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UNIT - III

QUANTUM STATISTICS



Combinational Problems

❖ Consider two boxes

❖ I want to take one ball from the first set and put it in the first box 

and one ball from the second set and put it in the second box.

Question

❖ How many numbers of ways the combined system of Box – 1 

and Box – 2 can be filled?  (or)  Find the total number of possible 

distributions.

   (a) 2 + 3 ?  (b) 2 x 3 ? 3

Box 1 Box 2



Basic Combinational Problems

❖ Box – 1 : can be filled with either a red ball (or) a black ball 

(or) with a yellow ball.

❖ Box – 2 : can be filled with either a blue ball or with a green 

ball.

In short

❖ Box – 1 can be filled in 3 different ways and Box – 2 can be 

filled in 2 different ways.

4
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Box 1

Box 2

Box 1

Box 1

Box 2

Box 2

Box 2

Box 2

Box 2

6 ways = 3 x 2

Box 2Box 1
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Box 1 Box 2

Box 1 Box 2

Box 1 Box 2

Box 1 Box 2

Box 1 Box 2

Box 1 Box 2

6 ways



❖ I want to take one ball from the first set and put it in the 

first box and one ball from the second set and put it in the 

second box and one ball from the third set and put it in the 

third box

Question

❖How many numbers of ways the combined system of Box – 

1, 2 & 3 can be filled?

7
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Extension to 3 Boxes
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E HA

E HB

E HC

E HD

E JA

E JB

E JC

E JD

F HA

F HB

F HC

F HD

F JA

F JB

F JC

F JD

G HA

G HB

G HC

G HD

G JA

G JB

G JC

G JD

4 x 3 x 2 = 24

First Ball Second Ball Third Ball
First Box Second Box Third Box

A, B, C, D E, F, G H, J

(First Letter) (Second Letter) (Third Letter)
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Box - 1 Box - 2 Box - 3 Box - M

Suppose there are M boxes and N balls.

Box – 1 can be 
filled in N1 - ways

Box – 2 can be 
filled in N2 - ways

Box – 3 can be 
filled in N3 - ways

Box – M can be 
filled in NM ways

Total number of possible distributions = N1 x N2 x N3 x …. x NM

N1 - balls N2 - balls N3 - balls Nm - balls
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A B C

We have to arrange these three balls in a line.

How many ways will you arrange it?

? ? ?

1 2 3

Problem 2 :
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A B C

The first particle can be chosen in three ways

A B C

How many ways the first particle can be chosen?

? ? ?

1 2 3
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How many ways the second box can be filled.

A B C

A B B A C A

A C B C C B

2 ways

Total number of ways the first two boxes can be filled = 3 x 2

2 ways 2 ways
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A B B A C A

A C B C C B

If we consider N balls, then in how many ways that those 

balls can be arranged?

Now filling up the third box

C C B

B A A

There is only one way to fill up the third box.

Total number of ways that the three balls can be 

arranged = 3 x 2 x 1 = 3!

N!

?

?

?

?

?

?



We have to arrange four balls in a line. How many 

number of ways we can do it?

Answer : 4 x 3 x 2 x 1 = 24

A B C D

A B D C

A C B D

B A C D

B A D C

B D C A

C A B D

A D B

C D B A

D A C

D A C B

D B A C

A C D B

A D B C

A D C B

B D A C

B C A D

C D A

C D A B

C B A D

C B D A

D B C A

D C A B

D C B AB

C

B

Extension
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We look upon the problem that in how many number of ways 

the balls can be arranged in a line

N Balls

1 2 3 4 5 6 7 8 N

Arranging N Distinguishable Object
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Number of ways the first ball can be chosen

N Balls

N Ways
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Number of ways the  second ball can be chosen

(N - 1) Balls

(N – 1) Ways

1 2

Total Number of ways the first two particles can be chosen = N(N – 1)



18

Number of ways the  third ball can be chosen

(N - 2) Balls

(N – 2) Ways

1 2

Total Number of ways the first three particles can be chosen

                                = N(N – 1) (N – 2)

3
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1 2

Total Number of ways the particles can be chosen

                                = N(N – 1) (N – 2)

3 4 5

(N – 3) (N – 4) 3 x 2 x 1 

N

= N!
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A B C

Number of ways of arranging these 4 distinguishable objects = 4!

Now if suppose, 3 of them are indistinguishable

D

4 Objects

A A C D

Number of ways of arranging = ?

B A

Problem 3 :
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A B C D

A B D C

A C B D

B A C D

B A D C

B D C A

C A B D

C A D B

C D B A

D A B C

D A C B

D B A C

A C D B

A D B C

A D C B

B D A C

B C A D

B C D A

C D A B

C B A D

C B D A

D B C A

D C A B

D C B A

A, B, C→ A

indistinguishable

If they are all distinguishable

A A

A A

A A

A A

A A

A A

AA

A A

AA

A A

A

A A

A

AA

A

A

A

A

A

A

A

A

A

A

A A

A A

A A

A A

A A

A A

Same !Same !Same !Same !
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Actual number of ways of arranging 4 objects (with 

3 indistinguishable) objects

For example,

A A A DA B C D

How many ways these three can be arranged = 3!

4
!3

!4
==

A C BB A CB C AC A BC B A

This denotes that each possible configuration is repeated 3! 

Times (or) 6 times.
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A B C D

A B D C

A C B D

B A C D

B A D C

B D C A

C A B D

C A D B

C D B A

D A B C

D A C B

D B A C

A C D B

A D B C

A D C B

B D A C

B C A D

B C D A

C D A B

C B A D

C B D A

D B C A

D C A B

D C B A

A A

A A

A A

A A

A A

A A

AA

A A

AA

A A

A

A A

A

AA

A

A

A

A

A

A

A

A

A

A

A A

A A

A A

A A

A A

A A

Repeated 6 

Times

Repeated 6 

Times

Repeated 6 

Times

Repeated 6 

Times
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A B C D

A B D C

D A B C

A D B C

A A

A A

A A

A A

4 ways = 4!/3!
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If M object are indistinguishable.

Suppose we have N distinguishable objects

!

!

M

N
=Total ways of arranging

In the N objects , if M1 and M2 number of objects are 

identical among themselves then the total ways of 

arranging 
!!

!

21 MM

N


=
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Suppose we have N distinguishable objects.  If M objects are indistinguishable.

Suppose we have 5 objects

!

!

M

N
=

C D EA B

Total ways of arranging

In the 5 objects, two sets of objects are identical among 

themselves then the total ways of arranging 

! 2 ! 2

! 5


=

C D DA A

Recall : 



❖ If 5 objects are different ( A, B, C, D, E ) the number of ways 

arranging = 5! = 120.

❖ Since A and B (AA) are identical and D and E (DD) are 

identical the number of ways arranging is  

27

30
! 2 ! 2

! 5
=


=

DA B CA D

DA D CA B

BA D CA D

DA A CA D

AB D CA D

DB D CA A

BD D CA A

DD B CA A

AD B CA D

DD A CA B

AD D CA B

BD A CA D

AD B CD A

AD A CD B

BD A CD A

AB D CD A

DB A CD A

AB A CD D

BA A CD D

AA B CD D

DA B CD A

AA D CD B

DA A CD B

BA D CD A

DA A CB D

AA D CB D

DA D CB A

AD D CB A

DD A CB A

AD A CB D
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If M objects are indistinguishable.

Suppose we have N objects

!

!

M

N
=Total ways of arranging

In the N objects , if M1 and M2 number of objects are 

identical among themselves then the total ways of 

arranging 
!!

!

21 MM

N


=
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C1 C2
C3 CM

N → Objects

1 2 3 4 5 N

Arranging N distinguishable objects in M distinguishable 

(No restriction) containers.

How many number of ways possible?

