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UNIT - III

MATRICES
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Matrices

Matrices

Types

(1)  Square (2)  Diagonal 

(3)  Scalar (same diagonal 

elements)

(5)  Null 

(6) Upper & 

Lower triangles
(7) Periodic (A𝑘†

= A, 
 k =periodic)

(9) Nilpotent (A𝑝 = 0, 
𝑝 = index ) 
(Trace & determinant 

always zero)

(10)   Involutory 

(A2 = 𝐼)

(11)   Adjoint



Matrices

Real Complex

Further Types

Symmetric 

(A𝑇 = A)
Anti-Symmetric 

(A𝑇 = -A)
Orthogonal 

(A𝑇 A = 𝐼)
Hermitian 

(A† = A)
Skew -Hermitian 

(A† = A)
Unitary 

(A† A = 𝐼)
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1. Principal diagonal elements of Hermitian matrices are always real.

2. Maximum number of real elements for the most general 𝑛 × 𝑛 Hermitian matrix is 𝑛.

1. Principal diagonal elements of  Skew-Hermitian are either zero or imaginary.

2. Maximum number of real elements for the most general 

 𝑛 × 𝑛 Skew – Hermitian matrix is 0.

3. If 𝐴 is Hermitian matrix,  the  𝑖𝐴  & - 𝑖𝐴 will be  Anti-Hermitian.

4. If 𝐴 is Hermitian matrix, 𝑘𝐴 will be Hermitian.

1. Each row and column of an Unitary matrix is a normalized vector.

2. Any two rows or any two column of an Unitary matrix are orthogonal to each other.

3. If 𝐴 & 𝐵  are Unitary matrices then 𝐴𝐵& 𝐵𝐴 will be always unitary. 
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Properties  of  Hermitian,  Skew – Hermitian & Unitary matrices 

Hermitian matrix :

Skew – Hermitian matrix :

Unitary matrix :
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Orthogonal

1. Det(𝐴) =  ± 1

2. 𝐴𝑇 =  𝐴−1

3. Each row and column of an orthogonal matrix is a normalized vector.

4. Any two rows or any two column of an orthogonal matrices are orthogonal to each other.

5. If 𝐴 & 𝐵  are orthogonal matrices  then 𝐴𝐵& 𝐵𝐴 will be always orthogonal. 

Adjoint 

1. (𝐴𝑑𝑗 𝐴) 𝐴  = 𝐴 (𝐴𝑑𝑗 𝐴)  =  | 𝐴 | 𝐼

2. If 𝐴 is a square matrix of order 𝑛 having determinant 𝑚 then 𝐴𝑑𝑗 𝐴 =  𝑚𝑛−1 

Rank 

1. The rank of  a null matrix is zero.

2.  The rank of  a non-zero matrix is ≥ 1.

3.  The rank of  any non-singular matrix of order  𝑛  is 𝑛 .

4.  The rank of a matrix that results from the product of two matrices cannot exceed the  

     rank of either of matrix.



Rank of a Matrix
Example 1 :  Find the rank of the following matrix  

𝐴 =
2 1 1
0 3 0
3 1 2

Ans It is a square matrix. Find the determinant of it  

𝐴 =
2 1 1
0 3 0
3 1 2

= 2 6 − 1 0 + (−9) = 12 − 9 ≠ 0

Rank of  matrix = 3 

Find the rank of the following matrix  

𝐴 =

6 1 3
4 2 6

10
16

3
4

9
12

 

8
−1
7

15

Example 2 :  

Step 1  

𝐴 =

= 6( ) − 1( ) + 3( ) − 8( )

= 0

𝐴 = 0 ∴ The rank should be less than 4. 

6
2 6 −1
3 9  7
4 12 15

−1
4 6 −1

10 9  7
16 12 15

+3
4 2 −1

10 3  7
16 4 15

−8
4 2 6

10 3 9
16 4 12
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𝐴𝑖 = 0, 𝑖 = 1,2, … , 12

∴ All determinants  vanish. ∴ The rank should not be 3. 

Step 3  Now consider are 2 × 2 matrices from 𝐴. 

𝐴1 =
6 1
4 2

, 𝐴2 =
6 3
4 6

, 𝐴3 =
6  8
4 −1

… … … ,

𝐴1 = 12 − 4 = 8 ≠ 0

The determinant value is not zero.

∴ Rank of the given matrix = 2. 

Step 2  Now consider are 3 × 3 matrices from 𝐴. 

𝐴1 =
6 1 3
4 2 6

10 3 9

𝐴2 =
6 1  8
4 2 −1

10 3  7
𝐴3 =

1 3  8
2 6 −1
3 9  7

𝐴10 =
6 3  8
4 6 −1

10 9  7

𝐴4 =
4 2 6

10 3 9
16 4  12

𝐴5 =
4 2 −1

10 3  7
16 4  15

𝐴6 =
2 6 −1
3 9  7
4 12  15

𝐴11 =
6 3 8

10 9  7
16 12  15

𝐴7 =
6 1 3
4 2 6

16 4  12

𝐴8 =
6 1  8
4 2 −1

16 4  15
𝐴9 =

1 3  8
2 6 −1
4 12  15

𝐴12 =
4 6 −1

10 9  7
16 12  15

𝐴 =

6 1 3
4 2 6

10
16

3
4

9
12

 

8
−1
7

15

8



Step 1  

Consider  are 3 × 3 matrices from 𝐴. 

𝐴1 =
1 −1  3
1  3 −3
5  3  3

𝐴2 =
1  3  6
1 −3 −4
5  3  11

𝐴3 =
−1  3  6
 3 −3 −4
 3  3  11

𝐴1 = 1 9 + 9 + 1 3 + 15 + 3(3 − 15)

= 18 + 18 − 36 = 0

𝐴2 = 1 −33 + 12 − 3 11 + 20 + 6(3 + 15)

= −21 − 93 + 108 ≠ 0
Rank is  3 

Hence Rank cannot be 4. The rank can be 𝟑 or 𝟐 or  𝟏.

The given matrix is of the order  3 × 4. ( not a square matrix). 

