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An equation containing the derivative of one or more dependent variables, with
respect to one or more independent variables, is said to be a differential equation.

Differential Equation (DE)

A\ 4

v

Ordinary
Differential
Equation (ODE)

If an equation contains only ordinary derivatives of one or
more dependent variables (y) with respect to a single independent
variable (x), it is said to be an ordinary differential equation.

15t derivative
Dependent variable (one)

Example 1:

Independent variable (one)
2nd derivative

Example 2 :

. Independent
2nd derivative variable Dependent

3rd derivative
dy @/’ variable
Example 3 : (2x — 3\ (6x —7 T R~ AYE 8 3




Differential Equation (DE)
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2. Partial
Differential
Equation (PDE)

An equation involving the partial derivatives of one or
more dependent variables (u) with respect to two or more
independent variables (x,t) is called a partial differential

equation.
Dependent
variable (u)
Example 1 : 5 524
Eamle 2 K Independent variables
Xampie ¢ . 02u  92u ou (more than one-
D2 = 0t2 ZE (x,¥))
Example 3 : ou  9%u Order of Equation = 2 (Highest derivative)
ot 9x2 No. of dependent variable =1 (u(t, x))

No. of independent variables = 2 (t, x)

All the above equations are second order PDES



ORDER AND DEGREE OF DIFFERENTIAL EQUATIONS

 Differential equations are classified on the basis of two features (i) Order and (ii) Degree

Differential Equation (DE)

\

v

Order  Order is the highest derivative that appear in the equation

Example 1: A 3
+ 2y =e* 4+ 10
()

o 1stderivative
2nd derivative

v

Highest derivative = Order of the equation =2
Example 2:

dy dy dy 1 _ .
x—+ —e¥+10 = xg tg=e¢ +10

Multiply by—
1= (ex+1o’

dx
1Stder|vat|ve — Highest derivative = Order of the equagion =1



Radical

d3y dy [dy\’
<@ B 1+dx+<dx

To estimate the order or degree of a D. E. radical should be removed first.

Example 3:

Multiply powers by 6,

&y (6)
(&) -

2 3( )
dy dy
1
T dx T (dx)

k Only 15t derivative

Third derivative

|

Highestderivative = Order of the equation = 3




SYSTEM OF EQUATIONS

Example 4:

X &y Dependent

variables
@/ %

t independent
variable

Name: Two coupled 1%t order equation / System of 15t order equations

Example 5:
dx dy dz
- = 5 + 3 + 4 —_— = —_ —_ —_— =
dt XT3y T4z 1 2x — 7y — 13z i x+y+z
Name: Three coupled 15t order equation
dx dy dz

Note: In physics, x, y, Z (dot notation) is used instead o ' ac' €z



ORDER AND DEGREE OF DIFFERENTIAL EQUATIONS

 Differential equation are classified on the basis of two features (i) Order and (ii) Degree

Differential Equation (DE)

v
v v

Order Degree

Degree

» Power of the highest derivative that appear in the Differential Equation

Power = Degree

Example 1: @/

Highest derivative  Degree = 4 (Power of the
highest derivative)




Example 1: Find the order and degree of the differential equation
d2 d 3/2
dx? dx

Answer : Let us rewrite the equation in the following form

, radical
d°y dy
&7 [“(a)

To determine the degree the radical should be removed

Let us square the equation on both sides

3
dzy\° dy\?
2V [+ (2
dx? dx

On expanding @/ Power of the highest derivative = Degree = 2

3 2 4
dy dy dy
@ e () wa(2) ()

Highest derivative = Order = 2




Example 2: Find the order and degree of the differential equation

Rewriting
dy 1 5
Tty Y
dx
Simplifying dv\? dy
x|—| +1=y*—
dx dx
or

Highest derivative = Order = 1




HOME WORK
State the order and Degree of the following Differential equations

dzy4 dy6
<@> +3<a> +4 =0

d?y dy
4 @— X-I-E—l
dx _ dy _
5. = +3y,dt—5x+3y



FORMATION OF DIFFERENTIAL EQUATION

Aim: To construct an DE from the given equation with two variables

Example:
Consider a trigonometric equation y = a sin(x + b) , where a and b are parameters.
Construct a DE free of those constants.

