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The heat capacity of solids

Einstein model Debye model
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We have discussed how to calculate the heat capacity of an ideal gas. Now we shall try to 

understand the heat capacity of a solid using statistical mechanics. 

 Let us summarize the experimental facts.

(i)  Around room temperature ordinary simple solids have a molar heat (heat capacity / mole) 

of about 3NK = 25 J/ mol. This that is called  Dulong - Petit law.

(ii)  At low temperatures, the molar heat decreases in proportional to 𝑇3. 

The heat capacity of solids
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• Just as the motion of atoms contributes to the heat capacity of a gas, we expect that the 

motion of atoms (or) ions will contribute to the heat capacity of a solid.

• The ideal solid is a crystal, where atoms are arranged periodically in a lattice.

• In a simple  cubic lattice, eight neighbouring atoms sit at the corners of a cube.

• The atoms can move around their equilibrium positions which are called of lattice points.

• Owing to the surrounding atoms, the potential energy of an atom is lowest at its lattice 

point.

• We can depict the situation schematically as one which atoms are connected by springs as 

shown in the figure. 

In this model, the motion of each atom is a harmonic oscillation. Let the angular frequency  of 

the oscillation be 𝜔 in all three directions, 𝑥, 𝑦 𝑎𝑛𝑑 𝑧.  Each atom then has an energy

𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
= (𝑛𝑥+𝑛𝑦 + 𝑛𝑧 +

3

2
 )ℏ𝜔

 

Ground state energy

Quantum numbers

Einstein Model
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Partition Function:

 The energy levels of a crystal containing N atoms are the same as those for a set of 

3N independent simple harmonic oscillators having a frequency 𝛾. The possible energy levels 

associated with this frequency are given by the quantum theory of simple harmonic oscillator 

as

 𝐸𝑛 = 𝑛 +
1

2
ℎ𝛾 ,  𝑛 = 0,1,2, … 1

The energy of the crystal 

 𝐸𝑛𝑗
=  ෍

𝑗=1

3𝑁

𝑛𝑗 +
1

2
ℎ𝛾𝑗  ,  2

The partition function is a sum over all micro states and is given by

 𝑧 =  ෍
𝑚𝑖𝑐𝑟𝑜
𝑠𝑡𝑎𝑡𝑒𝑠

𝑒
− 𝛽𝐸𝑛𝑗  3
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• Summing over are all microstates means that the sum is to be performed over all possible 

sets of integers. That is, for each normal mode of frequency 𝜈𝑗 , the sum is carried out over 

all integers from zero to infinity.

• Substituting (2) into (3), we find

𝑧 = ෍

𝑛1=0

∞

෍

𝑛2=0

∞

… … ෍

𝑛3𝑁=0

∞

𝑒
− 𝛽 σ𝑗=1

3𝑁 𝑛𝑗+
1
2 ℎ𝜈𝑗  (4)

• Now let us define 𝐸0 by

𝐸0 =
1

2
 ෍

𝑗=1

3𝑁

ℎ𝜈𝑗  𝑧𝑒𝑟𝑜 𝑝𝑜𝑖𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦  5

Rewriting (4)

 𝑧 = 𝑒−𝛽𝐸0 ෍

𝑛1=0

∞

෍

𝑛2=0

∞

… … ෍

𝑛3𝑁=0

∞

𝑒− 𝛽 σ𝑗=1
3𝑁 𝑛𝑗ℎ𝜈𝑗  (6)
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• Equation (6) looks complicated but it can be easily simplified.

• Since we can write the exponential of a sum is the product of the exponentials of the 

factors.

• Hence we can reduce the multiple sum to a product of sums all of which are a like except 

for the subscript ‘j’ on the frequencies.

• So equation (6) be comes

𝑧 = 𝑒− 𝛽𝐸0 ෍

𝑛1=0

∞

𝑒−𝛽𝑛1ℎ𝜈1 ෍

𝑛2=0

∞

𝑒−𝛽𝑛2ℎ𝜈2 … . . ෍

𝑛3𝑁=0

∞

𝑒−𝛽𝑛3𝑁ℎ𝜈3𝑁  (7)

• Since all the sums have the same form, the subscript on the 𝑛𝑠 can be thrown away and (7) 

can be written as a product of similar sums with one factor for each frequency.