𝐴 =
1 −1  3
1  3 −3
5  3  3

 
6

−4
 11

Find the rank of the matrix  

Example 3 :  
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Rank of the Matrix
Properties

𝑖  The rank of  a null matrix is zero.

𝑖𝑖  The rank of  every non-zero matrix is ≥ 1.

𝑖𝑖𝑖   The rank of  every 𝑛 -square non-singular matrix is 𝑛.

𝑖𝑣 𝑎  The rank of  any  𝑚 × 𝑛 matrix is ≤ 𝑚 if  𝑚 ≤ 𝑛.

𝑏  The rank of  any  𝑚 × 𝑛 matrix is ≤ 𝑛 if  𝑛 ≤ 𝑚.

𝑖𝑣   The rank of a product of two matrices cannot exceed the  rank of either of matrix,        

         that is    

            rank (AB) ≤  rank A ; rank (AB) ≤  rank B

10



Characteristic EQUATIONS, EIGENVALUES & 

Eigenvectors

❖ Consider the solutions of the homogeneous      

     system of algebraic equations

AX X=

A is an nxn matrix

( ) 0A I X− =

tells us that X is a solution of a homogeneous 

system of equations with coefficient matrix (A-λI)
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❖ Let Pn(λ) be the polynomial of degree ‘n’ in λ 

    defined by the determinant 

11 12 1

21 22 2

1 2

...

...
( )

...

n

n

n

n n nn

a a a

a a a
P

a a a








−

−
=

−

❖ The polynomial Pn(λ) is called the characteristic 

     polynomial of A  
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❖ The characteristic equation of A is of degree  

    n in λ, it will have ‘n’ roots. The roots are 

    called Eigenvalues.

❖ The associated polynomial equation Pn(λ)=0 

     is the characteristic equation of A

❖ The set of all Eigenvalues λ1 , λ2 … λn of A is 

     called the spectrum of A.
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❖ An Eigenvector of an n x n matrix A  corresponding 

     to an Eigenvalue λ=λj is a non zero n-element 

     column-vector Xi, that satisfy the matrix        

i j iAX X=

14



Eigenvalues  and  Eigenvectors
Example 1 :  

Find eigenvalues and normalized eigenvectors of the matrix  

𝐴 =
1 0 0
0 1 1
0 1 1

Determination of Eigenvalues

Step 1  Characteristic equation 𝐴 − 𝜆Ι = 0

1 0 0
0 1 1
0 1 1

=
1 0 0
0 1 1
0 1 1

=
1 − 𝜆 0 0

0 1 − 𝜆 1
0 1 1 − 𝜆

𝐴 − 𝜆Ι =

𝐴 − 𝜆Ι = 0 ⟹ 1 − 𝜆 1 − 𝜆 2 − 1

= 1 − 𝜆 𝜆2 − 2𝜆 = 0

= 1 − 𝜆  𝜆 𝜆 − 2 = 0

Eigenvalues 𝜆1 = 0, 𝜆2 = 1, 𝜆3 = 2

−𝜆
1 0 0
0 1 0
0 0 1

−
𝜆 0 0
0 𝜆 0
0 0 𝜆

1 − 𝜆 0 0
0 1 − 𝜆 1
0 1 1 − 𝜆

𝐴 − 𝜆Ι =

= 1 − 𝜆 1 + 𝜆2 − 2𝜆 − 1 = 0
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Determination of Eigenvectors

Eigenvalue equation 𝐴 − 𝜆Ι Χ = 0

1 − 𝜆 0 0
0 1 − 𝜆 1
0 1 1 − 𝜆

𝑥
𝑦
𝑧

= 0

𝒊  Construction of Eigenvector for 𝝀𝟏 = 𝟎 

Substitute λ1 = 0 in the above equation and determine the value of (x, y, z).  The associated        

   column matrix is called eigenvector  for λ1 = 0 

Substituting λ1= 0 in the above equation

1 0 0
0 1 1
0 1 1

𝑥
𝑦
𝑧

=
0
0
0

⟹  ቑ
 𝑥 = 0
𝑦 + 𝑧 = 0
𝑦 + 𝑧 = 0

 ⟹ 𝑥 = 0, 𝑧 = −𝑦

Let us choose 𝑦 = 1, ∴  𝑧 = −1

Eigenvector

Χ1 =
 0
 1
−1

Normalized Eigenvector

Χ1 =
1

Χ1
 . Χ1 ;Χ1 = 0 + 12 + −1 2 = 2 Χ1 =

1

2

 0
 1
−116



𝒊𝒊  Construction of Eigenvector for 𝝀𝟏 = 𝟏 

Substituting λ2= 1 in the equation

1 − 𝜆 0 0
0 1 − 𝜆 1
0 1 1 − 𝜆

𝑥
𝑦
𝑧

=
0
0
0

0 0 0
0 0 1
0 1 0

𝑥
𝑦
𝑧

=
0
0
0

⟹ ൠ
 𝑧 = 0 
𝑦 = 0 ⟹ 𝑥 arbitrary.

Let us choose 𝑥 = 1

Eigenvector

Χ2 =
1
0
0

Normalized Eigenvector

Χ2 = 12 + 02 + 02 = 1

Χ2 =
1

Χ2
 . Χ2 ;

Χ2 =
1
0
0 17



Normalized Eigenvector

Χ3 =
1

2

0
1
1

Given matrix

1 0 0
0 1 1
0 1 1

Eigenvalues 𝜆 =  0, 1, 2

Normalized Eigenvectors

1

2

 0
 1
−1

,
1
0
0

,
1

2

0
1
1

(say)𝑧 = 𝑦 = 1𝑥 = 0,⟹𝑦 − 𝑧 = 0−𝑦 + 𝑧 = 0,𝑥 = 0,

−1  0  0
 0 −1  1
 0  1 −1

𝑥
𝑦
𝑧

=
0
0
0

⟹
1 − 𝜆 0 0

0 1 − 𝜆 1
0 1 1 − 𝜆

𝑥
𝑦
𝑧

=
0
0
0

Substituting λ3= 2 in the equation

𝒊𝒊𝒊  Construction of Eigenvector for 𝝀𝟑= 𝟐 
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Eigenvalues (complex) : 𝜆 = cos 𝜃 ± 𝑖 sin 𝜃 = 𝑒±𝑖𝜃

