 O
The Eigenvaluesare Ay =0,A, =1 and A3 = =2 (H.W.)
1 -1 1
The Eigenvectorsare  k; = 0) ko =1 1 ) and k5 = 2 (H.W.)
1 1 -1

Orthogonality

—1
/\ @ o 1) reamo
1

—1
KTk, 4 (1 0 1)< 1) =—-14+1=0

1
-1

40



Differentiation and Integration of matrix

Let then X 1 column vector

x(8) = [5,(0), @), ..., xy (O]"

x;(t) fori=1,2,..... n

Let m X n matrix

G(t) = [g;;(®)]

gij(t) withi=12,..... ,m andj=1.2,....,n.

Derivatives of x(t)and G(t)with respect to t are defined as

"dxq/dt
dx(t) _ |dx,/dt
dt :

dx,/dt]

41



dgqy/dt dgp/dt .. dgin/dt]
d6(t) _ |dgy /dt dga,/dt - dgap/dt
dt : : : :

A is constant matrix

th dA—O ] ticul dI—O
en —o = in particular o =

defintion of matrix multiplication

d[AG(t)] 4 dG(t)

dt dt




2
AGt(t)] and d“[AG(t)] it

Example : Find —

a=[, Flende =000 e

Solution :
d . da(@®) _ 11 -—-3][cost —sint
E[AG(@] =4 - [2 ] [sint cost
_ cost — 3sint —sint—3cost]
2cost —4sint —2sint+4cost
d? _d (d[AG[®)]\  d*G(b)
a2 61 = dt( dt > =4 4

_ [ —sint —3cost —cost+331nt]
—2sint +4cost —2cost—4sint],.



If G(t) and H(t) are conformable for addition, then

d _dG(t) dH (t)
E[G(t)+H(t)]— - T

Furthermore, If G(t) and H(t) are conformable for the product
G(t)H(t) , then

d ~daG(t) dH(t)
—[GOHB] =——=H{® +6(1)—




A less obvious result is that if G(t) is a nonsingular n X n matrix, then

dG—'(t) dG(t)
dt dt

—G~1(t) G~1(t)

Proof :

By differentiating the product G (¢)G 1 (t)

d ~ _dG() dG—1(t)
E[G(t)G L] =—G L) +G6() -

We Know that G(t)G~1(t) =1
d d
—_ -1 = — =
66O =—[11=0
From1land 2

dG(t) dG='(t)
— GL)+G() g7 =0

Rearranging the above equation

dG=1(t) _dG()
TR Ol el O




Example :

Solution:

dG~1(t)

Find l
dt f
G(t) = co§t sint
—sint cost
Dif ferentiate
sint cost
dG'(t)  [—sint —cost
then dt cost —sint
dG(t) [—sint —cost
dt —cost —sint

|



By simplifying the above expressions for G~ 1(t) and dG(t)/dt

dG=1(t) dG(t)
=—G1t)— G7(¢t
o ) — (t)
finally we get
dG_l(t): —sint —cost

dt cost —sint




Definition
If A(t) = [ai]-(t)] isanm X n matrix ,withi=1,2,. .., mandj=1,2,.....,n

Indefinite integral of the element in the 1 th row and j th column of A(t)
IS f all(t)dt

Indefinite integral of A(t) is

JA@®)dt = [[ a;;(8)dt]

Definite integral of A(t) between limitst=aandt=D

So that
b

fA(t)dt = Uabaij(t)dt ]

a




Example :

Solution :

So

Find A(t) dt if A(t) = | 25t CO”]

—3cost sint

_[-2cost+(C; sint+C,
JA@® de = —3sint + Cg —cost+C4]
_ | 2sint  cost
At) = —3cost sin t] te
C; C
c= |1 2] is an arbitary constant
(3 Gy



........................... !

THEOREM |

Let all the eigenvalues A4, ..... ,A, Of the n X n real matrix A
be real and distinct and E4,....,E, are eigenvectors belonging
to Aq,..., A, respectively. Then a general solution is

X(t) = cieME; + ...+ ce™E,,

c1,...,Cn being arbitrary constants,



Example:  To solve
x'y = x1 + 3x,

X5 =X — Xy

We compute the eigenvalues A,, 1, of the matrix
(1 3
A= (1 —1)

Corresponding eigenvectors belongingto A, =2, 1= -2 are Eq = (?1’)
E, = (_11) The general solution of this first order linear differential equation is

X0 = (20) = ae () +ee ()



which can be rewritten as
x1(t) = 3ce?t —cye”?t
x,(t) = cie?t +c2e7 %t

Homework

Solve the following systems of first order linear differential equations

1) xX'{=x;+6x, ; Xy = 5x; + 2x,
2) x1=x1— 2Xx, ; x's =x1— %,

3) X1 =X1 —Xo+4x3 ; X3 =3x;+ 2%, — X3 ; X3 =2X; + X, — X3



Find the general solution of the system of equations

Example :
P dx, N dx,
— =X Xy — = X, — X
dt 17 dt 2
Solution : Hint : x; (g) =1,x, (g) =2

. dx .
In matrix — = Ax, with x = [xq,x,]7

Where
A= [—11 1
The eigenvalues and eigenvectors of A are
AM=14+1, x1=[_1i:
A, =1-—1, X =[i