𝑧 = 𝑒−𝛽𝐸0  ෑ

𝑗=1

3𝑁

෍

𝑛=0

∞

𝑒−𝛽𝑛ℎ𝜈𝑗  (8)
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• The infinite  sum over n can be easily performed.

• If 𝑥𝑗 is defined by

 𝑥𝑗 = 𝑒− 𝛽ℎ𝜈𝑗  (9)

Then

෍

𝑛=0

∞

𝑒− 𝛽𝑛ℎ𝜈𝑗  =  ෍

𝑛=0

∞

𝑥𝑗
𝑛  (10)

෍

𝑛=0

∞

𝑥𝑗
𝑛 = 1 + 𝑥𝑗 + 𝑥𝑗

2 + 𝑥𝑗
3 +  … . =

1

1 − 𝑥𝑗
 

 ෍

𝑛=0

∞

𝑒− 𝛽𝑛ℎ𝜈𝑗 =
1

1 − 𝑒− 𝛽ℎ𝜈𝑗
 (11)

Substituting  this into (8) , we obtain the partition function as

 𝑧 = 𝑒−𝛽𝐸0  ෑ

𝑗=1

3𝑁

෍

𝑛=0

∞

𝑒−𝛽𝑛ℎ𝜈𝑗 = 𝑒− 𝛽𝐸0  ෑ

𝑗=1

3𝑁
1

1 − 𝑒− 𝛽ℎ𝜈𝑗
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• Recall the connection between Helmholtz free energy and the partition function

𝐹 = −𝐾𝑇 log 𝑧

log 𝑧 =  log 𝑒− 𝛽𝐸0 ෑ

𝑗=1

3𝑁
1

1 − 𝑒− 𝛽ℎ𝜈𝑗

log 𝑧 =  log 𝑒− 𝛽𝐸0 +  log ෑ

𝑗=1

3𝑁
1

1 − 𝑒− 𝛽ℎ𝜈𝑗

log 𝑧 = −𝛽𝐸0 +  log
1

1 − 𝑒− 𝛽ℎ𝜈1
 ×

1

1 − 𝑒− 𝛽ℎ𝜈2
×  … ×

1

1 − 𝑒− 𝛽ℎ𝜈3𝑁
 

log 𝑧 = −𝛽𝐸0 +  log
1

1 − 𝑒− 𝛽ℎ𝜈1
+  log

1

1 − 𝑒− 𝛽ℎ𝜈2
+ ⋯ +  log

1

1 − 𝑒− 𝛽ℎ𝜈3𝑁

log 𝑧 = −𝛽𝐸0  −  log 1 − 𝑒− 𝛽ℎ𝜈1 − log 1 − 𝑒− 𝛽ℎ𝜈2 + ⋯ − log 1 − 𝑒− 𝛽ℎ𝜈3𝑁

log 𝑧 = −𝛽𝐸0  −  ෍

𝑗=1

3𝑁

log 1 − 𝑒− 𝛽ℎ𝜈𝑗  

𝐹 = 𝐸0 + 𝐾𝑇 ෍

3𝑁

log 1 − 𝑒− 𝛽ℎ𝜈𝑗
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Einstein Model

• Einstein treated the nature of the atoms in the solid as if they will oscillate as N 

independent oscillators. We  expect  a contribution to the  free energy in the form

𝐹 = 𝑁𝐸0 + 𝐾𝑇 ෍

𝑗

log 1 − 𝑒− 𝛽ℎ𝜈𝑗 ,

where the sum is over the 3N vibrational modes.

• The term 𝑁𝐸0is energy of interaction between atoms in their equilibrium positions and 

indeed the zero point energy of the oscillators.