𝜆1 = 𝑒𝑖𝜃 ; 𝜆2 = 𝑒−𝑖𝜃

Eigenvectors (complex) :

Equation cos 𝜃 − 𝜆 𝑥 − sin 𝜃 𝑦 = 0 ;

sin 𝜃 𝑥 − cos 𝜃 − 𝜆 𝑦 = 0 ;

𝜆1 = cos 𝜃 + 𝑖 sin 𝜃 ⟹  𝑦 = −𝑖𝑥 

∴ 𝑥 = 1 𝑦 = −𝑖

𝜆1 = cos 𝜃 − 𝑖 sin 𝜃 ⟹  𝑦 = 𝑖𝑥 

∴ 𝑥 = 1 𝑦 = 𝑖

Eigenvectors

 1
−𝑖

,
1
𝑖

 

𝜆2 − 2𝜆 cos 𝜃 + 1 = 0Characteristic equation :

𝐴 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

Find eigenvalues and eigenvectors of

Example 2 :  
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Eigenvalues & Eigenvectors

1. Sum of the eigenvalues of a matrix is equal to trace of the matrix.

2. Product of the eigenvalues of a matrix = determinant. 

3. Any square matrix 𝐴 and its transpose have same eigenvalues. 

4. If  λ𝟏, λ𝟐, λ𝟑 are the eigenvalues of 𝐴, then 

(a) Eigenvalues  of  𝑘𝐴 are 𝑘λ𝟏, 𝑘λ𝟐, 𝑘λ𝟑….

(b) Eigenvalues  of  the  matrix  𝐴−1 will be  
1

λ𝟏
,

1

λ𝟐
,

1

λ𝟑
… 

(c) Eigenvalues  of  the  matrix  𝐴𝑚 will be λ1
𝑚, λ2

𝑚, λ3
𝑚…

5. Eigenvalues of a real symmetric/ Hermitian  matrix are always real.

6. Eigenvalues of a Skew-Hermitian matrix is either  zero or pure  imaginary.

7. Eigenvalues of  real orthogonal matrix / unitary  matrix are of unit modulus.

8. Eigenvalues of  a diagonal / upper  triangular / lower  triangular matrix  are the principal 

diagonal.
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9. Two eigenvectors corresponding to two distinct eigenvalues of  Hermitian matrix  and a               

      Unitary  matrix  are orthogonal to each other.

10.    Eigenvalues of  a nilpotent  matrix are always zero. 

11.    Eigenvalues of  an  idempotent  matrix  are either 0 or unity.

12.    Consider a 𝑛 × 𝑛  matrix having all elements equal to  1. One of the eigenvalues of the    

         matrix will be equal to order of  the matrix and  all  other eigenvalues are zero, that    

         𝑛,0,0,0…

13.    Consider a  𝑛 × 𝑛  matrix  having rows  and  columns which are scalar multiple 

         of a particular row & column respectively. One of the eigenvalues of the matrix 

         will be equal to the trace of the matrix and all eigenvalues are zero, (i.e.,) trace,0,0,0….

21
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Statement 

“Every square matrix satisfies its own 

characteristic equation”

is satisfied by X = A   i.e.

Cayley-Hamilton theorem

❖ If

    be the characteristic polynomial of n x n matrix 

    A = aij , then the matrix equation,

)......()1( 2

2

1

1 n

nnnn aaaIA ++++−=− −− 

0...........2

2

1

1 =++++ −− IaXaXaX n

nnn

0............2

2

1

1 =++++ −− IaAaAaA n

nnn
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Proof 

❖ Since the elements of A – λI are at most of the 

    first degree in λ, the elements of adj (A – λI) are 

    at most degree (n-1) in λ. Thus, adj (A – λI) may 

    be written as a matrix polynomial in λ, given by λ, 

adj (A – λI) = B0 λ
n-1 + B2 λn-2 + . . . + Bn-1 

where B0, B1, . . . , Bn-1 are n x n matrices, their 

elements being polynomial in λ

23



❖ Equating coefficients of like powers of λ on 

    both sides we get 

❖  As we know that IIAIAadjIA  −=−− )()(

Iaaa

BBBIA

n

nnnn

n

nn

)........()1(

)........()(

2

2

1

1

1

2

2

1

0

++++−=

+++−

−−

−

−−





IBI n)1(0 −=−

IaBIBA n

110 )1(−=−

IaBIBA n

221 )1(−=−



IaBA n

n

n )1(1 −=−
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On multiplying the equation by An , An-1 , . . . , I 
respectively and adding, we obtain 

Proved 

)............()1(0 2

2

1

1 IaAaAaA n

nnnn ++++−= −−

0)............( 2

2

1

1 =++++ −− IaAaAaA n

nnn
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Example 

Verify the Cayley - Hamilton theorem for the matrix

2 1

5 2
A

 
=  
 

Characteristic polynomial 2( ) 4 1P   = − −
2( ) 4P A A A I= − −

9 4 2 1 1 0
( ) 4

20 9 5 2 0 1
P A

     
= − −     
     

0 0

0 0

 
=  
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Cayley – Hamilton theorem

Applications

Application  1 :  Using Cayley-Hamilton theorem, we can find inverse of the given matrix.

Example : Prove that the matrix 𝐴 =
1 2 0
2 −1 0
0 0 1

 satisfies its own eigenvalue equation 

and hence find 𝐴−1.

