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Sets

A set is a collection of elements having certain common properties.

Example:

1 A set of integers {...,−4,−3,−2,−1, 0, 1, 2, 3, 4, ...}
2 A set of rational numbers {....,−1.5,−0.5, 0, 0.5, 1.5, ....}
3 A set of even numbers {...,−6,−4,−2, 0, 2, 4, 6, ...}



Group

Suppose the elements of a set G are denoted by {a, b, c , ...}. An
operation combining any two of them is denoted by, say a⊗ b.
The set G becomes a group if the following properties are satisfied.

1 Closure: If a, b ∈ G , then a⊗ b ∈ G .

2 Associativity: If a, b, c ∈ G then

a⊗ (b ⊗ c) = (a⊗ b)⊗ c

3 Identity: For every element a ∈ G ∃ one e ∈ G such that

e ⊗ a = a⊗ e = a.

4 Inverse element: For every a ∈ G , ∃ a member a−1 ∈ G such
that

a⊗ a−1 = a−1 ⊗ a = e a−1 = inverse of a.



Group: Example

The set of all integers constitute a group with respect to addition.

Binary Operation:

G = {· · · ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, · · · }
⊗ = addition

1. Closure: Let us consider any two elements, a = −2, b = 3

−2 + 3 = 1 ∈ G

2. Associativity: Let us consider a, b, c ∈ G ,

a = −1, b = 2, c = 3

−1 + (2 + 3) = (−1 + 2) + 3

4 = 4 ∈ G .



Group: Example

3. Identity: 0 is the identity element.

a⊗ e = e ⊗ a = a

−1 + 0 = 0 + (−1) = −1 ∈ G .

4. Inverse: For every a ∈ G , ∃ a−1 ∈ G ⇒ a⊗ a−1 = e

a = 1, a−1 = −1

a + a−1 = 1− 1 = 0 = e ∈ G , a−1 = −a

The set of integers forms a group with respect to addition.



Abelian Group

The Group G satisfying the above four properties is called the
Abelian Group with respect to the operation ⊗ if

a⊗ b = b ⊗ a

Example:

1 The set of integers form an Abelian group with respect to the
operation of addition.

2 (i) The of set of real numbers
(ii) The set of rational numbers
(iii) The set of complex numbers
are also examples for Abelian groups with respect to addition.



Field

Definition

Suppose F is a non-empty set equipped with two binary
operations called addition and multiplication and denoted by ‘ +
and ‘.‘ respectively for all a, b ∈ F we have a + b ∈ F and a.b ∈ F.
Then this algebraic structure (F,+, .) is called a field, if the
following postulates are satisfied.
1. Addition is commutative, that is

a + b = b + a ∀ a, b ∈ F.

2. Addition is associative, that is

(a + b) + c = a + (b + c) ∀ a, b, c ∈ F.



3. ∃ an element denoted by 0 (called zero) in F such that

a + 0 = a ∀ a ∈ F.

4. To each element a in F there exists an element −a in F such
that

a + (−a) = 0.

5.Multiplication is commutative, that is

a.b = b.a ∀ a, b ∈ F.

6. Multiplication is associative, that is

(a.b).c = a.(b.c) ∀ a, b, c ∈ F.



7. ∃ a non-zero element denoted by 1 (called one) in F such that

a.1 = a ∀ a ∈ F.

8. To every non-zero element a in F there corresponds an element
a−1 (or 1

a ) in F such that

a.a−1 = 1.

9. Multiplication is distributive with respect to addition, that is

a.(b + c) = a.b + a.c ∀ a, b, c ∈ F



Field: Example

The set R of all real numbers is a field, the addition and
multiplication of real numbers being the two field compositions.
Consider the real numbers a = 1, b = 0.5 and c = 2 a, b, c ∈ F

Property:1

a + b = b + a ∀ a, b ∈ F.
1 + 0.5 = 0.5 + 1

1.5 = 1.5

Property:2

(a + b) + c = a + (b + c) ∀ a, b, c ∈ F.
(1 + 0.5) + 2 = 1 + (2.5 + 2)