Answer: y = a sin(x + b)
d
% = a cos(x + b)
From solution to 42 Fror_n differentigl
differential equation d_32} = —{asin(x + b) equation to solution

X
d2y
- Y
d?y
axz FY =0

Lesson: By eliminating two constants we end up at 2" order equation .



FORMATION OF DIFFERENTIAL EQUATION

Example 2 :
Consider the algebraic equation x? + y? + 2gx + 2fy + ¢ = 0. Construct a differential

equation free of those constants. AW Need to be
Answer: x%+y% + Z(WZ@y - e eliminated

d%(x2+y2+2gx+2fy+c)=0 —) 2x + 2y

— 4+ 7
dx

2
d dy d?y  d2y 3,/dy\ [d%y dy y d3y+©d3y
a(”(&) gt o) = A &) &) T o TN T2

From (3) we express Substituting f in (4) By (4)
— dy d y d d2 d3 —_— d 2 d2
- 14+(Z) +v=—= 5 y y Y  dx3 y y
4 d?y (dx) ydx2| 3 <dx> <dx2> +ydx2 - d2y Lt (ﬁ) +y@
dx2 u ?
dy)\ [d?y d3y] d2y dy\>  d%|d3y
—— 11 —_— e —
[3 <dx> <dx2> T E dx? + dx +y x?|dx3
ll | -
The given expression is the

2 2

d d3 dy (d? :

1+ (dy> ] 3 }3, — 3d_y (_y) = o 3" order equation general solution of this ,
X X X equation

dx?2



Differential Equation (DE)

v

Linear ODE

.

The dependent variable (y) and its
derivatives (y',y" ...... ) should
appear linearly (no powers/no

multiplication in dependent variables)

Independent
variable
Example 1 : (Power 1)

Only
Example 2:  independent

variable %

Dependent
variable
(Power 1)

Power of derivative 1

Product term (independent

ariable with derivative)
) 8

14

derivative term



Differential Equation (DE)
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Linear ODE Nonlinear ODE y
The dependent variable (y) and The dependent variable (y) and its
its derivatives (y',y" ...... ) derivatives (y',y" ... ... ) appear in
appear linearly powers or in products
d
Example 1 : 2\ x—y— =0
dx
derivative has powers
d?y B
Example 2 : dx? 0
dependent variable
) has powers
Example 3 : d_y + =0
' dx?2 Y

., Dependent variable and its
derivative appears in multiplication




Identify Linear and non-linear ODE among the following:

d?6

1. W+sin9=0
2 d2x+ dx+t 3=0
qz Teg Tt =
d*x x d?y y
3. >+ =0, —+ =0
dt [x2 + 2 dt [x2 + y2
d’x  dx
4, — 3 =
dt2+xdt+x
d2x+_t_0
5. Gz tsint=
d?x
6. —— +t34+ef=0

dt?



ODE

Order

y
v v v v

1st Order \ 2nd Order 3rd Order 4t Qrder

|

Higher order ODEs

\4

(y—x)dx+4xdy =0

\ \/
d’y d*y _
dx2 + wgy =0 dxc? +y=0
(linear) (1inear)

How to solve these equations and obtain their solutions? i



GENERAL SOLUTION OF ADIFFERENTIAL EQUATION

A solution of a DE is called as general solution if it contains as many arbitrary
constants as the order of the DE.

Example 1: dy -2
dx
_ ! 1t Order ODE
Solution: l

y = 2x +({)— One arbitrary constant (GS)

Example 2: d3y
3=0
Idx J
3" Order ODE

, Threelarbitrary constants (GS)

Solution:

18



PARTICULAR SOLUTION OF ADIFFERENTIAL EQUATION

A particular solution of a DE can be obtained by giving particular values to the
arbitrary constants in the general solution of the DE.

dy GS y=2x+c¢
Example 1: — =2
dx PS y=2x (c=0)

(Check the answer)