M → Containers

Problem 4 :
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C1 C2
C3 CM

1 2 3 4 5 N

The first object can be put in any one of the M containers

Total number of ways first object is placed = M

1111
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C1 C2
C3 CM

Total Number of ways the first two objects can be placed

 = M x M  = M2

1 2 3 4 5 N

The Second object can be put in any one of M ways

2222
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In the similar manner,

Total number of ways the first three can be placed = M3

Total number of ways the first four can be placed = M4

Total number of ways the N objects can be placed M 

containers  = MN
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C1 C2
C3 CM

Say → C1 is restricted to have N1 number of particles

Now, if the number of particles in each container is restricted

1 2 3 4 5 N

N1 N2
N3 NM

C2 is restricted to have N2 number of particles

C3 is restricted to have N3 number of particles

CM is restricted to have NM number of particles

N1 + N2 + N3 +………….+NM = N

N → Objects
M → Containers



❖ To begin, let us consider three boxes and 6 particles

❖ Suppose we want to put 

❖ 1st Box 1st Particle

34

2 3 1

A B C D E F

2 particles in box 1 3 particles in box 2 1 particles in box 3



❖ 1st Box 2nd Particles

35

AB AC AD AE AF

BA BC BD BE BF

CA CB CD CE CF

DA DB DC DE CF

EA EB EC ED EF

FA FB FC FD FE

Repeating

ways 15
2

30
==

Only different choices
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AB AC AD AE AF

BC BD BE BF

CD CE CF

DE CF

EF



❖  2nd Box 3 Particles

❖ Suppose in the 1st box we have AB.  The remaining 4 

particles on CDEF.  We have to choose 3 from 4.

AB :   CDEF

4 ways : 

Total = 15 x 4 = 60 ways
37

CDE CDF CEF CED CFD

DEF DEC DFC DFE DCE

EFC EFD ECD ECF EDF

FCD FCE FDE FDC FEC

CFE

DCF

EDC

FED

CDE CDF CEF DEF

Repeat



❖  3rd Box 1 Particle

❖ Suppose in the 1st box we have AB and in the 2nd box CDE 

the only option left out for the 3rd box is F.

❖ Suppose in the 1st box we have AC and in the 2nd box BDF 

the only option left out for the 3rd box is E.

❖ Sine there are 60 ways the 1st and 2nd box are filled we find 

totally 60 ways for the 3rd box.

38
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AB

CDE

CDF

CEF

DEF

F

E

D

C

AC

BDE

BDF

BEF

BEF

F

E

D

C
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AD

BCE

BCF

BEF

CEF

F

E

C

B

AE

BDC

BDF

BCF

DCF

F

E

D

B
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AF

CDE

CDB

BCF

DCF

B

E

D

C

BC

ADE

ADF

AEF

DEF

F

E

D

A
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BD

ACE

ACF

AEF

CEF

F

E

C

A

BE

ACD

ACF

ADF

CDF

F

E

C

A
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C1 C2
C3 CM

Say → C1 is restricted to have N1 number of particles

Now, if the number of particles in each container is restricted

1 2 3 4 5 N

N1 N2
N3 NM

C2 is restricted to have N2 number of particles

C3 is restricted to have N3 number of particles

CM is restricted to have NM number of particles

N1 + N2 + N3 +………….+NM = N

N → Objects
M → Containers
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C1 C2
C3 CM

First particles to the container c1 can be chosen in ______ ways.

For this case, how many ways the N particles can be 

distributed in the M – containers.

N Balls

N
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C1 C2
C3 CM

How many ways the first two particles can be chosen = N x (N – 1)

N - 1 Balls

Number of ways to choose second particle to the container c1 

(N-1) ways
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C1 C2
C3 CM

How many ways the first three particles can be chosen 

= N(N – 1)(N – 2)

N - 2 Balls

Number of ways to choose third particle to the container c1 

(N - 2) ways
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C1 C2
C3 CM

Here, we note that the order of choosing the particle is not 

important.

Number of ways to choose Nth particle = N (N – 1)(N - 2) 

….(N – (N1 – 1))
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So the exact number of ways to choose N1 particles for 

container C1

( )( ) ( )( )
!

1.......21

1

1
1

N

NNNNN
w

−−−−
=

C2
C3 CMC1



49

C1 C2
C3 CM

(N – N1) Balls

How many number of ways 

The first particles to c2 can be chosen (N – N1) ways

Now, consider second container

The second particles to c2 can be chosen (N – {N1 – 1}) ways
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Total number of ways to choose N2 particle for second 

container.
( )( ) ( )( )

!

1......1

2

2111

N

NNNNNNN ++−−−−
=

So, number of ways of choosing N1 particles for container c1

( )
( )( ) ( )

!

1.......21

1

1
1

N

NNNNN
w

+−−−
=

So, number of ways of choosing N2 particles for container c2

( )
( )( ) ( )( )

!

1.......1

2

2111
2

N

NNNNNNN
w

++−−−−
=

So, number of ways of choosing N3 particles for container c3

( )
( )( ) ( )( ) ( )( )

!

1.......1

3

3212121
3

N

NNNNNNNNNN
w

+++−−+−+−
=
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So, number of ways of choosing NM particles for container cM 

(wM) 

Total number of ways of distributing N particles in M container

!

!

1
i

M

i
N

N

=


=

( )( )
!

1.2.......... 121

M

M

N

NNNN −+++−
=

W = W1 W2 W3…….WM
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C1 C2 C3

N = 6

First particle to container c1

Example :

Number of ways = 6

N1 = 2 N2 = 3 N3 = 1

Second particle to container c2

Number of ways = 5

Number of ways chose 2 particle for container c1

!2

56
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C1 C2 C3

Number of ways to chose first particle = 4

Example :

N1 = 2 N2 = 3 N3 = 1

!3

234 
Number of ways to chose second particle = 3

Number of ways to chose third particle = 2

Number of ways choose 3 particle for container c2



54

C1 C2 C3

Number of ways to chose 1 particle for c1 =

Example :

N1 = 2 N2 = 3 N3 = 1

!1

1
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Number of ways to chose (N1 = 2) particle for c1
!2

56
=

Number of ways to chose (N2 = 3) particle for c2
!3

234 
=

Number of ways to chose (N3 = 1) particle for c3
!1

1
=

So number of ways of distributing (N = 6) particles in 3 

containers 

!1

1

!3

234

!2

56






=

!1  !3  !2

!6
=

!N  !N  !

!

321N

N
=
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If you have N distinguishable particles, then 

number of ways to arrange N particles in a line = N!

Summary :

If you have N particles where n particles are 

indistinguishable, then number of ways to arrange 

them 
!

!

n

N
=

If you have N particles among them n1 particles are 

identical to each other and n2 particles are identical 

to each other, the number of ways of arranging the 

particular
!!

!

21 nn

N
=
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If you have N particles, which have to be 

distributed in M containers (with no restriction on 

the number of particles per container) number of 

ways of distribution = MN

If we have restriction on the number of particles in 

each container, that is, N1 particles for container c1, 

N2 particles for c2,….

!!.......!!

!

321 MNNNN

N
=


=

i

iN

N

!

!
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Particles are distinguishable.

Maxwell Boltzmann Distribution 

So let us consider that the system has N particles 

where N1 particles have energy E1, N2 particles 

have energy E2….NM particles have energy En.  

Here, N0 + N1 + N2+…….NM = N.  Note that the 

Energy level Ei has gi amount of degeneracy.

Any number of particles can be accommodated a 

particular quantum energy state.
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Problem :

“How many number of ways  the particles can be 

distributed among the ‘M’ energy levels”.

NM Particles EM

N3 Particles

N2 Particles

N1 Particles

E3

E2

E1

gM degeneracy

g3 degeneracy

g2 degeneracy

gl degeneracy
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How many ways N0 → E0, N1 → E1 ….. NM → EM 

can be distributed ?

First, forget about the degeneracy of energy levels

The problem is like distributing N particles in Ei 
containers , i = 1, 2, ……..,M ( with restriction on the 
number of particles in each containers.

E1 → N1

E2 → N2

E3 → N3

EM→NM
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The problem is like distributing N particles in Ei 

containers , i = 1, 2, ……..,M ( with restriction on the 

number of particles in each containers.

E1 E2
E3

Ans : ( )
i

M

i

M N

N
or

NNNN

N

1

321

!

!!.......!!

!

=


N1 N2 N3

EM

NM
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Now, consider degeneracy. For example, the energy level E1 has 
g1 degeneracy.