1.5 + 2 = 1 + 2.5

3.5 = 3.5



Example of Field-contd

Property:3

a + 0 = a ∀ a ∈ F.
1 + 0 = 1

1 = 1

Property:4

The additive inverse −a = −1

a + (−a) = 0 ∀ a, b ∈ F.
1 + (−1) = 0

Property:5

a.b = b.a ∀ a, b ∈ F.
1.(0.5) = (0.5).1

0.5 = 0.5



Example of Field-contd

Property:6

(a.b).c = a.(b.c) ∀ a, b, c ∈ F.
1.((0.5).2) = (1.(0.5)).2

1.1 = (0.5).2

1 = 1

Property:7

a.1 = a ∀ a ∈ F.
1.1 = 1

1 = 1



Example of Field-contd

Property:8

The multiplicative inverse a−1 = 1
1 = 1

a.a−1 = 1

1.1 = 1

1 = 1

Property:9

a.(b + c) = a.b + a.c ∀ a, b, c ∈ F
1.(0.5 + 2) = 1.0.5 + 1.2

1.2.5 = 0.5 + 2

2.5 = 2.5



Example of Field-contd

Example: 2

The set Q of all rational numbers is a field, the addition and
multiplication of rational numbers being the two field
compositions. Since Q ⊂ R, therefore the field of rational numbers
is a subfield of the field of real numbers. The rational numbers 0 is
the zero element of this field and the rational number 1 is the
unity of the field.



Vector space

Internal composition

Let A be any set. If a ∗ b ∈ A ∀ a, b ∈ A and a ∗ b is unique then
∗ is said to be an internel composition in the set A. Here both a
and b are the elements of the set A.
Example: i) Addition of two matrices, (ii) Addition of two complex
numbers.

External composition

Let V and F be any two sets. If a ⊗ α ∈ V for all a ∈ F and for
all α ∈ V and a⊗ α is unique then ⊗ is said to be an
external composition in V over F. Here a is an element of the set
F and α is an element of the set V and the resulting element
a⊗ α is an element of the set V .
Example: i) Multiplication of a matrix with a scalar,
(ii) Multiplication of a complex number with a real number.



Vector space

Definition:

Let (F ,+, .) be a field. The elements of F will be called scalars.
Let V be a non-empty set whose elements will be called vectors.
Then V be a vector space over the field F, if

1. There is defined an internal composition in V called addition of
vectors and denoted by ‘ + ‘. Also for this composition V is the
abelian group, that is

(i) α + β ∈ V for all α, β ∈ V

(ii) α + β = β + α for all α , β ∈ V

(iii) α + (β + γ) = (α + β) + γ for all α, β , γ ∈ V

(iv) To every vector α ∈ V there exists a vector − α ∈ V

such that

α + (−α) = 0



Vector space

2. There is an external composition in V over F called scalar
multiplication and denoted multiplicatively i.e., aα ∈ V for all a ∈ F and
for all α ∈ V . In other words V is closed with respect to scalar
multiplication.
3. The two compositions that is, scalar multiplication and addition of
vectors satisfy the following postulates:

(i) a(α + β) = aα + aβ ∀a ∈ F and ∀α, β ∈ V .

(ii) (a + b)α = aα + bα ∀a, b ∈ F and ∀α ∈ V .

(iii) (ab)α = a(bα) ∀a, b ∈ F and ∀α ∈ V .

(iv) 1α = α ∀α ∈ V and 1 is the unity element of the field F.

When V is a vector space over the field F we shall say that V (F) is a
vector space. If the field F is understood we can simply say that V is the
vector space. If F is the field R of real numbers, V is called a Real
Vector Space; If F is C , it is Complex Vector Space.



Example-Vector space

Example

The set V of all m× n matrices with their elements as real number
is a vector space over the field F of real numbers with respect to
addition of matrices as addition of vector and multiplication of a
matrix by a scalar. Here we consider the vector space 1× 2
matrices. Let

α =
(
1 0

)
, β =

(
2 1

)
, γ =

(
1 1

)
α, β, γ ∈ V

Property-1(i)
α + β ∈ V ∀α, β ∈ V(

1 0
)

+
(
2 1

)
=
(
3 1

)
∈ V



Example-contd

Property-1(ii)
α + β = β + α ∀α , β ∈ V(

1 0
)

+
(
2 1

)
=
(
2 1

)
+
(
1 0

)(
3 1

)
=
(
3 1

)
Property-1(iii)

α + (β + γ) = (α + β) + γ ∀α, β , γ ∈ V(
1 0

)
+
[(

2 1
)

+
(
1 1

)]
=
[(

2 1
)

+
(
1 0

)]
+
(
1 1

)(
1 0

)
+
(
3 2

)
=
(
3 1

)
+
(
1 3

)(
4 2

)
=
(
4 2

)



Example-contd

Property:1(iv)

α + (−α) = 0− α ∈ V .