GS y=rc1x%+cyx +c3

3
Example 2: Y 0 <
dx3 PS

; — A2 — — —
All five solutions Lo y=X gcl _3' €2 = 1C3 = 0)0)
. . | 1. Yy =X i =VY,C=1,C3 =
are Particular Solutions iii. y=c3 (¢, =c,=0)
Note: w. y=x*+x (cg=c;=1,c3=0)
General solution : Unique v. x2+a (c;=1,¢c,=0,c3=0)

Particular solution : Many

Note : Sometimes you may not get the particular solution from the general solution by changing

whatever the value of the constants. Such particular solution is called singular solution.
19



SINGULAR SOLUTIONS

Example 1: dy 2 = 4
' dx/ Y
y=(x+c)?  General solution
Particular solution
Singular Solution —  Cannot be deduced from GS
dy 2 dy
Example 2: — ] —2x|—= — Order 1
P y(dx) x(dx)+y 0 ( )

2 A2 .
ye=2cx —x General solution

y =@01‘@ Particular solution

Singular Solution —  Cannot be deduced from GS

20



SOLUTION OF FIRST ORDER AND FIRST DEGREE ODEs

Linear differential
equation

g A10Baie)

FIRST ORDER
ODEs
dy m(x,y)

dx n(x,y)

v

Homogenous
Differential
equation

21



Category 1: Differential equations with variable separable

Form 1: dx +@ dy =20

Some function Another function
which involves only x which involves only y

In product form

Only a function of y

Only a function of x

In the above two cases, we can take x terms on one side and y terms on other side.

Form 1. j £(x) dx = — j £, dy

Form 2: J% = JP(X) dx

Each term can be integrated separately.

22



Example 1. Solve the given DE by separation of variables

Function of x only

dy
2 =4
x dx Y
Answer : dy dy 4
y y
Xx—=14 —— =
dx Y E> dx x E> %
Integrating on both sides dy dx
— =4 | —+logc
y X

Function of y only
logy = 4logx + logc

plogy — g4logx+loge — plogx*+loge = elog x* slogc
y=x*xc
y = cx*

Cross-check:

dy _ Y
= c(4x3) We know ¢ = o

d 4 d
ﬂ:_le 3 |::> 2.2 — x> = 4y | Given equation
dx x4 dx

23



Example 2: Solve the given DE  x2%y’ = y(1 — x) Xt = y(1—x)

Multiply by dx x2 Y g¢ = y(1 —)dx  x2dy = y(1 —x) dx

d 1—x
Y _ dx I:>
Integrating on both sides
dy dx dx 1 1
—_— = —_— —_— = —— — 1 — = ——
Jy sz X = logy X logx +logc = logy+logx —logc ”

— Function of y only

1
e(logy+logx—logc) — o—1/x |:> elog yalogxa—loge — =1/ |:> yxz = e /x
_ S
y = xe
: €Y
Cross-check: y =_e x
dy — 1 dy —
@y _ € (-1/%) (-1/x) e AN CR V25 BRI CLV2)
- xze +2 —e <x2> s - xze + —e
We know ce"1/%) = xy dy —xy xy VY g
dx  x2 +x3 = X xz ( 2

dy
227 _ _
X Tx y(1—x)

24




SOLUTION OF FIRST ORDER AND FIRST DEGREE ODEs

Linear differential
equation

g A10Baie)

FIRST ORDER

ODEs
dy _m(x,y)
dx n(x,y)

v

Homogenous
Differential
equation

25



Category 2: Differential equations reducible to variables separable Ex: & — 1 4 ¥y

Suppose a given DE is given in the form /‘

We can’t separate

ay
—=f(ax+by+c)|——>Fora#0andb # 0 X &y variables

dx

d_y =f(ax+by+c) —>Fora=00rb=0 | Wecanseparate
dx the variables

It can be reduced to variables separable form as follows i

Ex:j—y=1+e‘y
Let us define, v = ax + by + ¢ x
dv dy dy dv dy 1ldv a
Lot P PR T T D & Tha b
.. The given ODE becomes
~
1dv a 1dv a 1dv bf(v) +a
AR A+ (ORS dl F rit

dx Separable form

26



» Notin

Example 1. Solve the given DE i XV =1
X
o =1 +e*Y
Answer : dx
= dv . dy
dx dx
dv v dv
—n- Xt o Fiia
dv
e—v = —dx
Upon integrating,
e Vdv =— jdx
x—e V=c
x —e¥ ™t =