E1 E2
E3

EM

How many ways N1 particles can be distributed among 
g1 boxes.

g1 boxes
Note: No restriction on the number of particles per box. 

(like in the case of distributing N particle in M containers ( with 
no restriction on number of particles per container)( = MN))

1

1

N
gAnswer =
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How many ways N2 particles can be arranged in E2 

energy level with g2 degeneracy = 

So answer to original problem.

How many ways N3 particles can be arranged in E3 

energy level with g3 degeneracy =

How many ways NM particles can be arranged in EM 

energy level with gM degeneracy = 

How many ways N particles can be arranged in Ei 

energy level with gi degeneracy (where i = 1, 2, ……M)

𝑊 =
𝑁!

𝑁1! 𝑁2! 𝑁3!. . . . . . . 𝑁𝑀!
× 𝑔1

𝑁1𝑔2
𝑁2 . . . . . . 𝑔𝑀

𝑁𝑀

!
 !

1
i

N

i
M

i N

g
N

i

=
=

Arranging N particles in EM 
energy levels

Arranging Ni particles of Ei th 
level in gi quantum states

2

2

N
g

3

3

N
g

MN

Mg



Maxwell-Boltzmann 

Distribution Law



M-B Energy Distribution Law in General Form :

 Taking logarithms of W = N! ς𝑖
𝑔𝑖

𝑛𝑖

𝑛𝑖!
 we have

log 𝑊  =  log 𝑁! +  log ෑ

𝑖

𝑔𝑖
𝑛𝑖

𝑛𝑖!
 

 =  log 𝑁! +  ෍

𝑖=1

𝑘

𝑛𝑖 log 𝑔𝑖  −  log 𝑛𝑖!  → (5)

 Since the number of particles is very large,. 𝑁! and 𝑛𝑖!  May be 

approximated by Sterling’s  𝑓𝑜𝑟𝑚𝑢𝑙𝑎, according to which

log 𝑁!  =  𝑁 log 𝑁  − 𝑁 → (6(𝑎))

and 

log 𝑛𝑖!  =  𝑛𝑖 log 𝑛𝑖  − 𝑛𝑖  → 6 𝑏  

∴  log 𝑊  =  𝑁 log 𝑁  − 𝑁 +  ෍

𝑖=1

𝑘

𝑛𝑖 log 𝑔𝑖  − 𝑛𝑖 log 𝑛𝑖 + 𝑛𝑖  → (7)
65

log
𝑔1

𝑛1

𝑛1!
×

𝑔2
𝑛2

𝑛2!
= log

𝑔1
𝑛1

𝑛1!
+ log

𝑔2
𝑛2

𝑛2!

= 𝑛1 log 𝑔1 − log 𝑛1! + 𝑛2 log 𝑔2 − log 𝑛2!

= ෍

𝑖=1

2

𝑛𝑖 log 𝑔𝑖  −  log 𝑛𝑖!



Condition for most Probable Distribution

• The most probable distribution of the particles among the energy states in equilibrium is 

that for which the probability of occurrence is maximum, i.e. for which W is maximum. 

• For mathematical convenience, we consider the condition for maximum value of log 𝑊. 

The condition for maximum value of log 𝑊 is 

𝑑 log 𝑊  =  0 → 1

where 𝑊 is a function of 𝑛1, 𝑛2, … … 𝑛𝑘 .

 Differentiating Eq. (1), we get

𝑑 log 𝑊  =  
𝜕 log 𝑊

𝜕𝑛1
𝑑𝑛1 +

𝜕 log 𝑊

𝜕𝑛2
𝑑𝑛2 +  … . . +

𝜕 log 𝑊

𝜕𝑛𝑘
𝑑𝑛𝑘

 =  ෍

𝑖=1

𝑘
𝜕 log 𝑊

𝜕𝑛𝑖
 𝑑𝑛𝑖  

 Applying the condition from eqn. (1), we get

෍

𝑖=1

𝑘
𝜕 log 𝑊

𝜕𝑛𝑖
 𝑑𝑛𝑖  =  0 → (2)

66



The solution of this equation is subject to the condition laid down by 

𝑁 = ෍

𝑖

𝑛𝑖 ;  𝑑𝑁 = ෍

𝑖

𝑑𝑛𝑖 = 0 → 𝐴 ;  𝐸 = ෍

𝑖

𝑛𝑖𝐸𝑖 ;  𝐸 = ෍

𝑖

𝐸𝑖𝑑𝑛𝑖 = 0 → 𝐵

These conditions are introduced into Eq. (2) by using the method of  Langrange’s  

undetermined multipliers.

 Let 𝛼 and 𝛽 be these multipliers independent of  𝑛𝑖 ’s. We multiply Eq.(A) by −𝛼 

and Eq.(B) by −𝛽 and adding these equations to Eq.(2),  we have

෍

𝑖=1

𝑘
𝜕 log 𝑊

𝜕𝑛𝑖
− 𝛼 − 𝛽𝐸𝑖 𝑑𝑛𝑖 =  0 → 3  

 For maximum value of log 𝑊, Eq.(3) must be true for the magnitudes of the 

individual increments 𝑑𝑛𝑖 .  Hence, for all values of  𝑖, the term in the bracket must be zero.

∴  
𝜕 log 𝑊

𝜕𝑛𝑖
 − 𝛼 − 𝛽𝐸𝑖  =  0 → 4  
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log 𝑊  =  𝑁 log 𝑁  − 𝑁 +  σ𝑖=1
𝑘 𝑛𝑖 log 𝑔𝑖  − 𝑛𝑖 log 𝑛𝑖 + 𝑛𝑖  

Differentiating Eq.(7) partially with respect to 𝑛𝑖 and remembering that the partial derivatives 

of the terms, except the 𝑖𝑡ℎ term, are zero. Thus, 

 
𝑑 log 𝑊

𝑑𝑛𝑖
 =  log 𝑔𝑖  − log 𝑛𝑖 −

𝑛𝑖

𝑛𝑖
+ 1 

 =  log 𝑔𝑖  −  log 𝑛𝑖  

 =  − log
𝑛𝑖

𝑔𝑖
 → 8

Substituting this equation into (4), we have 

𝜕 log 𝑊

𝜕𝑛𝑖
 − 𝛼 − 𝛽𝐸𝑖  =  0 

  − log
𝑛𝑖

𝑔𝑖
 − 𝛼 − 𝛽𝐸𝑖  =  0 

log
𝑛𝑖

𝑔𝑖
 =  −𝛼 − 𝛽𝐸𝑖  

𝑛𝑖 =  𝑔𝑖𝑒 −𝛼−𝛽𝐸𝑖 ,  𝑖 =  1,2,3, … . 𝑘 → 9

 This equation is known as the Maxwell – Boltzmann energy distribution law in 

the general form.
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The value of undetermined multiplier 𝛽 is evaluated as

 𝛽 =
1

𝑘𝑇
 → (10)

 Substituting in Eq.(10), we get

 𝑛𝑖  =  𝑔𝑖𝑒−𝛼 𝑒𝑖
− Τ𝐸𝑖 𝑘𝑇

 → (11)

Where 𝑘 is Boltzmann constant and 𝑇 its absolute temperature. The quantity 𝑒
− Τ𝐸𝑖 𝑘𝑇

 is 

known as the Boltzmann factor.
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From the fundamental postulates of statistical mechanics, we write, 𝑁, the total number of 

particles  as 

𝑁 =  ෍

𝑖

𝑛𝑖 =  ෍

𝑖

𝑔𝑖  𝑒−𝛼 𝑒− Τ𝐸𝑖 𝑘𝑇  =  𝑒−𝛼 ෍

𝑖

𝑔𝑖 𝑒− Τ𝐸𝑖 𝑘𝑇 

∴  𝑒−𝛼  =  
𝑁

σ𝑖 𝑔𝑖  𝑒− Τ𝐸𝑖 𝑘𝑇
 → (12)

 Substituting this value in 𝑛𝑖  =  𝑔𝑖𝑒−𝛼 𝑒𝑖
− Τ𝐸𝑖 𝑘𝑇

 we get

 𝑛𝑖  =  
𝑁 𝑔𝑖  𝑒− Τ𝐸𝑖 𝑘𝑇

σ𝑖  𝑔𝑖  𝑒− Τ𝐸𝑖 𝑘𝑇
 → (13)

 The quantity σ𝑖  𝑔𝑖  𝑒− Τ𝐸𝑖 𝑘𝑇 is the sum over all the states of the system and is called 

the partition function of the system devoted by 𝑍. Thus

 𝑍 =  ෍

𝑖

𝑔𝑖  𝑒− Τ𝐸𝑖 𝑘𝑇  → 14

Substituting in equation (13), we have

𝑛𝑖  =
𝑁

𝑍
 𝑔𝑖 𝑒− Τ𝐸𝑖 𝑘𝑇  → (15)
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𝑅𝑒𝑐𝑎𝑙𝑙

 𝑛𝑖  =  𝑔𝑖𝑒−𝛼 𝑒𝑖
− Τ𝐸𝑖 𝑘𝑇



 Evaluation of the Multiplier 𝜶.