−α =
(
−1 0

)
α + (−α) =

(
1 0

)
+
(
−1 0

)
= 0

Property-2
a ∈ F; α ∈ V ; aα ∈ V .

aα = 5
(
1 0

)
=
(
5 0

)
∈ V (where a = 5)



Property-3(i)

a(α + β) = aα + aβ ∀a ∈ F and ∀α, β ∈ V .

5[
(
1 0

)
+
(
2 1

)
] = 5

(
1 0

)
+ 5

(
2 1

)
5
(
3 1

)
=
(
5 0

)
+
(
10 5

)(
15 5

)
=
(
15 5

)
Property-3(ii)

(a + b)α = aα + bα ∀a, b ∈ F and ∀α ∈ V .

(5 + 2)
(
1 0

)
= 5

(
1 0

)
+ 2

(
1 0

)
7
(
1 0

)
=
(
5 0

)
+
(
2 0

)(
7 0

)
=
(
7 0

)



Property-3(iii)

(ab)α = a(bα) ∀a, b ∈ F and ∀α ∈ V . (let b = 2)

(5× 2)
(
1 0

)
= 5[2

(
1 0

)
]

10
(
1 0

)
= 5

(
2 0

)(
10 0

)
=
(
10 0

)
Property-3(iii)

1α = α ∀α ∈ V and 1 is the unity element of the field F.

1
(
1 0

)
=
(
1 0

)



Vector sub-space

Let V be a vector space over the field F and let W ⊆ V . Then
W is called a subspace of V if W itself is a vector space over F
with respect to the operations of vector addition and scalar
multiplication in V .

Example

The set of all n × n diagonal matrix is a proper subspace Sn of the
vector space Vn×n formed by the set of all n × n matrices.



Linear dependence

Definition

A set of vectors x1, x2, ..., xn in a vector space V over a field F is
said to be linearly dependent if there exist scalars α1, α2, ..., αn not
all zero,in F such that

n∑
i=1

αixi = α1x1 + α2x2 + ...,+αnxn = 0. (1)

If on the other hand, (1) implies that αi = 0 for each i ,then the
set of vectors x1, x2, x3..., xn is said to be linearly independent.



Linear dependence: Example

The vectors

x1 =

 1
−1
0

 , x2 =

 0
1
−1

 , x3 =

0
0
1

 , x4 =

1
2
3


are linearly dependent since

x1 + 3x2 + 6x3 − x4 = 0.

x4 = x1 + 3x2 + 6x3

x4 can be expressed interms of x1, x2 and x3.
If we consider x1, x2 and x4 then

α1x1 + α2x2 + α3x4 = 0 (2)

if and only if α1 = α2 = α3 = 0.
The vectors x1, x2 and x4 are linearly independent.



Linear combination

Let X be a vector in a vector space V over a field F. If there
exist vectors x1, x2, x3..., xn in V and scalars α1, α2, ..., αn in F such
that

X = α1x1 + α2x2 + ...,+αnxn

then X is said to be a linear combination of the vectors
x1, x2, x3, ..., xn.

Example:

X =

4
1
3

 then X = 3x1 + 2x2 + 2x3 + x4

where

x1 =

 1
−1
0

 , x2 =

 0
1
−1

 , x3 =

0
0
1

 , x4 =

1
2
3

 .



Linear combination: contd

Alternatively, we can represent X as

X = 5x1 + 8x2 + 14x3 − x4

X = 4x1 + 5x2 + 8x3.

In fact X admits infinitely many representations in terms of
x1, x2, x3 and x4 which are linearly dependent.

But representation of X in terms of x1, x2 and x3 which are
linearly independent is unique.

X = 4x1 + 5x2 + 8x3.

x1 =

 1
−1
0

 , x2 =

 0
1
−1

 , x3 =

0
0
1

 , x4 =

1
2
3

 .



Basis and Dimensions

Basis

In a vector space V over a field F, a basis is a set of linearly
independent vectors {x1, x2, x3..., xn} given in a definite order such
that every vector X in V is a linear combination of the vectors in
this set.

Dimensions

A dimension in a vector space V is the maximum number of
linearly independent vectors in the space.
The set of there independent vectors is called a basis for that
space.

Example:

The unit vectors î , ĵ , k̂ are linearly independent vectors in the
Euclidean space. Dimensions = 3.

î =
(
1 0 0

)T
, ĵ =

(
0 1 0

)T
, k̂ =

(
0 0 1

)T
,

are the basis.