H.W : Cross-check the answer

separable form

dy , dv
dx dx

) —eV=-x+c

Implicit Solution
(y can’t be expressed
in terms of x)

27



SOLUTION OF FIRST ORDER AND FIRST DEGREE ODEs

Linear differential
equation

g A10Baie)

FIRST ORDER

ODEs
dy m(x,y)

dx n(x,y)

\ 4

Homogenous
Differential
equation

28



Category 3: Homogenous Differential equations (HDE)

A Differential Equation M (x, y)dx + N(x,y)dy = 0 is called a homogenous DE
if M(x,y) and N(x,y) are both homogenous functions of the same degree in x and .

Example 1:  (x%? —2xy)dx + (x? —3xy + 2y?)dy = 0
1. It is of the form M (x, y)dx + N(x,y)dy = 0 with M = x? — 2xy

N = x? — 3xy + 2y?
5 ) y Ty
Degree of x =1

Degree of y =1
Degree 2 Total degree 1+1 = 2
3. x2 — 3xy + 2y? Degree of each term 2
4. Given DE is Homogenous Differential equation of degree 2
Example 2: gy, x%2y  Degree of Nr. =3

dx x3+y3 Degree of Dr. =3
Given equation is HDE of Degree 3

Method of solving: By substituting y=xv(x) in the given equation we can be brought it
to separable form.




17

5 5 5 Degree =3
Example 1: (x* —2xy)dy + (x* —3xy + 2y°)dx =0 —5
d 2 _ 2
Answer: (x? — ny)é +(x2=3xy+2y?) =0 CPp— j_y _ ¥ 3+ 2y
dy dv . )
ituti — 2 = — ina
Substituting y = xv & =Y +xdx in (1)
dv x? = 3x(xv) + 2(x*v?) dv x? — 3x%v + 2(x?*v?
VEXT— == 7 D vtx—=-— )
dx x4 — 2(vx) dx x2 — 2(vx)
L B A -3v+20%) (1-3v+2v?)
LT X2(1 = 2v) B (1-2v)
2 Z 2 2
dv (1 —3v + 2v%) (1_}34;4_;5 +/_Z,§)
X—=— -V =—
dx (1-2v) 1—2v
dv _ (1-2v) dv
o @ P Xt l

x§¢&=—dx|:> xdv = —dx I:>jdv:_ dx

X

v=—logx+c) %z—logx+c|:>

y = x(c —logx)

H.W : Cross-check the answer

30




H.W : Solve the differential equation

dy—(z +4 +1)2+1
dx T 2

Answer :

2x + 4y + 1 =tan(4x + 1)



SOLUTION OF FIRST ORDER AND FIRST DEGREE ODEs

Linear differential
equation

g A10Baie)

FIRST ORDER

ODEs
dy m(x,y)

dx n(x,y)

A

Homogenous
Differential
equation

32



Category 4: Exact Equation

A first order differential equation of the form M (x, y)dx + N(x,y)dy = 0 is said to be
exact form if it satisfies the condition M,, = N,

If the expression Mdx + Ndy = 0 is exact, there exists some function f(x,y) such that,

(i) Condition for Exact Equation Differentials cannot be zero
Mdx + Ndy = df(x,y)5 Mdx + Ndy = —dx+—dy|:> M__(“_?_J’E
6f f Cross differentiating aM 6f N
0x () dy (x.7) IZ> dy <ax> dy 0x <0y> ox
. 9%f _ a*f | . 9M _ 9N | Condition for Exact
Since, dydx 9xdy | Oy  dx | Equation

(ii) Method of Integration W* Unknown function
_af Then, df oF
= M(x, = | M(x,vy)dx + or
=My f j (x,y) dx 5 =3y | Maxt g