 From eqn.(12), we write

𝑒−𝛼  =
𝑁

σ𝑖  𝑔𝑖  𝑒− Τ𝐸𝑖 𝑘𝑇
 

 Since the variation of energy of free particles of an ideal gas is continuous, we will 

replace 𝑔𝑖 by 𝑔 𝐸 𝑑𝐸 and 𝐸𝑖 by 𝐸 and the sign of summation is replaced by the sign of 

integration. Thus, we get

𝑒−𝛼  =  
𝑁

0׬
∞

 𝑔 𝐸 𝑑𝐸.𝑒− Τ𝐸 𝑘𝑇
 

 =  
𝑁

0׬

∞
 𝑔 𝐸  𝑒− Τ𝐸 𝑘𝑇𝑑𝐸

 → (22)
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Here the limit of integration is taken from 0 𝑡𝑜 ∞, because energy of the particles of 

an ideal gas is entirely kinetic and so they can have any kinetic energy. The value of 𝑔 𝐸 𝑑𝐸 

for particles with no spin is given by 

 𝑔 𝐸 𝑑𝐸 =  2𝜋𝑉
2𝑚

ℎ2

Τ3 2

 𝐸
1
2 𝑑𝐸 

 Substituting in eqn.(22), we get 

 𝑒−𝛼  =
𝑁

2𝜋𝑉
2𝑚

ℎ2

Τ3 2
0׬ 

∞
 𝐸

1
2𝑒

− 𝐸
𝑘𝑇  𝑑𝐸 

→ (23) 

 Let us evaluate the definite integral as under :

 For this, let 
𝐸

𝑘𝑇
= 𝑥, so that 𝑑𝐸 = 𝑘𝑇𝑑𝑥.

∴  න
0

∞

𝐸
1
2  𝑒− Τ𝐸 𝑘𝑇 𝑑𝐸 =  න

0

∞

𝑘𝑇𝑥
1
2  𝑒−𝑥 𝑘𝑇𝑑𝑥 

 = 𝑘𝑇 Τ3 2  න
0

∞

𝑥
1
2  𝑒−𝑥 𝑑𝑥

∴  න
0

∞

𝐸
1
2  𝑒− Τ𝐸 𝑘𝑇 𝑑𝐸 =  𝑘𝑇

3
2

𝜋

2
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Substituting in eqn.(23), we get

𝑒−𝛼  =
𝑁

𝑉
2𝜋𝑚𝑘𝑇

ℎ2

3
2

=
𝑁

𝑉

ℎ2

2𝜋𝑚𝑘𝑇

3
2

 → (24)

𝑒𝛼  =
𝑉

𝑁

2𝜋𝑚𝑘𝑇

ℎ2

3
2

 → (25)

 Taking logarithms of both sides, we get

 𝛼 =  − log
𝑁

𝑉

ℎ2

2𝜋𝑚𝑘𝑇

3
2

=  log
𝑉

𝑁

2𝜋𝑚𝑘𝑇

ℎ2

3
2

 → (26)

 Here 𝑒𝛼 is called the degeneracy parameter.
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Condition for Application of M.B. Statistics.

The M. B. Statistics is applicable to a system of particles for which the mean distance between 

the particles is greater than the De Broglie wavelength of the particles.

 The volume of per particle =
𝑉

𝑁

∴ The mean distance between the particles  =  
𝑉

𝑁

1

3

 The De – Broglie wavelength associated is given by

𝜆 =  
ℎ2

2𝜋𝑚𝑘𝑇

1
2

 Thus, the condition for M.B. statistics to became applicable is

𝑉

𝑁

1
3

 ≥  
ℎ2

2𝜋𝑚𝑘𝑇

1
2

 

𝑉

𝑁
 ≥  

ℎ2

2𝜋𝑚𝑘𝑇

3
2

 74



𝑉

𝑁

2𝜋𝑚𝑘𝑇

ℎ2

3
2

 ≥  1 

 𝑒𝛼  ≥  1 ∴ 𝐸𝑞𝑛. 25  → (27)

Three cases :

 Case(𝑖) : When the degeneracy parameter 𝑒𝛼 satisfies this 

condition, the gas is said to be non degenerate. i.e.

 𝑒𝛼  ≥  1

 Case(𝑖𝑖) : When 𝑒𝛼 > 1, but not too large, the gas is said to be 

weakly degenerate.

 Case(𝑖𝑖𝑖) : When 𝑒𝛼 < 1, the gas is said to be strongly 

degenerate.

 From inequality (27), we infer that the M.B. statistics is valid  

for systems at high temperature i.e., at low densities 
𝑁

𝑉
 has a low value.
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Condition to Apply of M.B. 

Statistics
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➢ Particles are indistinguishable

Fermi - Dirac Statistics

Now consider the same (above mentioned) problem 

with fermions.

➢Number of particles that can occupy a particular 

quantum state is strictly ONE.

Find how many ways they can be arranged?
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Only one particles per quantum state and gi >> Ni .

Particles NM EM

Particles N3

Particles N2

Particles N1

E3

E2

E1

gM degeneracy

g3 degeneracy

g2 degeneracy

gl degeneracy

Why gi >> Ni ? So that all particles will find place.
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Similarly,  first forget about degeneracy.

Find number of ways that the EM energy levels can 

be filled respectively with N particles.

NM EM

N3

N2

N1

E3

E2

E1

As particles are 

indistinguishable, there is 

only one way to 

distribute.



❖ Problem is solely on how many ways the particles in 

each energy levels can be distributed among gi 

degenerate states.

❖ First, how many ways N1 particles in energy E1 can be 

distributed in g1 quantum states (on boxes).
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Particles N1 
E1

g1 degeneracy

Note : there is only one particles per state and gi >> Ni .

To find the above, we follow the below way:

Instead of arranging N1 particles in g1 boxes we commute the 

filled boxes (boxes with a particles) with unfilled boxes.
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Particles N1 E1

g1 boxes

❖To find the above, instead of arranging Ni in gi boxes, we 

follow the below way:

❖First, fill up all the Ni particles in gi boxes (Restriction: Not 

more than one particle per box)

❖As gi >> Ni , obviously we will have few filled boxes and 

unfilled boxes.

❖Count the number of ways the filled and unfilled boxes can 

be arranged among themselves = the number of ways of 

distributing Ni in gi boxes

c c c c

filled boxunfilled box



❖ Total number of filled boxes = N1

❖ Total number of unfilled boxes = (g1 - N1)

❖ Total number of boxes = filled + unfilled boxes = g1.

❖Number of ways of arranging g1 boxes = g1!

❖ (as N1 → filled boxes are identical among and

 (g1 - N1) → unfilled boxes are identical among each other)

❖ Actual number of ways of arranging N1 particles in g1 

boxes  
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( )! !

!

111

1

NgN

g

−
=



❖ For example, N1 = 2, g1 = 3
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1 2 3

1 2 3

1 2 3



❖ This can also be done by
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1 2 3

1 2 3

( )
3

!1 !2

!3

! !

!

111

1 ==
− NgN

g1 2 3

There are two filled box 
and an unfilled box



❖ Similarly, N2 particles can be distributed among g2 

quantum states (or boxes) in 

❖N1 particles can be distributed among gl quantum states 

(or boxes) in
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( )
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NgN

g

! !