Inner product space

Definition

Let v(F ) be a vector space where F is either the field of real
numbers or the field of complex numbers. An inner product on v is
a function from v × v into F which assigns to each ordered pair of
vectors X ,Y in V a scalar 〈X ,Y 〉 in such a way that

(i) 〈X ,Y 〉 = 〈Y ,X 〉
(ii) 〈aX + bY ,Z 〉 = a〈X ,Z 〉+ b〈Y ,Z 〉
(iii) 〈X ,X 〉 ≥ 0 and 〈X ,X 〉 = 0⇒ X = 0 for any X ,Y ,Z ∈ v and

a, b ∈ F.

The vector space v is then said to be an inner product space with
respect to that specified inner product defined on it.



Inner product space: Example

On vn(c) there is an inner product which we call the standard inner
product.
If X = (X1,X2, . . . ,Xn), Y = (Y1,Y2, . . . ,Yn) ∈ vn(c) then
we define
〈X ,Y 〉 = X1Y1 + X2Y2 + . . .+ XnYn =

∑n
i=1 XiYi

Proof:

(i) 〈X ,Y 〉 =〈Y ,X 〉
〈Y ,X 〉 =Y1X1 + Y2X2 + . . .+ YnXn

〈Y ,X 〉 =Y1X1 + Y2X2 + . . .+ YnXn

=Y1X1 + Y2X2 + . . .+ YnXn

=Y1X̄1 + Y2X̄2 + . . .+ YnX̄n

=X1Y1 + X2Y2 + . . .+ XnYn

〈Y ,X 〉 =〈X ,Y 〉



Inner product space: Example: contd

(ii) Let Z = (Z1,Z2, . . . ,Zn) ∈ vn(c)

aX + bY =a(X1,X2, . . . ,Xn) + b(Y1,Y2, . . . ,Yn)

=aX1 + bY1, aX2 + bY2, . . . , aXn + bYn

〈aX + bY ,Z 〉 =(aX1 + bY1)c1 + . . .+ (aXn + bYn)cn

=(aX1c1 + . . .+ aXncn) + (bY1c1 + . . .+ bYncn)

=a(X1c1 + . . .+ Xncn) + b(Y1c1 + . . .+ Yncn)

=a〈X ,Z 〉+ b〈Y ,Z 〉



Inner product space: Example: contd

(iii) 〈X ,X 〉 = X1X1 + . . .+ XnXn = |X1|2 + . . .+ |Xn|2

Xn is a complex number.

∴ |Xn|2 ≥0.

∴ |X1|2 + . . .+ |Xn|2 >0

Each |Xi |2 =0⇒ X = 0

Example:2

If X = (X1,X2), Y = (Y1,Y2) ∈ v2(F).
By defining 〈X ,Y 〉 = X1Y1 − X2Y1 − X1Y2 + 4X2Y2. Check all
postulates of an inner product.



Norm or length of a vector in an inner product space

Let v be an inner product space. If X ∈ v , then the norm of
the vector X , written as ‖X‖ is defined as the positive square root
of 〈X ,X 〉, that is

‖X‖ =
√
〈X ,X 〉

Example:

Consider a vector X = aî + bĵ + ck̂ .
The inner product of the vector 〈X ,X 〉 = a2 + b2 + c2.
Norm or length of a vector ‖X‖ =

√
a2 + b2 + c2

Example:

Consider a matrix
X =

(
2 1 1

)
(1)

The inner product of the matrix 〈X ,X 〉 = 22 + 12 + 12 = 6
Norm or length of the matrix ‖X‖ =

√
6



Unit Vector:

Let v be an inner product space. If X ∈ v such that ‖X‖ = 1
then X is called a unit vector.

In an inner product space a vector is called a unit vector if its
length is 1.

Example:

X =
(
0 1 0

)
Y =

(
1√
2

1√
2

0
)

(2)

The matrices X and Y are found to have unit norm. Thus they are
unit vectors.



Schwarz Inequality

In an inner product space v(F ) we can prove

||X ,Y || ≤ ‖X‖ ‖Y ‖

The inequality holds when X = 0.

Application:

Cauchy-Schwartz inequality can be applied to obtain a solution for
a complex problem.
(i) If x , y , z are three positive real numbers such that x + y + z ≤ 3
then we can prove 1

x + 1
y + 1

z is always greater than or equal to 3.

Triangle inequality

If X ,Y are vectors in an inner product space v , then

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖.