Substituting into, 2L = N find ijMd +a—F—N( )
u3|umg|no,ay— (x,y), we fi 3y X 3y = X,y

v - 2(fran)| v 0

J This f is called as integral

f=[Mdx+ [N—ifde]dy+c/* af _ 33
oy dx_o

Integration constant

oF
E=N(xy)——Jde o F=

4




Example: 2xydx + (x> —1)dy =0 Exact condition is satisfied

M = 2xy N=(x%-1)

GM_Z aN_z
0y_x ax_x

y
/a\ 5\
The given equation is exact, @dx +dy =df df é)lx {% y

Equating coefficient af
of the differential dx, gy

Equating coefficient 0f _
(A 2 _ - 1N—(B
= 2xy (A) of the differential dy, dy (x b ()

- Multiplying by dx i
Integrating (A),  of P > 9f gk = 2xy dx Unknown function
ax 9K to be determined
Integrating
J0f=f2xydxl Yy [ =yx*+ — (C)

Substituting (C) in (B), /+ / I:> aF B

Integratlng
Multiplying by dy %%/ —dy |:> jaF = jdyl > F=-y+c

L f=yx?—y+c H. W: Check %—O 34




SOLUTION OF FIRST ORDER AND FIRST DEGREE ODEs

Linear differential
equation

g A10Baie)

FIRST ORDER
ODEs
dy m(x,y)
dx n(x,y)

A

Homogenous
Differential
equation

35



Category 5: Non-Homogenous Differential Equations

Consider differential equations of the form,

dy ayx+biy+c

= a;, b;, c; = constants
dx a,x + by + ¢, e

Ifc,,c, =0 We know how to solve.
Introducing X=u J*@D/v y = 17}@

. d dv
the new variable  dx = du dy = dv d_y =—
u& v x au

dv  a;(u+h)+b(v+k)+c
du a,(u+h)+b,(v+k)+c,

dv  aju+ byv h+ bk +c Constant
du B au + bzv azh + bzk + Cy onstant.

We can choose h & k such that the rounded terms become zero

36



We can make these constants as zero.

Unknown constants

Known constants

alh + blk == _C1

azh + bzk = —C

@h-ﬁk+cl=0—> 1)  ash+bk+c, =0 (2)

Two equations
Two unknowns
Solving we get h and k

37



aih+bk+c, =0 —— (1) a,h+bk+c, =0—— (2)

Multiply (1) by b, a, boh + b}}/zk = —c,b,

Multiply (2) by b, @y bih + bybyk = —cyby

(1)-@) (agbzh—ayby)h =cyby —cq by

c;by —c1b
h="T"—"Z1  (3)
a1b2 — aZbl
SUbStitUting in (1) 0 X C2b1 - C1b2 + bk = —c
1 a1b2 - aZbl o '
bk =—c; —a (c2by — ¢1b7) _ ~agiby + C1a;b) — asC3by + %bz
1 1 ' ayby — azb, %bz = G2by

38



Transformed to

dy ayx+biy+ac dv  aju+byv

(Homogenous equation)

= [ —_— =
dx a2x+b2y+€2x:u+h;y:v+kdu au + byv

. d dt

Substituting v(u) =tu v _ t+u—

du du
dt au+bitu a, + byt
——ttu— = = —
du a,u+b,tu a, + byt

udt _ a1+b1t _ a1+b1t—a2t—b2t2 _ a1+(b1—a2)t—b2t2
du a, + byt B a, + byt B a, + byt
Function of t alone
Separating the variables, (az + byt) dt _du

a; + (by —a,)t —bt2  u

Integrating, (a, + b,t) dt du |
ja1 + (by — ay)t — byt? J? +@\’ Integrating constant

aztle dt
2 a4 + (bl — az)t + bztz

1
——logla; + (b; — a,)t — byt?] + =logu+c

2

Substituting t = Eand then u= x-h, v=y-k we will obtain the general solution

39



SOLUTION OF FIRST ORDER AND FIRST DEGREE ODEs

Linear differential
equation

FIRST ORDER
ODEs
dy m(x,y)
dx n(x,y)

g A10Baie)