So as the vectors e™x; withi = 1,2 are linearly independent
solutions,

_ 1+t ;,(1-i)t
_ le le
P(t) = [ o (1+0)t e(l—i)t]

Thus the general solution x(t) = ¢(t)C becomes
A+t A=D1 [C
_ e e 1
x(t) = [ o (1D e(l—i)t] [CJ

B [—iC1€(1+i)t iCze(l_i)t]
C1€(1+i)t Cze(l—i)t

where C; and C, are complex numbers



LetussetC; = a+ib and C, = a — ib, then the general solution
becomes

x(t) = 2ae’ sint + 2be’ cos t]
2ae’ cost — 2be’sint

Both a and b are arbitrary constants, sowe set k; = 2a and
k, = 2b, then general solutions becomes,

x,(t) = et(kysint + k, cost) and x,(t) = et(kycost — k, sint)

To satisfy the initial conditions

T T T _
X1 (E) =1, X (E) =0, t = > in general solution



Initial condition x; (g) =1: 1=e"/?k, k; = e /2
Initial condition x, G) =2: 2 =—e™/2k, k, = —2eT/2

Then the solution of initial-value problem is found to be

TT

x,(t) = e(t_f) (sint —2cost)

n s
x,(t) = e(t_f) (cost + 2sint). where t = >



Example :

Solution :

Find the general solution of the following third-order differential
equation by converting it to a first-order system:

d’y d*y dy
—_ — O
dt3 T dt? T dt Ty

Introduce the two new dependent variables z, and z,, by setting

dy_

d*y dz;
dt B

dt2  dt

z; and Zy

Third order equation replaced by equivalent first-order system

dy dz;
dt v dt

Zy

%2tz 4y =0
ottty =



When written in matrix form, this system becomes

dZ_A

a2
Ly (t) ] 0 1 0
with z = |z.(t)], A=10 0 1
7, (t)) -1 -1 -1

The eigenvalues and eigenvectors of A are

1 —1
/11=_1;X1= [—1], /12=l ,x2=[—l]
1

1
—1

1



As the vectors e %itx; withi = 1,2,3 are solutions , a fundamental matrix is

[ ot _plt _e—it'
P(t) = [—e7t —jelt je7it
ot it o it
when the general solution becomes
y el —elt —e7i] [y
Zi[=-e"t —iet e | |C2
Zy _ et elt e~ it _ _C3_

Y(t) of the original third-order differential equation is needed

y(t) = Cie~t + Cre't + C34



C,, C3 are complex conjugates, so setting C, = a+ iband C3 =a — ib
and a and b are arbitrary constants.

It results
y(t) = Cie "+ 2bcost — 2bsint

Writing C, in place of 2a and C3 in place of — 2b, then the general solution is

y(t) = Cie P+ C,cost + C3sint

d?t

d
= and — by determination of y(t)

Solving for zq and z, will give — .



Spectral Decomposition

Suppose A = PDP~1 where the columns of P are orthonormal eigen

vectors uq ... ... ... u,.of A and the corresponding eigenvalues
Al e e A,, are in diagonal matrix D.
then P~ = pT
g
A 0 !
A=PDPT =[u; .. Uy lixn| & = ] :
0 /171 nxn |, I
n
] ) - Inx1
uj
— [/11u1 Anun]
U

Using the column-row expansion of a product , we can write
A= Nuul + Luul + . Au,ul

Spectral decomposition of A



Example:

3 1

A=13.

[ts eigenvalues are A = 2,4 and the corresponding unit vectors are

1 1

u1 — \/21 and uz — \QZ

V2 V2

Therefore,

i T 1 1
T _ V2 2 2
e I [xfz xle 1 1
V2. .2 2




And

So

3 1] _
1 3 1

is the spectral decomposition of A.

+ 4

N =N -

N — N -

SRl e

el i B




Example : Construct a spectral decomposition of the matrix A that has the
orthogonal diagonalization.

7 o [2/\/5 1/ \/5] [8 0 [2/\/5 1/ \/5]
A=1y d 7 liss  2s 15 2/45
Solution : Denote the columns of P by u, and u,.

A=8u;ul + 3u,ul
To verify this decomposition of A, compute

wt = e =
- |1/v5] |V5 5

4/5 —2/5
2/5 1/5




ol = [—1/\/5] [—1 2]
2 2/V5 | [V5 V5

. [1/5 —2/5
~ |-2/5 4/5
and
Suul + 3u,ul = 32/5 16/5 n [3/5 —6/5
16/5 8/5 —6/5 12/5
_ [7 2
2 4

|
.S



Homework

1)  Write the spectral decomposition A = PDP* if

3 -2 4 6 —2 -1
a) A= -2 6 2 b) A=|-2 6 -1
4 2 3 -1 -1 §

i)  Classify (positive definite, negative definite , or indefinite, etc ) the
quadratic form q(x) = x*Ax if A =



' THEOREM !

= J

A quadratic form g(x) = x*Ax with A symmetric is

I. positive definite if and only if all the eigenvalues of A are positive.

1. negative definite if and only if all the eigenvalues of A are negative.

1. indefinite if and only if neither 1) nor ii) holds.
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