3 − 2 − 5 + 5 = 0

Answer: (i) Characteristic equation

( Home work )

(ii) Check
( Home work )

Inverse : 𝐼 =
1

5
(−𝐴3 + 𝐴2 + 5𝐴 )

𝐴3 − 𝐴2 − 5𝐴 + 5𝐼 = 0

Pre-multiplying this equation by 𝐴−1, we obtain 𝐴−1 =
1

5
(−𝐴2 + 𝐴 + 5𝐼 )

𝐴−1 =
1

5

−5 0 0
0 −5 0
0 0 −1

+
1 2 0
2 −1 0
0 0 1

+ 5
1 0 0
0 1 0
0 0 1

=
1

5

1 2 0
2 −1 0
0 0 5

( H.W.)
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Application of Determinants

Cramer’s Rule

The solution of the following equations,

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

is given by,

𝑥 =
𝐷1

𝐷
where, 𝐷1 =

𝑑1 𝑏1 𝑐1

𝑑2 𝑏2 𝑐2

𝑑3 𝑏3 𝑐3

, 𝐷 =

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

𝑦 =
𝐷2

𝐷
where, 𝐷2 =

𝑎1 𝑑1 𝑐1

𝑎2 𝑑2 𝑐2

𝑎3 𝑑3 𝑐3

𝑧 =
𝐷3

𝐷
where, 𝐷3 =

𝑎1 𝑏1 𝑑1

𝑎2 𝑏2 𝑑2

𝑎3 𝑏3 𝑑3

28



Example : Solve the following system of equations using Cramer’s rule,

5𝑥 − 7𝑦 + 𝑧 = 11, 6𝑥 − 8𝑦 − 𝑧 = 15, 3𝑥 + 2𝑦 − 6𝑧 = 7.

𝐷 =
5 −7  1
6 −8 −1
3 2 −6

= 55

𝐷1 =
11 −7  1
15 −8 −1
7 2 −6

= 55

𝐷2 =
5 11  1
6 15 −1
3 7 −6

= −55

𝐷3 =
5 −7 11
6 −8 15
3 2 7

= −55

𝑥 =
𝐷1

𝐷
=

55

55
= 1, 𝑦 = −1, 𝑧 = −1

5 1 − 7 −1 + −1

6(1) − 8(−1) − (−1)

3(1) + 2(−1) − 6(−1)

= 5 + 7 − 1 = 11

= 6 + 8 + 1

= 3 − 2 + 6

= 15

= 7

Cross – Check: 5𝑥 − 7𝑦 + 𝑧 = 11

6𝑥 − 8𝑦 − 𝑧 = 15

3𝑥 + 2𝑦 − 6𝑧 = 7 29



Theorem

If a square matrix A of order n has n linearly 

independent  eigenvectors,  then  a matrix P 

(composed of the eigenvectors of A)  can be found 

such that  P-1A P is a diagonal matrix

Diagonalisation of a Matrix

30



❖ Let us consider a matrix A of order 3

A = 

a1 a2 a3

b1 b2 b3

c1 c2 c3

❖ Let λ1 , λ2 , λ3 be its eigenvalues and X1 , 

    X2 , X3  the corresponding  eigenvectors

where

X1 = 

x1

y1

z1

X2= 

x2

y2

z2

X3 = 

x3

y3

z3
31



P = 

x1 x2 x3

y1 y2 y3

z1 z2 z3

Whose columns are the eigenvectors of A

Construct the matrix P composed of the 

eigenvectors of A

32



Consider the diagonal matrix of  A 

D = 

λ1 0 0

0 λ2 0

0 0 λ3

D is the Diagonal matrix

λ1, λ2 and λ3 are the 

eigenvalues of A

Then diagonalisation is given by

A P = P D

P-1 A P = P-1 P D

P-1 A P = D

Since P-1 P = I

33



Example

Let us consider the matrix A =

1 0 0

0 3 1

2 0 2

X1 = 

0

1

0

X2= 

0

-1

1

X3 = 

-1

-1

2

Eigenvectors of matrix A are

34



Hence the matrix P is 

0

1

0

0

-1

1

-1

-1

2

P =

Inverse of matrix P is given by

P-1 =

1

2

-1

1

0

0

1

1

0

35



As we know that diagonal matrix D is 

given by

D = P
-1

 A P 

1

2

-1

1

0

0

1

1

0

D =

0

1

0

0

-1

1

-1

-1

2

1 0 0

0 3 1

2 0 2

D =

3

0

0

0

2

0

0

0

1
36



Remarks

An n x n matrix can be diagonalized provided it 

possesses ‘n’ linearly independent eigenvectors

o 

A symmetric matrix can always be diagonalizedo 

The diagonalizing matrix for a real n x n matrix A may 

contain complex elements. This is because although the 

characteristic polynomials of A has real coefficients, its 

zeros either will be real or will occur in complex conjugate 

pairs

o 

A diagonalizing matrix is not unique, because its form 

depends on the order in which the eigenvectors are used to 

form its columns

o 
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Application

Powers of a Matrix

We can obtain powers of a matrix with the help of diagonalized matrix.

Recall, 𝐷 = 𝑃−1 𝐴 𝑃

Diagonal 

matrix

Given 

matrix

Eigenvector 

matrix

𝐷2 = 𝐷𝐷 = 𝑃−1 𝐴 𝑃𝑃−1 𝐴 𝑃

𝐼

= 𝑃−1𝐴2 𝑃

𝐷3 = 𝐷𝐷2 = 𝑃−1 𝐴 𝑃𝑃−1 𝐴2 𝑃

𝐼

= 𝑃−1𝐴3 𝑃

. . . . . .

𝐷𝑛 = 𝑃−1𝐴𝑛 𝑃

𝑃𝐷𝑛 = 𝑃𝑃−1𝐴𝑛 𝑃 = 𝐴𝑛 𝑃

𝑃𝐷𝑛𝑃−1 = 𝐴𝑛 𝑃𝑃−1 = 𝐴𝑛 𝐴𝑛 = 𝑃 𝐷𝑛 𝑃−1

Diagonal matrix 

raised to power n

Eigenvector matrix
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𝐴 =

4

3

2

3

2

3

5

3

 , Calculate 𝐴50Example :

Step 1:

Step 2:

Step 4:

Step 5:

Eigenvalues 1 = 1, 2 ( H.W.)

Eigenvector 2
−1 

1

2 ( H.W.)

Diagonal matrix
1 0
0 2

( H.W.)