!
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−
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❖ So Total number of ways of arranging N particles in El 

energy levels
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( )
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Bose – Einstein Distribution

❖ Particles are indistinguishable.

❖Any number of particles can occupy a particular quantum 

state.

Problem

❖How many ways N Bosons can be distributed in energy 

levels E1, E2, E3……El with degenerecies g1, g2, g3, …..gl.

❖Here, N1 Bosons occupy energy level E1, N2 Bosons occupy 

E2, …….Nl Bosons occupy El energy level.
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❖ As we did earlier, first consider the problem without 

degeneracy.

❖ In that case as particles are indistinguishable, there is only 

one way to distribute N1, N2, N3, ……. Nl Bosons 

respectively in energy levels E1, E2, E3, …….El .

❖ Thus the problem solely relies on the number of ways Ni 

number of particles can be distributed in gi degenerate 

levels.
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❖How many ways will you distribute N1 particles in g1 

states

❖ (As we considered in the Harmonic Oscillator problem, 

there (gl – 1) walls and N1 particles that have to be shuffled 

to get different distributions.
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1 2 3

1 2 3 4 N 1

gl



❖How many ways will you distribute N1 particles in g1 

states

❖ (As we considered in the Harmonic Oscillator problem, 

there are (gl – 1) walls and N1 particles that have to be 

shuffled to get different distributions.

❖ Total number of ways = 
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1 2 3

1 2 3 4

N
1 

N 
N

1 1

gl

( )
( ) !! 1

! 1

11

11

Ng

Ng

−

−+

N1



❖ For example, let us consider that in the energy level E1 there 

are 3 degenerate states in which 3 particles has to be 

distributed 

❖ g1 = 3, N1 = 3.

❖ Problem can be solved by counting number of ways the three 

particles and (3-1 = 2) walls can be arranged.
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1 2 3

1 2
3 Particles 2 Walls

Quantum State 1 Quantum State 2 Quantum State 3



❖Number of possible distributions
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1

2

5

3

84

6

7



❖ Total number of ways 3 packets + 2 walls be arranged = (3+2)!

❖ 3 packets & 2 walls are indistinguishable among themselves.

92

9

10
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! 23
  isCount  Actual The
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❖ Total number of ways N1 particles can be arranged in Energy 

level E1 with g1 degeneracy

❖ Total number of ways N2 particles can be arranged in Energy 

level E2 with g2 degeneracy

❖ Total number of ways Nl particles can be arranged in Energy 

level El with gl degeneracy

❖ Total number of ways of arranging N bosons in E1, E2, 

E3,…..energy levels
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Fermi – Dirac Statistics : Example

Problem

❖ Consider a system of five particles that has to be 

distributed among two energy levels E1 and E2.

❖ In this case, three particles occupy E1 and the other 

particles occupy energy E2.

❖ Also note that the energy level E1 is four fold degenerate 

and E2 is three fold degenerate.

❖ Find the Fermi – Dirac distribution function for this case.
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Given Information

❖Now, how many ways will you distribute the five 

Fermions in E1 & E2 (forget about degeneracy).

95

N2 = 2

N1 = 3

E2

E1

g2 = 3

g1 = 4

N= N1 + N2 = 3 + 2 = 5 Note : g1 > N1 

 g2 > N2
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N2 = 2

N1 = 3

E2

E1

ONLY ONE WAY

Now, include degeneracy

N2 = 2

N1 = 3

E2

E1

g1 = 4

g2 = 3
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Commuting filled & unfilled boxes

Four Ways

As mentioned earlier g1 = 4 ; N1 = 3. 

Total Number of ways = 
( )! !

!

111

1

NgN

g

−

( )
4

! 34!3

!4
=

−
=
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Three Ways

Total Number of ways of arranging fermions in

 E2 (w2) = 
( )! !

!

222

2

NgN

g

−

( )
3

! 23!2

!3
=

−
=

Similarly, if you consider second energy level

Three Ways

N2 = 2 E2

Total Number of ways of arranging fermions in the two 

energy levels = w1 w2 = 4 x 3 = 12
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E2

E2

E2

E1

E1

E1

E2

E1

E2

E1

E2

E1
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E2
E2

E2

E1
E1

E1

E2

E1

E2

E1

E2

E1



Bose Einstein Distribution : Example

Problem

❖ Consider a system of five Bosons that have to distributed 

among two energy levels E1 and E2 in such a way that two 

Bosons occupy the level E1 and three other Bosons occupy 

the level E2.

❖ In this case, the energy level E1 is three fold degenerate and 

E2 is two fold degenerate.

❖ Find the total number of ways to distribute those Bosons.
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Given Information

❖ (First forgot about the degeneracy) How many ways will 

you distribute ( N1 = ) 2 particles in E1 and ( N2 = ) 3 

particles E2?

❖ As Bosons are indistinguishable, there is only one way.
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N2 = 3

N1 = 2

E2

E1



103

N2 = 2

N1 = 3

E2

E1

ONLY ONE WAY

Now, include degeneracy



Distribution of the two particles among the degenerate quantum 

states of E1

❖ As they are Bosons, any number of particles can occupy a 

particular quantum state.

104

E1

Two particles Two walls

6 ways

The possible configurations can be obtained 
by arranging two walls and the two particles 

in different ways.



105

As we discussed earlier w1 =
( )
( ) !! 1

! 1

11

11

Ng

Ng

−

−+

6
!2 !2
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==



Distribution of the three particles among two degenerate 

quantum states of E1
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As we discussed earlier w1 =
( )
( ) !! 1

! 1

22

22

Ng

Ng

−

−+
4
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❖ Thus the total number of ways of distributing five Bosons in 

the two energy levels E1 and E2.
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Possible distributions in 

Energy level E1

Possible distributions in 

Energy level E2

1

1

2

3

4
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2

1

2

3

4

3

1

2

3

4
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4

1

2

3

4

5

1

2

3

4
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6

1

2

3

4

Total number of ways = 24 ways

w1 x w2 = 24 ways



Lagrange Multipliers

111



Method of Lagrange Multipliers

❖ Lagrange multiplier method is a technique for finding a 

maximum or minimum of a function F(x, y, z) subject to a 

constraint ( also called side condition ) of the form G (x, y, z) = 

0.

❖We start by trying to find the extreme values of F(x, y) subject 

to a constraint of the form G(x, y) = 0.

❖ In other words, we seek the extreme values of F(x, y) when 

the point (x, y) is restricted to lie on the level curve G(x, y) = 0.
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❖We have from chair rule,

❖Multiplying the second equation by  and add to first 

equation yields

❖ By choosing  to satisfy

❖ For example, so that
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,0=



+




= dy

y

F
dx

x

F
dF ,0=




+




= dy

y

G
dx

x

G
dG

0=











+




+












+




dy

y

G

y

F
dx

x

G

x

F


0=



+





x

G

x

F


0=



+





y

G

y

F




❖ As can be seen, the above two equations are components of 

the vector equation

               = 0

❖ Thus, the maximum and minimum values of F(x, y) subject to 

the constraint G(x, y) = 0 can be found by solving the 

following set of equations.

G(x, y) = 0

❖ This is a system of three equations in the three unknowns x, y, 

and , but it is not necessary to find explicit values for . 114
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x
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x

F

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


+





y

G

y

F


•

GF −






Examples

❖ Use Lagrange multipliers to find the maximum and minimum 

values of the function subject to the given constraint x2 + y2 = 

10.

❖ f(x, y) = 3x + y

❖ For this problem, f(x, y) = 3x + y and g(x, y) = x2 + y2 = 10.

❖ Let’s go through the steps:

❖ This gives us the following equation
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jiF ˆˆ3 +=


jyixG ˆ2ˆ2 +=


( )jyixji ˆ2ˆ2ˆˆ3 +=+ 



❖We break up the above equation and consider the following 

system of 3 equations with 3 unknowns (x, y, ).

3 = 2x

1 = 2y

x2 + y2 = 10.

❖ Now we want to solve for each variable.

❖ At this point, you should take a moment and try to cleverly 

think of a way to solve for one of the three.

❖ Let’s plug in equations (1) and (2) into (3).

