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UNIT - I

EQUILIBRIUM THERMODYNAMICS



Newton’s Second Law

One Particle – 1 Dimension
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One Particle – 2 Dimension
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One Particle – 3 Dimension
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Equation of Motion 

Solution 

ci ‘s are constants (6) I.C Needed 6



Two Particles – 3 Dimension
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Solution 

ci ‘s are constants (12) I.C Needed 12
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‘N’ Particles – 3 Dimension
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Total Number of Equations = 3N

Initial Conditions Needed = 6N

N is of the order of 1023



❖ As the particles/systems increases, the complexity also 

increases.

❖ It is difficult to specify the Initial Conditions and hence 

difficult to solve the Newton’s equations.

❖ At the quantum level, difficulties arise while solving the 

Schrödinger equation in the N particle case. 

❖Need an alternate formalism. 
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A Recollection on Probability

11



Average Value

❖ The Average Value ( or Mean Value ) of a set of ‘N’ 

values x1, x2,….xn of ‘x’ is denoted by either x or <x> and 

is given by

❖ The Summation is over all the ‘N’ values of xj’s.
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• For example, if the values xj, are 6,7,6,7,7,8,9,7,5,8 the average 

value of ‘x’ is

• Since there are five, two sixes, four sevens, two eights and one 

nine, the expression for ‘x’ can be written in the form
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Microstates and Macrostates
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MACROSTATES AND MICROSTATES 

Another Example

Distribution of 4 distinguishable particles {a,b,c,d} in 2 similar compartments. 

Compartment

1 2

0 4

2

1

4

3

3

2

1

0

We have 5 different distributions

Macrostates

(0,4),  (1,3),  (2,2),  (3,1)  and  (4,0)

Microstates

The number of different possible arrangements.

Possibilities
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Macrostates
Possible 

arrangement in 

compartment 1

Possible 

arrangement in 

compartment 2

No. of Microstates 
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One Macrostate 

Six different
Microstates

Some more examples:

  Microstates: Position, Momentum, Spin,....

     Macrostates: Pressure, Volume, Magnetic field,...

      



❖ Consider five non interacting spins or magnetic dipole

❖ They are placed in a magnetic field ‘B’

B
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B

Energy of spin parallel to 

the magnetic field ‘E’ = -µB 

B

Energy of spin anti-parallel to 

the magnetic field ‘E’ = +µB 

Question: Calculate the number of possible states 

having total energy = -µB
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All Spins Up

One Spin Down

Two Spins Down
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( -5µB )

( -3µB )

( -µB )

1 Microstate

5 Microstates

10 Microstates



Three Spins Down 

Four Spins Down 

All Spins Down

20

Totally 32 Microstates

( µB )

( 3µB )

( 5µB )

1 + 5 + 10 + 10 + 5 + 1

10 Microstates

5 Microstates

1 Microstates



10 Microstates Macrostate E = -µB,      N=5,  V=Fixed
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All States are equally probable

In this problem we are interested in finding the 

number of possible states having total energy = -µB. 

We found that 10 microstates have total energy = -µB 

sMicrostate ofNumber 
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
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a

Microstate

Microcanonical Ensemble

Macrostate E,V,N

Isolated system, all accessible microstates have the same 

probability
22

In this example, the Ensemble consists of Ten systems each of 

which is in one of the Ten accessible Microstates.

Microstate Microstate Microstate Microstate

Microstate Microstate Microstate Microstate Microstate

Ensemble

1 2 3 4 5

6 7 8 9 10



Counting Number of Microstates

 in
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Simple Physical Models



Dynamics in Phase - Space

Ex.1  A Particle in a One-Dimensional Box (classical)

Hamiltonian 

Equation of Motion
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x
x

p In  - space 

❖Say, at the initial time, the particle is at x = 0 (green dot) and has a +ve 

momentum.

❖It will move towards right with constant momentum until it hits the wall.

❖At this time the momentum reverse sign and the particle starts moving 

towards the left until it hits the left wall and so on and so forth.
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mE2

0 L
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❖Each point on the trajectory (in  - space ) is nothing but the 

    microstate.

❖ For a given energy ‘E’ and length ‘L’ the particle can be in any of the 

microstates on the directed line shown.

❖ If we want wait long enough, the particle will go through all the possible 

microstates associated with the macrostate E, L.
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❖How to count the number of microstates within E + E?
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Calculating Number of Microstates

We have seen  S = k log Ω (E, V, N)

Ω = Number of Microstates

How to calculate Ω?

Classical: 

Assume that a particle is moving in 1 dimension.

The phase space is described in the following figure.



Counting Number of States in 2D
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❖ Each point in this space gives the position and velocity of a 

particle.  

❖ The position and velocity of the particles changes with time.  

❖ The more off the region and so to new cells or new microstates.  

❖ The number of microstates are so large. Hence we have to make 

some assumptions about their probabilities.

Let us raise the question

❖ “ which microstates do we feel are equally likely to occur ?”

❖ The answer to this question depends on what we know.  

❖ If we know nothing about the system then all microstate are 

equally likely to occur.  
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4 cm
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cell single a of Area
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Counting Number of States in 2D
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p(E)

-p(E)

( )EEP +

( )EEP +−

xL

Accessible  Microstates

12/27/2024



33

x  pPx

p(E)

-p(E)

( )EEP +

( )EEP +−

xL

Accessible  Microstates

Area Small

Area Total
sMicrostate ofNumber =

px
=

Area Total

Total Area 

12/27/2024



One dimensional Harmonic Oscillator
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Circle
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( ) ( ) += tAtx sin ( ) ( ) += tAtp cos

Phase - Space

We have to count number of microstates on the circle.
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Each pt on phase – space trajectory  is a microstates.



Counting Number of Microstates 
on the Energy Surface
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The Particle in a One Dimensional Box
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(Quantum)



THE PARTICLE IN A  ONE-DIMENSIONAL BOX

❖ Let us consider a single microscopic particle of mass ‘M’ 

moving in one-dimension ‘x’ and subject to the Potential 

Energy function of shown in fig.
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❖ The Potential Energy combines the particle to move in the 

region between ‘o’ and ‘a’ as the ‘x’ axis.

❖ Time independent Schrodinger equation.
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One Particle in a 2d Box

❖ The Schrodinger equation is

 

❖ Question: How to count the number of Microstates?
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One Particle in a 3d Box

❖ Schrodinger equation 
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Example:

A Helium gas in a cubic box of volume 0.0024m3 kept at 273 K is likely to be in 
a single particle  quantum state having quantum numbers in the range 109 to 
1010   



❖Number of Microstates

❖ Looks like x2 + y2 + z2 = r2 ( equation of the sphere)

❖ Volume of the sphere 

❖ In our case, we should not consider full volume since n1,n2 and 

n3 are all positive integers.  

❖ So we have to consider the quadrant in which all are positive 

numbers.
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X  - Y  Plane
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Y  - Z  Plane
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Z  - X  Plane
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