A

Homogenous
Differential
equation

40



Category 6: First order Linear Differential Equation_(Leibnitz’s Linear DE)

A 1t order 1%t degree DE has the form / Independent
variable only
/d— Py = Q0
Power of —=1 —,

Powerof y=1

Hence the given equation is a linear equation

- d
Sub-case Q(x) = 0 _y+p(x)y:0
dx
Proof:

d d
73/: —P(x)dx E>j7y: —JP(x)dx+logc > logy = —fP(x)dx+logc

A

Separable form

logy — logc = — f P()dx = log (%) = - f P(x)dx B>  log/c) — o= [ P()dx

Y _ofP@dx oy  y=ce [E@d (g
Cross-check: C

Differentiating (1 d
ifferentiating (1)~ dy _ ce= 1P dx(_p(p)) é = eem TPOIax [p())

with respect to x dox
v’

dy dy _ :
= =~V PW® = < +P()y =0 Given Equation



: : d
Recall Given equation d_ic] +P(x)y =0

Multiplying the given equation by e/ 7 9¥

dy
[pPdx [/ _
e (dx + P(x)y) 0

dy

JPdx JPdx _
v + P(x)ye 0

The above equation can be written as, di lyef p dxl = 0
X
Multiplying by dx /dég%[yedexl — 0dx |:> d lyefpdxl — 0dx
Upon integrating, 4//@}’(3/ el P dx) =c

[Pdx _ . General
Solution

ye

42



- in d
Given equation d_ic] +P(x)y =0

[ Pdx

Multiplying the given equation by e , We can rewrite

%lyedex] - 0
\ J

|

Perfect differential
So, integration becomes trivial

The function which we multiply to get a perfect differential is called an Integrating factor.
In this case e P 9% s the Integrating factor.

Integrating Factor

An expression F(x, y) of the variables x, y is called an Integrating factor of the differential
equation M (x,y)dx + N(x,y)dy = 0 if F(x,y)[ M(x,y)dx + N(x,y)dy] = d(u(x, y)),
where u(x, y) is some expression of x, y.

43



d
Category 6: % + P(x)y = Q(x)

Multiplying both sides by the integrating factor e/ Pdx

., We can rewrite

d
el Pdx —di, + P(x)yel P9¥ = Q(x)el P 9*
) k—i
| Function of x only

yedex) — Q(x)edex

Q(x)ef Pdx gy

on both sides

&
Multiplying by dx (yedex)

(yefp ) = Q(x)efpdx dx

d

Integrating J ( | P dx ) = JrQ(x)ef Pdx qx +@\Integration

constant

yedex — rQ(x)edex dx + ¢

I:> y:e‘fpdeQ(x)edexdx+c

General Solution

44



Example 1: Solve the differential equation ? + Y _ x2
X X

: : d
Comparing with d_i: + P(x)y = Q(x)
1
We find P(x) = > Q(x) = x?

Then the integrating factor is eJ P dx = J(1/x) dx — plogx —

Let us multiply the given equation by integration factor X,

dy d
+y=x3p —xy]=x3
Multiplying by dx " dx dx _
d Integrating x4
;lzf/d—&[xy]:x3dx:>jd(xy)=jx3dx+6l > xy:j*‘@\
x3 Integration
y=—r+- constant
Cross-check: o
Differentiating, 4y _ 3x* ¢ 31 I A - + y  x*
dx 4  x2 4 4 4
d_yzxz_X Q.FX: 2 Verified

dx X dx 45



Initial value problem

To determine the solution of a differential equation subject to some initial conditions is
known as initial value problem.

The conditions that are prescribed along with the differential equation are referred to as
the Initial Conditions.

For a differential equation of 15t order and 1%t degree only one initial condition is required
since the general solution contains only one arbitrary constant.