• In Einstein model all the  frequencies are taken to be the same and given the value 𝜈, the 

Einstein frequency. The free energy becomes

𝐹 = 𝑁𝐸0 + 𝐾𝑇 log 1 − 𝑒− 𝛽ℎ𝜈 + log 1 − 𝑒− 𝛽ℎ𝜈 + ⋯ + log 1 − 𝑒− 𝛽ℎ𝜈

𝐹 = 𝑁𝐸0 + 𝐾𝑇 3𝑁 log 1 − 𝑒− 𝛽ℎ𝜈  

𝐹 = 𝑁𝐸0 + 3𝑁𝐾𝑇 log 1 − 𝑒− 𝛽ℎ𝜈  
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Derivation of 𝑪𝑽:

The heat capacity is obtained by differentiating twice the free energy respect to T.

𝐶𝑣 = −𝑇
𝜕2𝐹

𝜕𝑇2
𝑣

𝐹 = 𝑁𝐸0 + 3𝑁𝐾𝑇 log 1 − 𝑒− 𝛽ℎ𝜈 = 𝑁𝐸0 + 3𝑁𝐾𝑇 log 1 − 𝑒− 𝛽ℏ𝜔 

𝜕𝐹

𝜕𝑇
= 3𝑁𝐾 log 1 − 𝑒− 𝛽ℏ𝜔 +

𝑇 − 𝑒− 𝛽ℏ𝜔 ℏ𝜔
𝐾𝑇2

1 − 𝑒− 𝛽ℏ𝜔
 

𝜕𝐹

𝜕𝑇
= 3𝑁𝐾 log 1 − 𝑒− 𝛽ℏ𝜔  −

ℏ𝜔

𝐾𝑇

𝑒− 𝛽ℏ𝜔

1 − 𝑒− 𝛽ℏ𝜔
 

𝜕2𝐹

𝜕𝑇2 = 3𝑁𝐾
ቐ− 𝑒− 𝛽ℏ𝜔 ℏ𝜔

𝐾𝑇2

1 − 𝑒− 𝛽ℏ𝜔
+

ℏ𝜔

𝐾𝑇2

𝑒− 𝛽ℏ𝜔

1 − 𝑒− 𝛽ℏ𝜔
 −

ℏ𝜔

𝐾𝑇

𝑒− 𝛽ℏ𝜔 ℏ𝜔
𝐾𝑇2

1 − 𝑒− 𝛽ℏ𝜔
 

ቑ
+

ℏ𝜔

𝐾𝑇

𝑒− 𝛽ℏ𝜔 − 𝑒− 𝛽ℏ𝜔 ℏ𝜔
𝐾𝑇2

1 − 𝑒− 𝛽ℏ𝜔 2

Home work
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𝜕2𝐹

𝜕𝑇2
= 3𝑁𝐾

−ℏ2𝜔2 

𝐾2𝑇3

𝑒− 𝛽ℏ𝜔

1 − 𝑒− 𝛽ℏ𝜔
 −

ℏ2𝜔2

𝐾2𝑇3

𝑒− 2𝛽ℏ𝜔

1 − 𝑒− 𝛽ℏ𝜔 2

𝜕2𝐹

𝜕𝑇2 =
−3𝑁𝐾ℏ2𝜔2𝑒− 𝛽ℏ𝜔

𝐾2𝑇3 1 − 𝑒− 𝛽ℏ𝜔
1 +

𝑒− 𝛽ℏ𝜔

1 − 𝑒− 𝛽ℏ𝜔
 

𝜕2𝐹

𝜕𝑇2 =
−3𝑁𝐾ℏ2𝜔2𝑒− 𝛽ℏ𝜔

𝐾2𝑇3 1 − 𝑒− 𝛽ℏ𝜔
 ×

1

1 − 𝑒− 𝛽ℏ𝜔
 

The heat capacity is obtained by differentiating twice the free energy respect to T.

𝐶𝑣 = −𝑇
𝜕2𝐹

𝜕𝑇2
𝑣

= 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2
𝑒𝛽ℏ𝜔

𝑒𝛽ℏ𝜔  − 1 2
 

Limiting Cases:

(i) At high temperatures  𝐾𝑇 > ℏ𝜔 𝐶𝑣 = 3𝑁𝐾.