Step 3: 𝑃 = 2 1

−1 2
𝑃−1 =

2

3

−1

3

1

3

2

3

( H.W.)

𝐴50 = 𝑃𝐷50 𝑃−1

= 2 1

−1 2

150 0
0 250

2

3

−1

3

1

3

2

3

=
1

3

250 + 2 (250 − 1) 2

(250 − 1) 2 251 + 1
( H.W.)
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Orthogonality of Eigenvectors

Demonstration: Consider the matrix 𝐴 =
0 −1 0

−1 −1 1
0 1 0

The Eigenvalues are 1 = 0, 2 = 1 𝑎𝑛𝑑 3 = −2

The Eigenvectors are 𝑘1 =
1
0
1

, 𝑘2 =
−1
 1
 1

𝑎𝑛𝑑 𝑘3 =
 1
 2
 −1

( H.W.)

( H.W.)

1 0 1
−1
 1
 1

1 0 1
−1
 1
 1

−1 1 1
 1
 2
 −1

𝑘1
𝑇𝑘2 =

𝑘1
𝑇𝑘2 =

𝑘2
𝑇𝑘3 =

= −1 + 1 = 0

= −1 + 1 = 0

= −1 + 2 − 1 = 0

Orthogonality
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Differentiation and Integration of matrix

𝐿𝑒𝑡 𝑡ℎ𝑒 𝒏 × 𝟏 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑥 𝑡 = 𝑥1 𝑡 , 𝑥2 𝑡 , . . . , 𝑥𝑛 𝑡 𝑇

𝑥𝑖 𝑡  𝑓𝑜𝑟 𝒊 = 𝟏, 𝟐, . . . . . , 𝒏

𝐿𝑒𝑡 𝒎 × 𝒏 𝑚𝑎𝑡𝑟𝑖𝑥

𝐺 𝑡 = 𝑔𝑖𝑗 𝑡

𝑔𝑖𝑗 𝑡  𝑤𝑖𝑡ℎ 𝑖 = 1,2, . . . . . , 𝑚 𝑎𝑛𝑑 𝑗 = 1,2, . . . . , 𝑛.

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑜𝑓 𝒙 𝒕 𝑎𝑛𝑑 𝑮 𝒕 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝒕 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠

𝑑𝑥 𝑡

𝑑𝑡
=  

𝑑𝑥1/𝑑𝑡
𝑑𝑥2/𝑑𝑡

⋮
𝑑𝑥𝑛/𝑑𝑡
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𝑑𝑮 𝑡

𝑑𝑡
=

𝑑𝑔11/𝑑𝑡
𝑑𝑔21/𝑑𝑡

⋮

𝑑𝑔2/𝑑𝑡
𝑑𝑔22/𝑑𝑡

⋮
𝑑𝑔𝑚1/𝑑𝑡 𝑑𝑔𝑚2/𝑑𝑡

 

…
…
⋮

… 

𝑑𝑔1𝑛/𝑑𝑡
𝑑𝑔2𝑛/𝑑𝑡

⋮
𝑑𝑔𝑚𝑛/𝑑𝑡

𝑨 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

𝑡ℎ𝑒𝑛
𝒅𝑨

𝒅𝒕
= 0 𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟

𝒅𝑰

𝒅𝒕
= 0

𝑑𝑒𝑓𝑖𝑛𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

𝑑 𝑨𝑮 𝒕

𝑑𝑡
= 𝑨

𝑑𝑮 𝑡

𝑑𝑡
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Find 
𝑑 𝐴𝐺 𝑡

𝑑𝑡
 and 

𝑑2 𝐴𝐺 𝑡

𝑑𝑡2  if 

𝐴 =
1 −3
2 4

 and 𝐺 =
sin 𝑡 cos 𝑡

− caos 𝑡 sin 𝑡

Solution : 
𝒅

𝒅𝒕
𝑨𝑮 𝒕 = 𝑨

𝒅𝑮 𝒕

𝐝𝐭
=

1 −3
2 4

cos 𝑡 − sin 𝑡
sin 𝑡 cos 𝑡

=
cos 𝑡 − 3 sin 𝑡 − sin 𝑡 − 3 cos 𝑡

2 cos 𝑡 − 4 sin 𝑡 −2 sin 𝑡 + 4 cos 𝑡

𝒅𝟐

𝒅𝒕𝟐
𝑨𝑮 𝒕 =

𝒅

𝒅𝒕

𝒅 𝑨𝑮 𝒕

𝒅𝒕
= 𝑨

𝒅𝟐𝑮 𝒕

𝐝𝐭𝟐

=
− sin 𝑡 − 3 cos 𝑡 − cos 𝑡 + 3 sin 𝑡
−2 sin 𝑡 + 4 cos 𝑡 −2 cos 𝑡 − 4 sin 𝑡

Example : 
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𝑑

𝑑𝑡
𝐺 𝑡 + 𝐻 𝑡 =

𝑑𝐺 𝑡

𝑑𝑡
+

𝑑𝐻 𝑡

𝑑𝑡

If 𝐺 𝑡  and H(𝑡) are conformable for addition, then

Furthermore, If 𝐺 𝑡  and H(𝑡) are conformable for the product 

𝐺 𝑡 𝐻 𝑡  , then

𝑑

𝑑𝑡
𝐺 𝑡 𝐻 𝑡 =

𝑑𝐺 𝑡

𝑑𝑡
𝐻 𝑡 + 𝐺 𝑡

𝑑𝐻 𝑡

𝑑𝑡
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Proof :