❖ This allows us to solve for .
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(1)

(2)

(3)



❖Now, we plug  back into our original equations and get x = 3 

and y = 1.

❖We get the following extreme points (3, 1), (-3, -1) 

❖We can classify them by simply finding their values when 

plugging into f(x, y).

• f(3, 1) = 9 + 1 = 10

• f(-3, -1) = -9 - 1 = -10

❖ So the maximum happens at (3, 1) and minimum happens at 

(-3, -1). 117
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4

4

-4

-4 -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

f(x, y) = 3x + y x2 + y2 = 10

(-3,-1)

(3,1)



Fermi Dirac Distribution Law
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Most Probable Microstate

Total number of ways of arranging N particles in 𝐸𝑖 energy levels

𝑤 = ෑ

𝑖

𝑔𝑖!

𝑁𝑖! 𝑔𝑖 − 𝑁𝑖  !

The most probable microstate corresponds to the state of maximum thermodynamics  

probability.  Taking natural logarithm on both sides of Eq.(3),

ln  𝑊 =  ෍

𝑖=1

𝑘

ln 𝑔𝑖!  − ln 𝑛𝑖!  −  ln 𝑔𝑖 − 𝑛𝑖 !  

 As 𝑛𝑖  𝑎𝑛𝑑 𝑔𝑖 are very large numbers, we can use Sterling approximation.

ln 𝑛!  = 𝑛  ln 𝑛 − 𝑛 

 Applying Sterling approximation, we get

 ln  𝑊  =  ෍

𝑖=1

𝑘

[ 𝑔𝑖 ln 𝑔𝑖  − 𝑔𝑖  − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖  − 𝑔𝑖 − 𝑛𝑖  ln 𝑔𝑖 − 𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖 ]
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=  ෍

𝑖=1

𝑘

𝑛𝑖 + 𝑔𝑖  ln 𝑛𝑖 + 𝑔𝑖  − 𝑛𝑖  ln 𝑛𝑖  − 𝑔𝑖 ln 𝑔𝑖  

 Here 𝑔𝑖  is not subject to variation whereas 𝑛𝑖  varies continuously. 



Differentiating both sides, we have 

𝛿 ln 𝑊  =  ෍

𝑖=1

𝑘

−𝑛𝑖

1

𝑛𝑖
 𝛿𝑛𝑖 − ln 𝑛𝑖 𝛿𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖

1

𝑔𝑖 − 𝑛𝑖
𝛿𝑛𝑖 + ln 𝑔𝑖 − 𝑛𝑖 𝛿𝑛𝑖

 =  ෍

𝑖=1

𝑘

ln 𝑔𝑖 − 𝑛𝑖  − ln 𝑛𝑖 𝛿𝑛𝑖  

 To get the state of maximum thermodynamic probability

𝛿 ln 𝑊 =  0 
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∴  ෍

𝑖=1

𝑘

ln 𝑔𝑖 − 𝑛𝑖  − ln 𝑛𝑖 𝛿𝑛𝑖  =  0 ෍

𝑖=1

𝑘

ln
𝑔𝑖 − 𝑛𝑖

𝑛𝑖
𝛿𝑛𝑖 =  0

− ෍

𝑖=1

𝑘

ln
𝑛𝑖

𝑔𝑖 − 𝑛𝑖
𝛿𝑛𝑖 =  0 ෍

𝑖=1

𝑘

ln
𝑛𝑖

𝑔𝑖 − 𝑛𝑖
𝛿𝑛𝑖 =  0 → 4  



In addition, our system must satisfy the two auxillary condition: 

 (𝑖) Conservation of total number of particles, i.e., N= 𝑎 constant. 

∴  𝑁 =  ෍

𝑖

𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑖. 𝑒.  𝛿𝑁 =  ෍

𝑖

𝛿𝑛𝑖  = 0 → 5  

 (𝑖𝑖) Conservation of total energy of the system, i.e., 𝐸 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

∴  𝐸 =  ෍

𝑖

𝑛𝑖 𝐸𝑖  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑖. 𝑒.  𝛿𝐸 =  ෍

𝑖

 𝐸𝑖  𝛿𝑛𝑖  = 0 → 6  

 We shall now apply Lagrangian method of undetermined multipliers. For this let us 

multiply Eq.(5) by 𝛼 and Eq.(6) by 𝛽 , and add the resulting expression to Eq.(4),
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෍

𝑖=1

𝑘

ln
𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ 𝛼 + 𝛽𝐸𝑖  𝛿𝑛𝑖  =  0 

 The variations 𝛿𝑛𝑖  are independent of each other,  we get

ln
𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ 𝛼 + 𝛽𝐸𝑖  =  0 

 or

 
𝑛𝑖

𝑔𝑖 − 𝑛𝑖
 =  𝑒− 𝛼+𝛽𝐸𝑖

 or

 
𝑔𝑖 − 𝑛𝑖

𝑛𝑖
 =  𝑒𝛼+𝛽𝐸𝑖  

 or

 
𝑔𝑖

𝑛𝑖
 − 1 =  𝑒𝛼+𝛽𝐸𝑖

 or 123



𝑔𝑖

𝑛𝑖
 =  𝑒𝛼+𝛽𝐸𝑖 + 1 

 or

 𝑛𝑖  =
𝑔𝑖

𝑒𝛼+𝛽𝐸𝑖 + 1
 → (7)

 This equation represents the most probable distribution of the particles among various 

energy levels for a system obeying Fermi-Dirac statistics and is therefore, known as Fermi-

Dirac Distribution Law for an assembly of fermions.

 The parameter 𝛽 =
1

𝑘𝑇
, where 𝑘 is Boltzmann’s constant, has the same role as in case 

of M.B. distribution law. Substituting in equation (7), we have 

 𝑛𝑖 =
𝑔𝑖

𝑒𝛼. 𝑒𝛽𝐸𝑖 + 1
 =

𝑔𝑖

𝑒𝛼. 𝑒 Τ𝐸𝑖 𝑘𝑇 + 1
 → 8

Fermi-Dirac energy distribution function.

 Since there can be a maximum of one particle per quantum state, the function 𝑓 𝐸𝑖  is 

the ratio of the number of quantum states of energy 𝐸𝑖 . Therefore, the value of 𝑓 𝐸𝑖  for the 

Fermi-Dirac distribution at a particular energy 𝐸𝑖 is the probability that under equilibrium a124



quantum state of that energy is occupied by a particle.

 From equation (8), 𝑓 𝐸𝑖  is given by

𝑓 𝐸𝑖  =
𝑛𝑖

𝑔𝑖
 

 𝑓 𝐸𝑖  =
1

𝑒𝛼 𝑒 Τ𝐸𝑖 𝑘𝑇 + 1
 → (9)

 For continuous distribution of energy 𝐸, the distribution function is written as

 𝑓 𝐸  =
1

𝑒𝛼 𝑒 Τ𝐸 𝑘𝑇 + 1
 → (10)

F-D energy distribution law for continuous variation of energy.

 If the energy levels are very close together, then the distribution of energy of the 

particles may be considered continuous. For this distribution the number of particles 𝑛 𝐸 𝑑𝐸 

whose energies lie between 𝐸 𝑎𝑛𝑑 𝐸 + 𝑑𝐸, then 𝑛𝑖 = 𝑛 𝐸 𝑑𝐸 and is given by

 𝑛 𝐸 𝑑𝐸 = 𝑓 𝐸  𝑔 𝐸  𝑑𝐸 → (11) 

 Where 𝑔 𝐸 𝑑𝐸 is the number of quantum states of energy between 𝐸 𝑎𝑛𝑑 𝐸 + 𝑑𝐸.

125



Substituting the value of 𝑓 𝐸  in Eq. (11), we get 

 𝑛 𝐸  𝑑𝐸 =
𝑔 𝐸 𝑑𝐸

𝑒𝛼. 𝑒 Τ𝐸𝑖 𝑘𝑇 + 1
 → 12

 For particles like electron of spin angular momentum ±
1

2
ℏ, there are two possible 

spin orientations. Substituting the expression for 𝑔 𝐸 𝑑𝐸 , we get

 𝑛 𝐸 𝑑𝐸 =  2 × 2𝜋𝑉
2𝑚

ℎ2

3
2

 
𝐸

1
2𝑑𝐸

𝑒𝛼 . 𝑒 Τ𝐸 𝑘𝑇 + 1
 → (13)

 This is the Fermi-Dirac energy distribution law continuous variation of energy 

among free particles with spin 
1

2
.
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Fermi - Dirac statistics : A Genesis

1. Pauli’s exclusion principle was first derived by Fermi (1926) and a little later in the same 

year by Dirac (1926) independently.