Example : dy .y _ c . .
Solve —=+= = x? given that| y = whenx =1 [~ Initial condition

3

Solution : _Z + -
YT Ty
Substituting the Initial Condition, y = Z atx=1
5 1
Z = Z +C E> c=1

The required particular solution is,

x3 1  Arbitrary constant is fixed through initial

_|_

Y =7 T, condition



Example 2:

Solve the differential equation
(x?2 —y?)dx + 2xydy = 0 given that

General Solution

Substituting tinitial conditions, 1 +1=c )

Particular Solution

y = 1whenx=1

» Initial condition

x?+y?=2x

c=2

47



More on Integrating factors

Consider a differential equation 3_2: = % Find out the integrating factors.

Note: The equation is of separable type. We can derive the solution easily.
dy dx
y  x
logy =logx + logc
y=cCcx
Integrating factors

The aim is to find a function which upon multiplication on the given equation we should able
to write the given equation as a perfect differential.

Given equation dy_ vy =0 —— (1
dx x
. 1 y
Multiplying (1) by -y —==0
X X
| Xy —y _
Integrating factor x2 0
d

_(X) _ o [ * Perfectderivative




Given equation —_—Z=0 —— (1
dx
o y' y _ o
Multiplying (1) b X2 + y2 - x(x2 +y2)
xy' =y 0
Second x(x2 + y2)

Integrating factor

i[tan—l(l)]:().:;) 1)2>X<—2/+y;>=0:> Xy —y

2 =
(dx x | (1_|_(% X <1+(%) )x2
Perfect derivative xy' —y Xy —y
2 2 =0 E> > >~ =20
(x2 + y2)x? (x2 + y2)
. 1 ’le
Multiplying (1) b 2y _2=0
y =
y X
c ! d 1 =0 i(1 —log x) =0
Third a(ogy)—a(ogx)— st ——(logy —log x) =

Integrating factor

d
—(log%)zo = logizc y

dx

Y
X

=C

Lesson:
1. Integrating factors (I.F.) are many for the given equation.
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2. Finding integrating factors is as difficult as solving the given differential equation.



xM(x,y) + yN(x,y) # 0

1

LF= xM (x,y)+yN(x,y)

CASE 1 CASE 3

10

Given equation
M(x,y)dx+ N(x,y)dy =0

xM(x,y) —yN(x,y) # 0

1

LF= xM (x,y)—yN(x,y)

L

CASE 2 CASE 4

dN oM
dx

-3
T—f(}')

IFE = o/ FO) dy
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2

d
CASE 1: Y 4 ——> y2dx +x(x —y)dy=0—— (1)

dx x(y — x)
M(x,y) =y* ; N(x,y) =x(x —y)

xM(x,y) + yN(x,y) = xy? +xy(x —y) = x?y # 0

1
L.F = =
XM+yN

1
Multiplying (1) by % x2y

1 ydx —xdy dy
%[yzdx+x(x—y)dy]=0 — = +y =0

—d (%) + d(logy) =0
On integrating

—%+logy=c = e V/*elogy =(

y =c'eV/* Implicit solution
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xM(x,y) + yN(x,y) # 0

\

1

LF= xM (x,y)+yN(x,y)

CASE 1 CASE 3

10

Given equation
M(x,y)dx+ N(x,y)dy =0

xM(x,y) —yN(x,y) # 0

1

LF= xM (x,y)—yN(x,y)

L

CASE 2 CASE 4

dN oM
dx

-3
T—f(}')

IFE = o/ FO) dy
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CASE 2:  Solve: (x3y? +x)dy + (x?y3> —y)dx =0

M(x,y) =x3y?—y; N,y =x*y>+x

xM —yN = =2xy # 0
1 1

T XMy -yNGy) 2xy

Multiplying (1) by - 5 1

— —1 2y2+1 =
ny[y(x )dx + x(x2y? + 1) dy] =0
1 p) 1 2
YT \ WO VAP A DR
> X<y . X > X"y y y =
1 1 /dx 1d
—Ex)’(}’dx+xdy) + = (7—7> 0 ———(xy)2+ (logx—logy)—O
\ Y J ‘ /
1 2

On integrating, 1 1
_Z(xy)z + E(logx —logy) =c

1

1 X
—Z(xy)2 + Elog; =c 53




xM(x,y) + yN(x,y) # 0

\

1

LF= xM (x,y)+yN(x,y)

CASE 1 CASE 3

10

Given equation
M(x,y)dx+ N(x,y)dy =0

xM(x,y) —yN(x,y) # 0

v

LF= xM (x,y)—yN(x,y)

L

CASE 2 CASE 4

dN oM
dx

-3
T—f(}')

IFE = o/ FO) dy
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CASE 3: Solve: (x*+y?+x)dx +xydy =0

Find out the IF and the solution.