A less obvious result is that if 𝐺 𝑡  is a nonsingular 𝑛 × 𝑛 matrix, then

𝑑𝐺−1 𝑡

𝑑𝑡
= −𝐺−1 𝑡

𝑑𝐺 𝑡

𝑑𝑡
𝐺−1 𝑡

By differentiating the product 𝐺 𝑡 𝐺−1 𝑡

𝑑

𝑑𝑡
𝐺 𝑡 𝐺−1 𝑡 =

𝑑𝐺 𝑡

𝑑𝑡
𝐺−1 𝑡 + 𝐺 𝑡

𝑑𝐺−1 𝑡

𝑑𝑡

We Know that 𝐺 𝑡 𝐺−1 𝑡 = 𝐼 

𝑑

𝑑𝑡
𝐺 𝑡 𝐺−1 𝑡 =

𝑑

𝑑𝑡
𝐼 = 0 2

From 1 and 2

𝑑𝐺 𝑡

𝑑𝑡
𝐺−1 𝑡 + 𝐺 𝑡

𝑑𝐺−1 𝑡

𝑑𝑡
= 0

Rearranging the above equation

𝑑𝐺−1 𝑡

𝑑𝑡
= −𝐺−1 𝑡

𝑑𝐺 𝑡

𝑑𝑡
𝐺−1 𝑡

1

45



Example : 𝐹𝑖𝑛𝑑
𝑑𝐺−1 𝑡

𝑑𝑡
 𝑖𝑓 

𝐺 𝑡 =  
cos 𝑡 sin 𝑡

− sin 𝑡 cos 𝑡

Solution : 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 

 𝐺−1 𝑡 =  
cos 𝑡 − sin 𝑡
sin 𝑡 cos 𝑡

𝑑𝐺−1 𝑡

𝑑𝑡
=  

− sin 𝑡 − cos 𝑡
cos 𝑡 − sin 𝑡

𝑡ℎ𝑒𝑛

𝑑𝐺(𝑡)

𝑑𝑡
=

− sin 𝑡 − cos 𝑡
−cos 𝑡 − sin 𝑡

Example : 
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𝐵𝑦 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑮−𝟏 𝒕  𝑎𝑛𝑑 𝑑𝑮(𝑡)/𝑑𝑡

𝑑𝐺−1 𝑡

𝑑𝑡
 = −𝐺−1 𝑡

𝑑𝐺 𝑡

𝑑𝑡
 𝐺−1(𝑡)

𝑓𝑖𝑛𝑎𝑙𝑙𝑦 𝑤𝑒 𝑔𝑒𝑡

𝑑𝐺−1 𝑡

𝑑𝑡
=

− sin 𝑡 − cos 𝑡
cos 𝑡 − sin 𝑡
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Definition 

If 𝑨 𝒕 = 𝒂𝒊𝒋 𝒕  𝑖𝑠 𝑎𝑛 𝒎 × 𝒏 𝑚𝑎𝑡𝑟𝑖𝑥  , with i = 1,2,. . . ,m and j = 1,2,…..,n

Indefinite integral of the element in the i th row and j th column of A(t) 

is ∫ 𝐚𝐢𝐣 𝐭 𝐝𝐭 

𝐼𝑛𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑨 𝒕  𝑖𝑠 

∫ 𝑨 𝑡 𝑑𝑡 = ∫ 𝑎𝑖𝑗 𝑡 𝑑𝑡

Definite integral of A(t) between limits t = a and t = b 

So that

න

𝑎

𝑏

𝑨 𝑡 𝑑𝑡 =  න
𝑎

𝑏

𝑎𝑖𝑗 𝑡 𝑑𝑡 
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Example : 𝐹𝑖𝑛𝑑 𝐴 𝑡  𝑑𝑡 𝑖𝑓 𝐴 𝑡 =
2 sin 𝑡 cos 𝑡

−3 cos 𝑡 sin 𝑡

Solution : 

∫ 𝑨 𝑡  𝑑𝑡 =
−2 cos 𝑡 + 𝐶1 sin 𝑡 + 𝐶2

−3 sin 𝑡 + 𝐶3 − cos 𝑡 + 𝐶4

So     

 𝐴 𝑡 =
2 sin 𝑡 cos 𝑡

−3 cos 𝑡 sin 𝑡
+ 𝐶 

𝐶 =
𝐶1 𝐶2

𝐶3 𝐶4
 𝑖𝑠 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
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THEOREM 

𝐿𝑒𝑡 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝝀𝟏, . . . . . , 𝝀𝒏 𝑜𝑓 𝑡ℎ𝑒 𝒏 × 𝒏 𝑟𝑒𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑨
 𝑏𝑒 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑎𝑛𝑑 𝑬𝟏, . . . . , 𝑬𝒏 𝑎𝑟𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔

 𝑡𝑜 𝝀𝟏, . . . , 𝝀𝒏 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  𝑇ℎ𝑒𝑛 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 
 

 

𝑋 𝑡  =  𝑐1𝑒𝜆1𝑡𝐸1 + . . . + 𝑐𝑛𝑒𝜆𝑛𝑡𝐸𝑛,

𝑐1, . . . , 𝑐𝑛 𝑏𝑒𝑖𝑛𝑔 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠,



Example : To solve 

𝑥′1 = 𝑥1 + 3𝑥2

𝑥 2
′  = 𝑥1 − 𝑥2

We compute the eigenvalues 𝜆1, 𝜆2 of the matrix

𝐴 =
1 3
1 −1

Corresponding eigenvectors belonging to 𝜆1 = 2, 𝜆 = −2 𝑎𝑟𝑒 𝑬𝟏 =
𝟑
𝟏

, 

𝑬𝟐 =
−𝟏
𝟏

. The general solution of this first order linear differential equation is

  𝑋 𝑡 =
𝑥1 𝑡
𝑥2(𝑡)

 =  𝑐1𝑒2𝑡 3
1

 + 𝑐2𝑒−2𝑡 −1
1



which can be rewritten as 

𝑥1 𝑡 =  3𝑐1𝑒2𝑡  − 𝑐2𝑒−2𝑡

𝑥2 𝑡 =  𝑐1𝑒2𝑡 + 𝑐2 𝑒−2𝑡

Solve the following systems of first order linear differential equations

1) 𝑥′1 = 𝑥1 + 6𝑥2 ;  𝑥2
′  = 5𝑥1 + 2𝑥2

2) 𝑥1
′ = 𝑥1 − 2𝑥2 ;  𝑥′

2 = 𝑥1 − 𝑥2

3) 𝑥1
′ = 𝑥1 − 𝑥2 + 4𝑥3 ;  𝑥2

′ = 3𝑥1 + 2𝑥2 − 𝑥3 ;  𝑥3
′ = 2𝑥1 + 𝑥2 − 𝑥3

Homework 



Example : 