2. Electron was a spin ½ particle was already proposed by Pauli (1925) though not well 

understood.

3. In late 1926 the work of Fermi and Dirac laid the foundations of second quantization- QM 

of many particle system.

4. They have demonstrated that the system as a whole has to respect a rule such as Pauli’s 

exclusion principle.

5. They have analyzed systems in equilibrium at a finite temperature and found that at high 

temperature the results agree with MB statistics and at low temperatures (degeneracy limit) 

the results agree with qualitative predictions of Nernst on the degeneracy of gas at low 

temperature.   



• Surprisingly two years prior (1924), a similar successful attempt was made towards 

understanding ‘degeneracy’ of a gas of another type of identical particles now called 

bosons.(Box of Einstein). Unfortunately spin of particles other than that of electrons 

was not known at that time.

• The theoretical connection between spin of identical particles and their statistics, FD 

or BE was established only 1940 in the form of spin- statistics theorem.

• Categorization of atoms as either bosons or fermions started around 1940

• Fermi - Dirac statistics has found numerous applications in nuclear physics, 

semiconductor physics, low- dimensional physics, plasma physics, astrophysics, 

GUT, string theory, carbon nanotube physics, ultracold atoms, graphene physics, 

topological insulator physics.



1. Metals: Electron gas model :

• The specific heat capacity calculated through FD statistics matches with experimental 

data.

• In the low temperature region the results coming out from FD statistics take over MB 

statistics.

• It provides a physically acceptable value for 𝜇𝜎 Lorentz number for a metal.

2. Astrophysics – White Dwarfs :

• Using FD statistics to an ideal inhomogeneous gas of relativistic electrons 

Chandrasekar obtained a value of critical mass in terms of solar mass (𝑀0) as 𝑀𝑒 ≈

1.44 𝑀0 for the stability of the white dwarf star.

• Landau obtained the value of critical mass not only white dwarf stars but also for the 

neutron stars (even before the discovery of neutron by Chadwick).

Applications of FD statistics



3. Nuclear physics :

• 1927 – Thomas – Fermi model was proposed as an application of FD statistics.

• 1934 – Majorana and weizsalker proposed Fermi gas model to calculate the binding 

energy of the nucleons in the nucleus.

4. Solid State Physics :

• 1927 – Pauli explained temperature dependence of the paramagnetic susceptibility 

with the help of FD statistics.

• Landau studies magnification of metals in strongly magnetic fields using FD statistics.

• The existence of “holes” was proposed by Heisenberg as a consequence of FD 

statistics.

• The positron was proposed by Dirac during the same time.

5. Some direct / indirect applications :

• Quantum hydrodynamic theory, QED, Abrikosov flux lattice, Anderson localization, 

Asymptotically free Gauge theory, QFT

 



Bose –Einstein Distribution Law
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Most Probable Microstate

 The most probable microstate corresponds to the state of maximum thermodynamics  

probability. 

 In equation (1), 𝑛𝑖  𝑎𝑛𝑑 𝑔𝑖 both are very large numbers. Hence we may neglect 1 in 

the above expression 

∴  𝑊 𝑛1,𝑛2,….𝑛𝑖,…𝑛𝑘
 =  ෑ

𝑛𝑖 + 𝑔𝑖 !

𝑛𝑖! 𝑔𝑖!
 → 2  

Taking natural logarithm on both sides, we have

ln  𝑊 =  ෍

𝑖=1

𝑘

ln 𝑛𝑖 + 𝑔𝑖 ! −  ln 𝑛𝑖!  −  ln 𝑔𝑖!  

 As 𝑛𝑖  𝑎𝑛𝑑 𝑔𝑖 are very large numbers, we can use Sterling approximation.

ln 𝑛!  = 𝑛  ln 𝑛 − 𝑛 
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Applying Sterling approximation, we get

 ln  𝑊  =  σ𝑖=1
𝑘 [ 𝑛𝑖 + 𝑔𝑖 ln 𝑛𝑖 + 𝑔𝑖  − 𝑛𝑖 + 𝑔𝑖  − 𝑛𝑖  ln 𝑛𝑖 + 𝑛𝑖 − 𝑔𝑖 ln 𝑔𝑖 + 𝑔𝑖  ]

=  ෍

𝑖=1

𝑘

𝑛𝑖 + 𝑔𝑖  ln 𝑛𝑖 + 𝑔𝑖  − 𝑛𝑖  ln 𝑛𝑖  − 𝑔𝑖 ln 𝑔𝑖  → 3  

 Here 𝑔𝑖  is not subject to variation whereas 𝑛𝑖  varies continuously

 To get the state of maximum thermodynamics probability, we differentiate equation 

(3) and equate it to zero; i.e., 

𝛿 ln 𝑊 =  0 

∴  𝛿 ln 𝑊  =  ෍

𝑖=1

𝑘

𝛿𝑛𝑖 ln 𝑛𝑖 + 𝑔𝑖 + 𝑛𝑖 + 𝑔𝑖

1

𝑛𝑖 + 𝑔𝑖
𝛿𝑛𝑖  − 𝛿𝑛𝑖  ln 𝑛𝑖  − 𝑛𝑖

1

𝑛𝑖
 𝛿𝑛𝑖
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(𝑔𝑖  is a mere number 𝛿𝑔𝑖 = 0)

or 𝛿 ln 𝑊  =  ෍

𝑖=1

𝑘

ln
𝑛𝑖 + 𝑔𝑖

𝑛𝑖
𝛿𝑛𝑖 = − ෍

𝑖=1

𝑘

ln
𝑛𝑖

𝑛𝑖 + 𝑔𝑖
𝛿𝑛𝑖 = 0 

=  ෍

𝑖=1

𝑘

𝛿𝑛𝑖  ln 𝑛𝑖 + 𝑔𝑖  − 𝛿𝑛𝑖  ln 𝑛𝑖  



∴  𝑁 =  ෍

𝑖

𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑖. 𝑒.  𝛿𝑁 =  ෍

𝑖

𝛿𝑛𝑖  = 0 → 5  

 (𝑖𝑖) Conservation of total energy of the system, i.e., 𝐸 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

∴  𝐸 =  ෍

𝑖

𝑛𝑖 𝐸𝑖  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝑖. 𝑒.  𝛿𝐸 =  ෍

𝑖

 𝐸𝑖  𝛿𝑛𝑖  = 0 → 6  

 Now we shall apply the Lagrangian method of undetermined multipliers. For this let 

us multiply Eq.(5) by 𝛼 and Eq.(6) by 𝛽 , and the resulting expression to Eq.(4) so that we get
134

𝑜𝑟 ෍

𝑖=1

𝑘

ln
𝑛𝑖

𝑛𝑖 + 𝑔𝑖
𝛿𝑛𝑖 = 0 → 4  

In addition, our system must satisfy two subsidiary or auxillary condition: 

 (𝑖) Conservation of total number of particles, i.e., N= 𝑎 constant. 