Normed Vector Space

Let v(F) be a vector space where F is either the field of real
numbers or the field of complex numbers. Then v is said to be a
normed vector space if to each vector X there corresponds a real
number denoted by ‖X‖ called the norm of X in such a manner
that

(i) ‖X‖ ≥ 0 and ‖X‖ = 0 ⇒ X = 0.

(ii) ‖aX‖ = |a|.‖X‖ ∀ a ∈ F.
(iii) ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ ∀X ,Y ∈ v .

Distance in an inner product space

Let v(F) be an inner product space. Then we define the
distance 〈X ,Y 〉 between two vectors X and Y by

d(X ,Y ) = ‖X − Y ‖ =
√
〈X − Y ,X − Y 〉



Orthogonality

Let X and Y be vectors in an inner product space V . Then X is
said to be orthogonal to Y if

〈X ,Y 〉 = 0

Example

Let us consider the matrices

X =

2
1
1

 Y =

 1
−1
−1


The inner product of the matrices

〈X ,Y 〉 = 2(1) + 1(−1) + 1(−1) = 0



Orthogonal set

Let S be a set of vectors in an inner product space V . Then S is
said to be an orthogonal set provided that any distinct vectors in S
are orthogonal.

Example

Consider the matrices

X =

 1
−1
0

 Y =

1
1
0

 Z =

0
0
1

 .

These matrices forms orthogonal set as they satisfy

〈X ,Y 〉 = 〈Y ,Z 〉 = 〈X ,Z 〉 = 0



Orthonormal set

Let S be a set of vectors in an inner product space V . Then S is
said to be an orthonormal set if
(i) X ∈ S ⇒ ‖X‖ = 1 that is 〈X ,X 〉 = 1 and
(ii) X ,Y ∈ S and X 6= Y ⇒ 〈X ,Y 〉 = 0.
Thus an orthonormal set in an orthogonal set with the additional
property that each vector in it is of length 1. In other words a set
consisting of mutually orthogonal unit vectors is called an
orthonormal set.

Example:

consider the matrices

X =
(

1√
2
− 1√

2
0
)
, Y =

(
1√
2

1√
2

0
)
, Z =

(
0 0 1

)
.

These matrices found to have unit norm and they are orthogonal
to each other. Thus forms the orthonormal set.



Ex.1:

The vectors

X =
(
1 i 0

)T
and Y =

(
i 1 0

)T
are orthogonal.

〈X ,Y 〉 = x1ȳ1 + x2ȳ2 + x3ȳ3 = 1(−i) + i(1) + 0 = 0

Ex. 2:

Find (i)〈X ,Y 〉, (ii)〈Y ,X 〉, (iii)‖X‖, (iv)‖Y ‖ and (v) the
normalized X and Y are orthogonal, where

X =

2
i
3

 , Y =

1 + 2i
2i
1





Answers

(i) 〈X ,Y 〉 = x1ȳ1 + x2ȳ2 + x3ȳ3 = 2(1− 2i) + i(−2i) + 3× 1

= 2− 4i + 2 + 3 = 7− 4i

(ii) 〈Y ,X 〉 = y1x̄1 + y2x̄2 + y3x̄3 = (1 + 2i)2 + 2i(−i) + 1× 3

= 2 + 4i + 2 + 3 = 7 + 4i

(iii) ‖X‖ =
√
〈X ,X 〉 =

√
x1x̄1 + x2x̄2 + x3x̄3

=
√

2× 2 + i(−i) + 3× 3 =
√

4 + 1 + 9 =
√

14

(iv) ‖Y ‖ =
√

10



(v) normalized X and Y

X

‖X‖
=

1√
14

2
i
3

 =


2√
14
i√
14
3√
14


Y

‖Y ‖
=


1+2i√

10
2i√
10
1√
10



(vi)d(X ,Y ) = ‖(X − Y )‖ =
√
|x1 − y1|2 + |x2 − y2|2 + |x3 − y3|2

=
√
|1− 2i |2 + | − i |2 + 22 =

√
10.



Properties

Any orthonomal set of vectors in an inner product space is linearly
independent.

orthonormal basis

A basis of an inner product space that consists of mutually
orthogonal unit vectors is called an orthonormal basis.



Orthonormal Set

The set of vectors

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

is an orthonormal set with respect to innner product defined above.