Solution : 

Find the general solution of the system of equations
𝑑𝑥1

𝑑𝑡
= 𝑥1 + 𝑥2 ,  

𝑑𝑥2

𝑑𝑡
=  𝑥2 − 𝑥1

Hint : 𝑥1
𝜋

2
= 1 , 𝑥2

𝜋

2
= 2

In matrix 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥, 𝑤𝑖𝑡ℎ 𝑥 = 𝑥1, 𝑥2

𝑇

Where 

𝐴 =
1 1

−1 1

The eigenvalues and eigenvectors of A  are 

𝜆1 = 1 + 𝑖 ,  𝑥1 =
−𝑖
1

𝜆2 = 1 − 𝑖 ,  𝑥2 =
𝑖
1
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So as the vectors 𝒆−𝒊𝒕𝒙𝒊 𝑤𝑖𝑡ℎ 𝒊 = 𝟏, 𝟐 are linearly independent 

solutions,

𝜙 𝑡 =  −𝑖𝑒 1+𝑖 𝑡 𝑖𝑒 1−𝑖 𝑡

𝑒 1+𝑖 𝑡 𝑒 1−𝑖 𝑡

Thus the general solution 𝒙 𝒕 = 𝝓 𝒕 𝑪 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

𝑥 𝑡  = −𝑖𝑒 1+𝑖 𝑡 𝑖𝑒 1−𝑖 𝑡

𝑒 1+𝑖 𝑡 𝑒 1−𝑖 𝑡

𝐶1

𝐶2

 

                                          =
−𝑖𝐶1𝑒 1+𝑖 𝑡 𝑖𝐶2𝑒 1−𝑖 𝑡

𝐶1𝑒 1+𝑖 𝑡 𝐶2𝑒 1−𝑖 𝑡

𝑤ℎ𝑒𝑟𝑒 𝐶1 𝑎𝑛𝑑 𝐶2 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
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Let us set 𝐶1 = 𝑎 + 𝑖𝑏 𝑎𝑛𝑑 𝐶2 = 𝑎 − 𝑖𝑏 , then the general solution 

becomes

𝑥 𝑡 =
2𝑎𝑒′ sin 𝑡 + 2𝑏𝑒′ cos 𝑡
2𝑎𝑒′ cos 𝑡 − 2𝑏𝑒′ sin 𝑡

Both a and b are arbitrary constants , so we set 𝒌𝟏 = 𝟐𝒂 𝒂𝒏𝒅 
𝒌𝟐 = 𝟐𝒃, then general solutions becomes,

𝑥1 𝑡 = 𝑒𝑡(𝑘1 sin 𝑡 + 𝑘2 cos 𝑡) 𝑎𝑛𝑑 𝑥2 𝑡 = 𝑒𝑡(𝑘1 cos 𝑡 − 𝑘2 sin 𝑡)

To satisfy the initial conditions 

𝑥1

𝜋

2
= 1, 𝑥2

𝜋

2
= 0, 𝑡 =

𝜋

2
 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
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Initial condition 𝑥1
𝜋

2
= 1 ∶ 1 = 𝑒𝜋/2 𝑘1

Initial condition 𝑥2
𝜋

2
= 2 ∶ 2 = −𝑒𝜋/2 𝑘2

𝑘1 = 𝑒−𝜋/2

𝑘2 = −2𝑒−𝜋/2

Then the solution of initial-value problem is found to be

𝑥1 𝑡 = 𝑒
𝑡−

𝜋
2 (sin 𝑡 − 2 cos 𝑡 )

𝑥2 𝑡 = 𝑒
𝑡−

𝜋
2 (cos 𝑡 + 2 sin 𝑡). 𝑤ℎ𝑒𝑟𝑒 𝑡 ≥

𝜋

2
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Example : 

Solution : 

Find the general solution of the following third-order differential 

equation by converting it to a first-order system:

𝑑3𝑦

𝑑𝑡3
+

𝑑2𝑦

𝑑𝑡2
+

𝑑𝑦

𝑑𝑡
+ 𝑦 = 0

Introduce the two new dependent variables 𝑧1 𝑎𝑛𝑑 𝑧2, 𝑏𝑦 𝑠𝑒𝑡𝑡𝑖𝑛𝑔

𝑑𝑦

𝑑𝑡
= 𝑧1 𝑎𝑛𝑑 

𝑑2𝑦

𝑑𝑡2
=

𝑑𝑧1

𝑑𝑡
= 𝑧2

Third order equation replaced by equivalent first-order system 

𝑑𝑦

𝑑𝑡
= 𝑧1,

𝑑𝑧1

𝑑𝑡
= 𝑧2

𝑑𝑧2

𝑑𝑡
+ 𝑧2 + 𝑧1 + 𝑦 = 0
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When written in matrix form, this system becomes
𝑑𝑧

𝑑𝑡
= 𝐴𝑧

𝑤𝑖𝑡ℎ 𝑧 =

𝑦(𝑡)
𝑧1(𝑡)
𝑧2(𝑡)

,  𝐴 =
0 1 0
0 0 1

−1 −1 −1

The eigenvalues and eigenvectors of A are

𝜆1 = −1 ; 𝑥1 =
1

−1
1

, 𝜆2 = 𝑖 ; 𝑥2 =
−1
−𝑖
1

𝜆3 = −𝑖 ; 𝑥3 =
−1

𝑖
1 58



As the vectors 𝒆−𝝀𝒊𝒕𝒙𝒊 𝑤𝑖𝑡ℎ 𝒊 = 𝟏, 𝟐, 𝟑 are solutions , a fundamental matrix is

𝜙 𝑡 =
𝑒𝑡 −𝑒𝑖𝑡 −𝑒−𝑖𝑡

−𝑒−𝑡 −𝑖𝑒𝑖𝑡 𝑖𝑒−𝑖𝑡

𝑒−𝑡 𝑒𝑖𝑡 𝑒−𝑖𝑡

when the general solution becomes

 