=  ෍

𝑖=1

𝑘

ln
𝑛𝑖

𝑛𝑖 + 𝑔𝑖
+ 𝛼 + 𝛽𝐸𝑖  𝛿𝑛𝑖  =  0 → (7)

 The variations 𝛿𝑛𝑖  are independent of each other. Hence we get

ln
𝑛𝑖

𝑛𝑖 + 𝑔𝑖
+ 𝛼 + 𝛽𝐸𝑖  =  0 

 or 

ln
𝑛𝑖

𝑛𝑖 + 𝑔𝑖
 =  −𝛼 − 𝛽𝐸𝑖  

 or

 
𝑛𝑖

𝑛𝑖 + 𝑔𝑖
 =  𝑒−𝛼−𝛽𝐸𝑖  =  𝑒− 𝛼+𝛽𝐸𝑖

 or

𝑛𝑖 + 𝑔𝑖

𝑛𝑖
 =  𝑒 𝛼+𝛽𝐸𝑖  

 or 135



1 +
𝑔𝑖

𝑛𝑖
 =  𝑒𝛼+𝛽𝐸𝑖  

 or

𝑔𝑖

𝑛𝑖
 =  𝑒𝛼+𝛽𝐸𝑖  − 1 

 or

 𝑛𝑖  =
𝑔𝑖

𝑒𝛼+𝛽𝐸𝑖  − 1
 → (8)

 This equation represents the most probable distribution of the particles among various 

energy levels for a system obeying Bose-Einstein statistics and is therefore, known as Bose-

Einstein’s Distribution Law for an assembly of bosons.

 Substituting for 𝛽 =
1

𝑘𝑇
, the equation (8) becomes

 𝑛𝑖 =
𝑔𝑖

𝑒𝛼. 𝑒𝛽𝐸𝑖  − 1
 =

𝑔𝑖

𝑒𝛼 . 𝑒 Τ𝐸𝑖 𝑘𝑇 − 1
 → (9)
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B-E energy distribution function.

 The energy distribution function 𝑓 𝐸𝑖  is the average number of particles per 

quantum state in the energy level 𝐸𝑖 ,  It is given by

𝑓 𝐸𝑖  =
𝑛𝑖

𝑔𝑖
 

 Substituting the value of  Τ𝑛𝑖 𝑔𝑖 from equation (9), we get 

 𝑓 𝐸𝑖  =
1

𝑒𝛼 𝑒 Τ𝐸𝑖 𝑘𝑇 − 1
 → (10)

 For continuous distribution of energy, the distribution function is written as

 𝑓 𝐸  =
1

𝑒𝛼 𝑒 Τ𝐸 𝑘𝑇 − 1
 → (11)

B-E energy distribution law for continuous variation of energy.

 When the energy levels of the system are very closely packed, they from a quasi-

continuous spectrum. In such a case, if  𝑔 𝐸 𝑑𝐸 is the number of energy states between the 

energy range 𝐸 and 𝐸 + 𝑑𝐸, then

 𝑔𝑖 =  𝑔 𝐸  𝑑𝐸 137



If 𝑛 𝐸  𝑑𝐸 is the number of particles whose energy lies between 𝐸 𝑎𝑛𝑑 𝐸 + 𝑑𝐸 , 

then 𝑛𝑖  =  𝑛 𝐸  𝑑𝐸. Substituting in Eq. (9), we get 

 𝑛 𝐸  𝑑𝐸 =
𝑔 𝐸 𝑑𝐸

𝑒𝛼. 𝑒 Τ𝐸𝑖 𝑘𝑇 − 1
 → 12  

 The quantity 𝑔 𝐸  denotes the density of states.

 For the system consisting of free particles with no spin 𝑔 𝐸 𝑑𝐸 is given by  

 𝑔 𝐸 𝑑𝐸 =  2𝜋𝑉
2𝑚

ℎ2

3
2

 𝐸
1
2 𝑑𝐸 → 13  

 Substituting this value in Eq.(10), we get

 𝑛 𝐸 𝑑𝐸 =  2𝜋𝑉
2𝑚

ℎ2

3
2 𝐸

1
2𝑑𝐸

𝑒𝛼 . 𝑒 Τ𝐸 𝑘𝑇 − 1
 → (14)

 This is Bose-Einstein energy distribution law for continuous distribution of energy 

among free particles with no spin.
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Determination of 𝛽

Recall , 𝑁 =  σ 𝑛𝑠     and      𝐸 = σ 𝑛𝑠𝜖𝑠

Distribution, 𝑛𝑠 =  𝑔𝑠𝑒𝛼+𝛽𝜖𝑠

෍ 𝑛𝑠 = 𝑁 = ෍ 𝑔𝑠𝑒𝛼+𝛽𝜖𝑠

෍ 𝑛𝑠𝜖𝑠 = 𝐸 =  ෍ 𝜖𝑠𝑔𝑠𝑒𝛼+𝛽𝜖𝑠

In phase – space ҧ𝜖 =
׬ 𝜖 𝑔 𝜖 𝑒𝛼+𝛽𝜖 𝑑𝜖

׬  𝑔 𝜖 𝑒𝛼+𝛽𝜖 𝑑𝜖

where 𝑔 𝜖 = 2𝜋𝑣(2𝑚)
3

2𝜖 Τ1
2.

ҧ𝜖 =
0׬

∞
𝜖 ൗ3

2 𝑒𝛽𝜖 𝑑𝜖

0׬

∞
𝜖 ൗ1

2𝑒𝛽𝜖 𝑑𝜖
=

3

2𝛽

It is well known that from kinetic energy theory, ҧ𝜖 =
3

2
𝑘𝑇

 Comparing, 

𝛽 =
1

𝑘𝑇

෍ 𝑥𝑖𝑝𝑖 = ෍ 𝜖𝑖𝑝𝑖 =
σ 𝜖𝑖𝑔𝑖𝑒𝛼+𝛽𝜖𝑖

σ 𝑔𝑖𝑒𝛼+𝛽𝜖𝑖

=
׬ 𝜖 𝑔 𝜖 𝑒𝛼+𝛽𝜖 𝑑𝜖

׬  𝑔 𝜖 𝑒𝛼+𝛽𝜖 𝑑𝜖

𝑔 𝜖 𝑑𝜖 = 2𝜋𝑣(2𝑚)
3
2𝜖 ൗ1

2𝑑𝜖



Bose’s Contribution

• Distribution was derived before Quantum 
Mechanics was formally established.

• June 1924:  Bose  → Einstein.

• Bose derived Planck’s radiation law. He derived 
the formula by counting the number of states of 
photon.

• Bose assumed photons were indistinguishable.

• Einstein recommended  the paper for 
publication.
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Einstein’s Contribution

• Einstein applied this approach to an 
Helium atom.

• He found that there was a maximum 
possible values for the total number N0 of 
particles of non-zero energy that the 
system can have.

• N-N0 → Ground state. (BEC) 
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Bose – Einstein’s Work 

• The idea was not accepted as physically 
important.

• It was felt that a mathematical trick used by 
Einstein.

• A sum over states by an integration, was 
responsible for the result.

• 1938 London suggested that BEC as an 
explanation for the superfluid properties of 
Helium.

• London was awarded Nobel prize for this work.
•  2001 – Cornell, Wieman and Ketterle awarded 

Nobel prize for achievement of BEC in dilute 
gases alkali atoms and for their studies of the 
properties of the condensate. 
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Determination of 𝛼

𝑛𝑠 =  𝑔𝑠𝑒𝛼+𝛽𝜖𝑠 = 𝐴𝑔𝑠𝑒𝛽𝜖𝑠, 𝐴 = 𝑒𝛼

෍ 𝑛𝑠 = 𝑁 = 𝐴 ෍ 𝑔𝑠𝑒𝛽𝜖𝑠

𝐴 =
𝑁

σ 𝑔𝑠𝑒𝛽𝜖𝑠
=

𝑁

2𝜋𝑣(2𝑚)
3
0׬2

∞
𝜖 ൗ1

2𝑒𝛽𝜖 𝑑𝜖

𝐴 =
𝑁

𝑣(
−2𝜋𝑚

𝛽
)

3
2

=
𝑁

𝑣(2𝜋𝑚𝑘𝑇)
3
2

𝛼 = log 𝐴 = 𝑙𝑜𝑔
𝑁

𝑣(2𝜋𝑚𝑘𝑇)
3
2



Maxwell- Boltzmann distribution

𝑛𝑠 =  𝑔𝑠𝑒𝛼+𝛽𝜖𝑠

 Suppose 𝑔 𝜖  𝑑𝜖 is the number of states with energies 

in the range 𝜖 to 𝜖+𝑑𝜖. Then,

𝑛 𝜖 𝑑𝜖 =
2𝜋𝑁

(𝜋𝑘𝑇)
3
2

𝑒
−𝜖
𝑘𝑇𝜖 ൗ1

2𝑑𝜖
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