(ii) At low temperatures  𝐾𝑇 < ℏ𝜔 𝐶𝑣 = 𝑒− 𝛽ℏ𝜔.
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High Temperature Limit :

𝐶𝑣 = 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2
𝑒

ℏ𝜔
𝐾𝑇

𝑒
ℏ𝜔
𝐾𝑇  − 1

2 

Case  𝐾𝑇 > ℏ𝜔

𝐶𝑣 = 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2

×
1 +

ℏ𝜔
𝐾𝑇 +

1
2

ℏ𝜔
𝐾𝑇

2

+ ⋯

1 +
ℏ𝜔
𝐾𝑇

+
1
2

ℏ𝜔
𝐾𝑇

2

+ ⋯ − 1

2

𝐶𝑣 = 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2

×
1 +

ℏ𝜔
𝐾𝑇

ℏ𝜔
𝐾𝑇

2  

𝐶𝑣 = 3𝑁𝐾 1 +
ℏ𝜔

𝐾𝑇
 = 3𝑁𝐾. 

Low Temperature Limit :

Case 𝐾𝑇 < ℏ𝜔 

𝐶𝑣 = 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2
𝑒𝛽ℏ𝜔

𝑒𝛽ℏ𝜔 − 1 2
 

𝐶𝑣 = 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2

×
𝑒

ℏ𝜔
𝐾𝑡

𝑒
2ℏ𝜔
𝐾𝑇

 

𝐶𝑣  = 3𝑁𝐾
ℏ𝜔

𝐾𝑇

2

𝑒−
ℏ𝜔
𝐾𝑇 ∝ 𝑒−𝛽ℏ𝜔

Failure :

• Experimental results show that at low temperatures 𝐶𝑣 ∝ 𝑇3. 
14



Paramagnetism

• Consider a system consisting of N  non interacting atoms in a substance at absolute 

temperature T and placed in an external magnetic field Ĥ pointing along the z-direction. 

• Then the magnetic energy of an atom can be written as

𝜖 = − Ƹ𝜇 . Ĥ → (1)

• Here Ƹ𝜇 is the magnetic moment of the atom. It is proportional to the total angular 

momentum ℏ መ𝐽 of the atom and is conventionally written is the form

Ƹ𝜇 = 𝑔𝜇0
መ𝐽  →  (2) 

 𝜇0  − 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑚𝑜𝑚𝑒𝑛𝑡 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝐵ℎ𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝜇0 =
𝑒ℏ

2𝑚𝑐
.

 𝑔 − 𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚.

By combining (1) and (2) one obtains

𝜖 = −𝑔 𝜇0 ҧ𝐽 . ഥ𝐻  = −𝑔𝜇0𝐻𝐽 →  (3)

Since ෡𝐻 points in the z-direction. In a quantum mechanical description the values which 𝐽𝑧 

can assume are discrete and are given by
15



𝐽𝑍 = 𝑚

Where m can take on all values between −𝐽 𝑎𝑛𝑑 + 𝐽 in integral steps (i.e.,)

𝑚 = −𝐽, −𝐽 + 1, −𝐽 + 2, … 𝐽 − 1, 𝐽 → (4)

2𝐽 + 1  possible values of m corresponding to that many possible projections of the angular 

momentum vector along the z-axis.

So the possible magnetic energies of the atom are then

𝜖𝑚 = −𝑔𝜇0𝐻𝑚 → (5)

The probability 𝑃𝑚 that an atom is in a state labeled as  ‘m’ is given by

𝑃𝑚 ∞ 𝑒− 𝛽𝜀𝑚 = 𝑒𝛽𝑔𝜇0𝐻𝑚

The z component of its magnetic moment in this state is by (2) , equal to

𝜇𝑧 = 𝑔𝜇0𝑚

The mean z component of the magnetic moment of an atom is therefore

𝜇𝑧 = ෍ 𝑥𝑖  𝑝𝑖

𝜇𝑧 =
σ𝑚=−𝐽

𝐽 𝑒𝛽𝑔𝜇0𝐻𝑚 𝑔𝜇0𝑚

σ𝑚=−𝐽
𝐽 𝑒𝛽𝑔𝜇0𝐻𝑚

The numerator can conveniently be written as a derivative w.r.to the external parameter H, 

that is 16



෍

𝑚=−𝐽

𝐽

𝑒𝛽𝑔𝜇0𝐻𝑚 𝑔𝜇0𝑚  =
1

𝛽

𝑑𝑍

𝑑𝐻

𝑤ℎ𝑒𝑟𝑒 𝑍 =  ෍

𝑚=−𝐽

𝐽

𝑒𝛽𝑔𝜇0𝐻𝑚  → (7)

           Partition function of one atom.