𝑦
𝑧1

𝑧2

=
𝑒𝑡 −𝑒𝑖𝑡 −𝑒−𝑖𝑡

−𝑒−𝑡 −𝑖𝑒𝑖𝑡 𝑖𝑒−𝑖𝑡

𝑒−𝑡 𝑒𝑖𝑡 𝑒−𝑖𝑡

𝐶1

𝐶2

𝐶3

 

Y(t) of the original third-order differential equation is needed

𝑦 𝑡 = 𝐶1𝑒−𝑡 + 𝐶2𝑒𝑖𝑡 + 𝐶3
−𝑖𝑡

59



It results 

𝑦 𝑡 = 𝐶1𝑒−𝑡 + 2𝑏 cos 𝑡 − 2𝑏 sin 𝑡

Writing 𝐂𝟐 𝐢𝐧 𝐩𝐥𝐚𝐜𝐞 𝐨𝐟 𝟐𝐚 𝑎𝑛𝑑 𝐂𝟑 𝐢𝐧 𝐩𝐥𝐚𝐜𝐞 𝐨𝐟 − 𝟐𝐛,  𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠

𝑦 𝑡 = 𝐶1𝑒−𝑡 + 𝐶2 cos 𝑡 + 𝐶3 sin 𝑡

Solving for 𝒛𝟏 𝑎𝑛𝑑 𝒛𝟐 𝑤𝑖𝑙𝑙 𝑔𝑖𝑣𝑒
𝒅𝒚

𝒅𝒕
 𝒂𝒏𝒅

𝒅𝟐𝒕

𝒅𝒕𝟐 by determination of y(t)  

𝐶2, 𝐶3 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝑠, 𝑠𝑜 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝐶2 = 𝑎 + 𝑖𝑏 𝑎𝑛𝑑 𝐶3 = 𝑎 − 𝑖𝑏
  and  a and b are arbitrary constants.
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Spectral Decomposition

Suppose 𝐴 = 𝑃𝐷𝑃−1 where the columns of P are orthonormal eigen 

vectors 𝑢1 … … … 𝑢𝑛. 𝑜𝑓 𝐴 and the corresponding  eigenvalues 

𝜆1 … … … 𝜆𝑛 are in diagonal matrix D.

𝑡ℎ𝑒𝑛 𝑃−1 = 𝑃𝑇

𝐴 = 𝑃𝐷𝑃𝑇 = 𝑢1  … 𝑢𝑛 1×𝑛
𝜆1  0
0  𝜆𝑛 𝑛×𝑛

𝑢1
𝑇

⋮
𝑢𝑛

𝑇
𝑛×1

= 𝜆1𝑢1  … 𝜆𝑛𝑢𝑛

𝑢1
𝑇

⋮
𝑢𝑛

𝑇

Using the column-row expansion of a product , we can write

𝐴 = 𝜆1𝑢1𝑢1
𝑇 + 𝜆2𝑢2𝑢2

𝑇 + … 𝜆𝑛𝑢𝑛𝑢𝑛
𝑇

Spectral decomposition of A61



 Let

𝐴 =
3 1
1 3

.

Example:

Its eigenvalues are 𝜆 = 2,4 and the corresponding unit vectors are

𝒖1 =

1

√2

−
1

√2

    and     𝒖2 =

1

√2
1

√2

.

Therefore,

𝒖1𝒖1
𝑇 =

1

√2

−
1

√2

1

√2
−

1

√2
=

1

2
−

1

2

−
1

2

1

2

.



And

𝒖2𝒖2
𝑇 =

1

√2
1

√2

1

√2

1

√2
=

1

2

1

2
1

2

1

2

.

So

3 1
1 3

= 2

1

2
−

1

2

−
1

2

1

2

+ 4

1

2

1

2
1

2

1

2

is the spectral decomposition of A.



Example : Construct a spectral decomposition of the matrix A that has the 

orthogonal diagonalization.

𝐴 =
7 2
2 4

=  
2/ √5 −1/ √5

 1/√5  2/√5
 

8 0
0 3

2/ √5 −1/ √5

 1/√5  2/√5
 

Solution : Denote the columns of P by 𝑢1 𝑎𝑛𝑑 𝑢2.

𝐴 = 8𝑢1 𝑢1
𝑇  +  3𝑢2𝑢2

𝑇

To verify this decomposition of A , compute

𝑢1𝑢1
𝑇

=  
4/5 −2/5
2/5 1/5

 

=  
2/ √5

1/ √5
 

2

5
 

1

5
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𝑢2𝑢2
𝑇

=  
1/5 −2/5

−2/5 4/5
 

=  
−1/ √5

2/ √5
 

−1

5
 

2

5
 

and

=  
7 2
2 4

8𝑢1𝑢1
𝑇  +  3𝑢2𝑢2

𝑇 =  
32/5 16/5
16/5 8/5

+ 
3/5 −6/5

−6/5 12/5
 

=  𝑨
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Homework 

i)      Write the spectral decomposition 𝐴 = 𝑃𝐷𝑃∗ 𝑖𝑓

𝑎) 𝐴 =  
3 −2

−2
4

6
2

 
4
2
3

 𝑏) 𝐴 =
6 −2

−2
−1

6
−1

 
−1
−1
5

ii)      Classify (positive definite, negative definite , or indefinite, etc )  the 

quadratic form 𝑞 𝑥 = 𝑥∗𝐴𝑥 𝑖𝑓 𝐴 =

𝑎) 
2  3
3 −6

 𝑏) 
9 −4

−4  3

𝑐) 
−5  2
2 −2

 𝑑) 
3 2
2
0

2
2

 
0
2
1
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THEOREM 

A quadratic form 𝒒 𝒙 = 𝒙∗𝑨𝒙  with A  symmetric is 
 

i. positive definite if and only if all the eigenvalues of A are positive.

ii. negative definite if and only if all the eigenvalues of A are negative.

iii. indefinite if and only if neither i) nor ii) holds.
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