CASE 4: Solve:ydx+ (y?—x)dy =0

Find out the IF and the solution.

H.W

H.W
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xM(x,y) + yN(x,y) # 0

\

1

LF= xM (x,y)+yN(x,y)

CASE 1 CASE 3

oM ON

dy Ox _
— /)

: IF = o/ f(0) dx

10

Given equation
M(x,y)dx+ N(x,y)dy =0

xM(x,y) —yN(x,y) # 0

\

1

LF= xM (x,y)—yN(x,y)

L

CASE 2 CASE 4

N _ oM
ox dy _
— =)

IFE = o/ FO) dy
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APPLICATIONS
Application 1:

Bacteria Culture

In a laboratory, it is observed that the rate of increase of a bacteria in a certain culture is
proportional to the number of bacteria present. If the number doubles in t; hours, how many
bacterial be expected at the end of nt, hours?

Answer:  Let x = number of bacterial at any time. Rate of increase of

bacteria w.r.t. ‘¢’
According to the experimental result

Information given in the

ma A fdx
1% line in the problem ~ \% % 15t order ODE

- Proportionality

The other information x> 2x int, constant
given in the second line

Unknown variable

So we need to find x in terms of t
15t order ODE @:/ k (separable type)

dt
—, System parameters
we know this value 57




dx_
dt

dx X

= logx = kt + logc log— = kt

— = kat ) log ge—) 0g—
|:> elog(x/c) — okt

Xkt . .
=€ General solution with

C
/ one arbitrary constant

k x

There are two arbitrary constants
present in the solution. We have to x(t) = cet
fix them from the given information

Step 1: Fixing the constant ¢
In the second information X has been written in terms of t,

Let us express X in terms of t,

Let N, be the number of bacteria originally present in the culture.

Att=0 x=N, Inthatcase N,= ce*©® No= ¢

. x = Nkt
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Step 2: Fixing the constant k
As per the second information x = 2N, att =t

. 2N, = N,e¥la 2 = el
— Kt
log2 = log.e"4 log2 = kt,
k = ! log 2
= L 0og
N\ q (we have fixed these parameters)
(0)
x(t) :(I\VI()e@/ﬁ? \PropOrtionality
Value of ¢ fixed constant

from initial value

Now let us answer the question
How many bacteria be expected at the end of n ¢, hours?

Answer: We have to find xatt=nz, x(t) = N, e " llog 2/,

x(t) = () dmlog?
— ~

Known Known 59




APPLICATIONS
Application 2: I R
Electronic circuit

A resistance R and an inductance L are connected in series with a
voltage supply E(t). Find current in the circuit when E = E, sin wt is !
a E, is a constant. |!

Step 1:  Set up the DE with i as an unknown variable. E =Ey(t)

Step 2: Integrate and find the expression for i

Step 1: The desired equation can be obtained by applying Kirchoff’s voltage law to the circuit

\oltage drop by N \oltage drop by
the inductor the resistance
L i + Ri = E(t)
— l -
Dependent variable dt

R ————————— Quantity which involves
L

A})"’ @ only independent variables

Independent variable



di . R 1E ©
at " L' L
It is of the form dy R
— 4 P = - — =
v (x)y = Q(x) P(x) T constant
1
Answer : Q(x) = ZE (t)

y = e~ J P(x) dx UQ(x)ef P(X) qy + C]

= e~ (R/L)x EfE(x)e(R/L)x dx + c]

1 In terms of
i ircuit | i = e—(R/L)x | Z (R/L)x . )
Current in the circuit | i = e [L fE(t)e dx + c‘ original variable

Substitute E = E, sin wt
1
i = e (R/L)x [ZJEO sin wt e R/t dx + c]
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