〈e1e2〉 = 1× 0 + 0× 1 + 0× 0 = 0

〈e1e3〉 = 0, 〈e2e3〉 = 0



Gram-Schmidt process of orthogonalization

Given a set of n linearly independent vectors in an inner product
space vn, it is always possible to construct an orthonormal basis by
what is known as the G-S process.
(An orthonomal basis has several advantages).
For a set of m linearly independent vectors x1, x2, ..., xm in an inner
product space vn there exists a set of orthonormal vectors
y1, y2, ..., ym defined by

y1 = x1 (3)

yk = xk −
k−1∑
i=1

〈xk , yi 〉
〈yi , yi 〉

yi , k = 2, ...,m.



Example

Use the Gram-Schmidt orthonormalization process to determine an
orthonormal basis in R3 for the given set of independent vectors.

x1 =
(
1 0 1

)T
, x2 =

(
−1 1 0

)T
, x3 =

(
−3 2 0

)T
.

We have,
y1 = x1, y2 = x2 −

〈x2, y1〉
〈y1, y1〉

,

y3 = x3 −
〈x3, y1〉
〈y1, y1〉

y1 −
〈x3, y2〉
〈y2, y2〉

y2.



Example: Contd

y1 = x1 =
(
1 0 1

)T
, 〈y1, y1〉 = 2.

y2 = x2 −
〈x2, y1〉
〈y1, y1〉

y1 =
(
−1 1 0

)T × (1

2

)(
1 0 1

)T
=

1

2

(
−1 2 1

)T
, 〈y2, y2〉 =

3

2
.

y3 = x3 −
〈x3, y1〉
〈y1, y1〉

y1 −
〈x3, y2〉
〈y2, y2〉

y2

=
(
−3 2 0

)T
+

3

2

(
1 0 1

)T − 7

3

(
−1

2 1 1
2

)T
=

1

3

(
−1 −1 1

)T
, 〈y3, y3〉 =

1√
3
.



Example: Contd

Orthonormal basis

e1 =
y1
||y1||

=
1√
2

(
1 0 1

)T

e2 =
y2
||y2||

=
1

2

√
2

3

(
−1 2 1

)T
=

1√
6

(
−1 2 1

)T

e3 =
y3
||y3||

=
1

3

√
3
(
−1 −1 1

)T
=

1√
3

(
−1 −1 1

)T



Example 2:

Using Gram-Schimdt process, orthogonalize the basis
x1 = (1, 2, 2), x2 = (−1, 0, 2), x3 = (0, 0, 1).

y1 = x1 = (1, 2, 2), ‖y1‖ = 3

y2 = x2 −
〈x2, y1〉
〈y1, y1〉

y1 = (−1

3
,−2

3
,

4

3
), ‖y2‖ = 2

y3 = x3 −
〈x3, y1〉
〈y1, y1〉

y1 −
〈x3, y2〉
〈y2, y2〉

y2 = (
2

9
,−2

9
,

1

9
), ‖y3‖ =

1

3



Orthonormal basis

w1 =
y1
‖y1‖

=
1

3
(1, 2, 2)

w2 =
y2
‖y2‖

=
1

3
(−2,−1, 2)

w3 =
y3
‖y3‖

=
1

3
(2,−2, 1)

Properties of Gram-Schimdt process

1 Vk = xk − (α1x1 + . . .+ αk−1xk−1), 1 ≤ k ≤ n.

2 The span of v1, . . . , vk is same as the span of x1, . . . , xk .

3 vk is orthogonal to x1, . . . , xk−1.



Realization in physics

Let us consider a particle in a box of width 2L extending from
x = −L to x = L.
The eigenstates are

|n〉 = ψn(x) =

√
1

2L
e

inπx
L

These eigenstates have orthonormal properties.∫ L

−L
ψ∗n(x)ψn(x) = 1⇒ 〈n|n〉 = 1

and ∫ L

−L
ψ∗n(x)ψn(x) = 0, n 6= m⇒ 〈n|m〉 = 0



The linear combination of all wave functions

f (x) =
∑

bnψn(x) =
1√
2L

∑
n

bne
inπx
L , n = 0,±1,±2

=
∞∑
n=0

bn|n〉

Thus the eigenfunction ψn(x) (or |n〉)

1 are normalized to unity (〈n|n〉 = 1)

2 are orthogonal to each other (〈n|m〉 = 0, n 6= m)

3 are able to express any function |f (x)〉 in terms of their linear
combination.

The eigenfunction |n〉 may be treated as basis in the hypothetical
finite/infinite dimensional space - linear vector space.