Hence (6) becomes

ҧ𝜇𝑧 =
1

𝛽

1

𝑧

𝜕𝑧

𝜕𝐻
 =

1

𝛽
 

𝜕 log 𝑧

𝜕𝐻
 → (8)

To calculate z, let us introduce the abbreviation 

𝜂 = 𝛽𝑔𝜇0𝐻 =
𝑔𝜇0𝐻

𝐾𝑇
 → (9)

which is a dimensionless parameter which measures the ratio of the magnetic energy 𝑔𝜇0𝐻 to 

thermal energy KT.
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𝑧 =  ෍

𝑚=−𝐽

𝐽

𝑒𝜂𝑚 = 𝑒−𝑛𝐽 + 𝑒−𝑛 𝐽−1 + ⋯ + 𝑒𝑛𝐽

which is simply a finite geometric series where each term is obtained from the preceding one 

as a result of multiplication by 𝑒𝜂. This can immediately be summed to give

𝑧 =
𝑒−𝑛𝐽 − 𝑒𝑛 𝐽+1

1 − 𝑒𝜂

෍

𝑛=−3

3

𝑒𝑎𝑛 = 𝑒−3𝑎 + 𝑒−2𝑎 + 𝑒−𝑎 + 1 + 𝑒𝑎 + 𝑒2𝑎 + 𝑒3𝑎 =
𝑒−3𝑎 − 𝑒4𝑎

1 − 𝑒𝑎  

𝑒−3𝑎 − 𝑒4𝑎

1 − 𝑒𝑎 = 𝑒−3𝑎 − 𝑒4𝑎 1 + 𝑒𝑎 + 𝑒2𝑎 + 𝑒3𝑎 + 𝑒4𝑎 + 𝑒5𝑎 + 𝑒6𝑎 + ⋯  

 = 𝑒−3𝑎 + 𝑒−2𝑎 + 𝑒−𝑎 + 1 + 𝑒𝑎 + 𝑒2𝑎 + 𝑒3𝑎 + 𝑒4𝑎 + 𝑒5𝑎 + 𝑒6𝑎 + ⋯

−𝑒4𝑎 − 𝑒5𝑎 − 𝑒6𝑎 − ⋯

= 𝑒−3𝑎 + 𝑒−2𝑎 + 𝑒−𝑎 + 1 + 𝑒𝑎 + 𝑒2𝑎 + 𝑒3𝑎 

18



This can be brought to more symmetrical form by multiplying both numerator and 

denominator by 𝑒−
𝜂

2.

Then 

𝑧 =
𝑒

−𝜂 𝐽+
1
2 − 𝑒

𝜂 𝐽+
1
2

𝑒−
𝜂
2 − 𝑒

𝜂
2

(or) 

19



𝑧 =
sinh 𝐽 +

1
2 𝜂

sinh
𝜂
2

 → (11)

log 𝑧 =  log sinh 𝐽 +
1

2
𝜂 −  log sinh

𝜂

2
 → (12)

𝜇 =
1

𝛽

𝜕 log 𝑧

𝜕𝐻
 =

1

𝛽

𝜕 log 𝑧

𝜕𝜂
 

𝜕𝜂

𝜕𝐻
 = 𝑔𝜇0

𝜕 log 𝑧

𝜕𝜂
 → (10)

Substituting (12) into (10)

𝜇+ = 𝑔𝜇0

𝐽 +
1
2 cosh 𝐽 +

1
2 𝜂

sinh 𝐽 +
1
2 𝜂

 −

1
2 cosh

𝜂
2

sinh
𝜂
2

(or)

𝜇𝑧 = 𝑔𝜇0𝐽 . 𝐵𝐽 𝜂  → (13)

𝐵𝐽 𝜂 =
1

𝐽
𝐽 +

1

2
coth 𝐽 +

1

2
𝜂 −

1

2
coth

𝜂

2
 → (14)

Sometimes called “ Brillouin function”.
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Paramagnetism:

 If there are 𝑁𝑜 atoms per unit volume, the mean magnetic moment per unit volume 

(or magnetization) becomes 

𝑀𝑧 = 𝑁0 ҧ𝜇𝑧  = 𝑁0𝑔𝜇0𝐽𝐵𝐽(𝜂) 

Limiting cases: CASE 1:

𝜂 ≫ 1, 𝑡ℎ𝑎𝑡 𝑖𝑠 
𝑔𝜇0𝐻

𝐾𝑇
 ≫ 1

𝑀𝑧 →  𝑁0𝑔𝜇0𝐽 (goes to a constant level).

Explanation

𝑊𝑒 𝑘𝑛𝑜𝑤 coth 𝑦 =
cosh 𝑦

sinh 𝑦
 =

𝑒𝑦 + 𝑒−𝑦

𝑒𝑦 − 𝑒−𝑦

𝑦 ≫ 1, both 𝑒−𝑦 ≪ 𝑒𝑦 so coth y = 1

So that 

𝐵𝐽 𝜂 =
1

𝐽
𝐽 +

1

2
coth 𝐽 +

1

2
𝜂 −

1

2
coth

1

2
𝜂 =

1

𝐽
𝐽 +

1

2
−

1

2
= 1

𝑀 = 𝑁0𝑔𝜇0𝐽 → (𝐴)
21



Limiting cases: CASE 2:

𝑦 ≪ 1, both 𝑒𝑦 𝑎𝑛𝑑 𝑒−𝑦 can be expanded in power series retaining all terms quadratic in 𝑦, 

the result is 

coth 𝑦 =

1 + 𝑦 +
𝑦2

2 + 1 − 𝑦 +
𝑦2

2

1 + 𝑦 +
𝑦2

2 +
𝑦3

6 − 1 − 𝑦 +
𝑦2

2 −
𝑦3

6

 

=
2 + 𝑦2

2𝑦 +
2𝑦3

3

 =

2 1 +
𝑦2

2

2 𝑦 +
𝑦3

6

=
1 +

𝑦2

2 + ⋯

𝑦 +
1
6

𝑦3+. .
 

= 1 +
𝑦2

2

1

𝑦
1 +

𝑦2

6

−1

=
1

𝑦
1 +

𝑦2

2
1 −

𝑦2

6

coth 𝑦 =
1

𝑦
+

𝑦

3
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𝐵𝐽(𝜂) =
1

𝐽
𝐽 +

1

2

1

𝐽 +
1
2 𝜂

+
1

3
𝐽 +

1

2
𝜂  −

1

2

2

𝜂
+

𝜂

6
 

=
1

𝐽

1

3
𝐽 +

1

2

2

𝜂 −
𝜂

12
=

𝜂

3𝐽
𝐽2 + 𝐽 +

1

4
−

1

4
=

𝐽 + 1

3
𝜂

∴ 𝜂 ≪ 1 𝑀𝑧 = 𝑁0𝑔𝜇 𝐽 
𝐽 + 1

3
𝜂 ∝  𝜂 ∝

𝐻

𝑇

∴ 𝑀𝑧 = 𝜒𝐻

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁0𝑔2𝜇0

2𝐽 𝐽 + 1

3𝐾𝑇

𝜒 ∝ 𝑇−1  → 𝐾𝑛𝑜𝑤𝑛 𝑎𝑠 𝐶𝑢𝑟𝑖𝑐 𝑙𝑎𝑤 
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Dependence of the Brillouin function 𝐵𝐽 𝜂  𝑜𝑛 𝑢𝑛 argument 𝜂 for various values of 𝐽 

0 1 2 3 4 𝜂

0.5

1

𝐵𝐽(𝜂)

1

2

𝐽 =
7

2

1
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