

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024 Tamil Nadu, India

Programme: M.Sc., Physics

Course Title : Thermodynamics and Statistical Physics Course Code : 22PH202

 Dr. M. Senthilvelan Professor Department of Nonlinear Dynamics

EQUILIBRIUM THERMODYNAMICS

One Particle – 2 Dimension

$$
y(t) = f_2(t, c_1, c_2, c_3, c_4)
$$
 I.C Needed 4

One Particle – 3 Dimension

Equation of Motion

$$
\frac{d^2x}{dt^2} = F(t, x, y, z, \dot{x}, \dot{y}, \dot{z})\n\frac{d^2y}{dt^2} = G(t, x, y, z, \dot{x}, \dot{y}, \dot{z})\n\frac{d^2z}{dt^2} = H(t, x, y, z, \dot{x}, \dot{y}, \dot{z})\nSolution\nx(t) = f_1(t, c_1, c_2, c_3, c_4, c_5, c_6)\ny(t) = f_2(t, c_1, c_2, c_3, c_4, c_5, c_6)\nz(t) = f_2(t, c_1, c_2, c_3, c_4, c_5, c_6)
$$

5

 c_i 's are constants (6) I.C Needed 6

Two Particles – 3 Dimension

 $\frac{Z_{-1}}{dt^2} = F_1(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ d^2x $_2$ 1 1 (c, λ_1 , λ_1 , λ_2 , λ_2 , λ_2 , λ_1 , λ_1 , λ_1 , λ_2 , λ_2 , λ_2 Γ Γ α 2 $\frac{x_1}{2}$ = **F**₁(t, x₁, y₁, z₁, x₂, y₂, z₂, x₁, y₁, z₁, x₂, y₂, z₂) $=$ Γ_1 Γ_2 \mathcal{X}_1 Γ_3 \mathcal{Y}_2 Γ_4 $\frac{\partial^2 \mathbf{F} \cdot \mathbf{F}_2}{\partial t^2} = F_4(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ d^2x $_2$ \blacksquare 4 (c, \mathcal{N}_1 , \mathcal{Y}_1 , \mathcal{N}_2 , \mathcal{N}_2 , \mathcal{Y}_2 , \mathcal{N}_1 , \mathcal{Y}_1 , \mathcal{Y}_1 , \mathcal{N}_1 , \mathcal{N}_2 , \mathcal{Y}_2 , \mathcal{Y}_2 , \mathcal{Y}_2 2 Γ (2 $\frac{x_2}{x_1^2} = F_4(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ $=\Gamma_4$ (l. X_1 , Y_1 , $\frac{f(z_1)}{dt^2} = F_2(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ d^2v_1 $_2$ \blacksquare 2 \backslash $\mathfrak{e}, \mathfrak{e}_1$, $\mathfrak{e}, \mathfrak{e}_1$, $\mathfrak{e}, \mathfrak{e}_2$, $\mathfrak{e}, \mathfrak{e}_2$, $\mathfrak{e}, \mathfrak{e}_2$, $\mathfrak{e}, \mathfrak{e}_1$, $\mathfrak{e}, \mathfrak{e}_1$, $\mathfrak{e}, \mathfrak{e}_2$, $\mathfrak{e}, \mathfrak{e}_2$, $\mathfrak{e}, \mathfrak{e}_2$ $1-\mathbf{\Gamma}$ (2 $\frac{y_1}{2}$ = F₂(t, x₁, y₁, z₁, x₂, y₂, z₂, x₁, y₁, z₁, x₂, y₂, z₂) $=\Gamma_2$ (l. X_1 , Y_1 , $\frac{\partial^2 z}{\partial t^2} = F_5(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ $d^2v_2 =$ $_2$ \blacksquare 5 (c, \mathcal{N}_1 , \mathcal{Y}_1 , \mathcal{N}_2 , \mathcal{N}_2 , \mathcal{Y}_2 , \mathcal{N}_1 , \mathcal{Y}_1 , \mathcal{Y}_1 , \mathcal{N}_1 , \mathcal{N}_2 , \mathcal{Y}_2 , \mathcal{Y}_2 , \mathcal{Y}_2 2 Γ (2 $\frac{y_2}{z}$ = F₅(t, x₁, y₁, z₁, x₂, y₂, z₂, x₁, y₁, z₁, x₂, y₂, z₂) $=\Gamma_{\epsilon}$ (l. X_1 , Y_1 , $\frac{d\mathbf{x}_1}{dt^2} = F_3(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ d^2z \qquad $\mathbf{2} = \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_2 \mathbf{1}_3 \mathbf{1}_1 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_3 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_2 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf{1}_3 \mathbf$ $1-\mathbf{\Gamma}$ (2 $\frac{z_1}{z_2} = F_3(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ $=\Gamma_2$ (l. \mathcal{X}_1 , Y₁, $\frac{d\vec{z}}{dt^2} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ $d^2z_2 =$ $_2$ \leftarrow 6 (c, x₁, y₁, x₁, x₂, y₂, y₂, x₁, y₁, y₁, x₂, y₂, x₂ 2 Γ (2 $\frac{z_2}{z} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ $\equiv \Gamma_{\epsilon}$ (l. X_1 , Y_1 , 7 2 nd ParticleEquation of Motion $\longrightarrow 1^{\text{st}}$ Particle

Solution

$$
x_1 = f_1(t, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12})
$$

\n
$$
y_1 = f_2(t, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12})
$$

\n
$$
z_1 = f_3(t, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12})
$$

\n
$$
x_2 = f_4(t, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12})
$$

\n
$$
y_2 = f_5(t, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12})
$$

\n
$$
z_2 = f_6(t, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9, c_{10}, c_{11}, c_{12})
$$

c_i's are constants (12) [I.C Needed 12

'N' Particles – 3 Dimension

- ❖ As the particles/systems increases, the complexity also increases.
- ❖ It is difficult to specify the Initial Conditions and hence difficult to solve the Newton's equations.
- ❖ At the quantum level, difficulties arise while solving the Schrödinger equation in the *N* particle case.
- ❖ Need an alternate formalism.

A Recollection on Probability

Average Value

❖ The Average Value (or Mean Value) of a set of **'N'** values **x¹ , x² ,….xⁿ** of **'x'** is denoted by either **x** or **<x>** and is given by

$$
\overline{x} = \langle x \rangle = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{j=1}^{N} x_j
$$

imation is over all the 'N' values of x'_j s.

❖ The Summation is over all the '**N'** values of x_j's.

• For example, if the values x_j , are 6,7,6,7,7,8,9,7,5,8 the average value of **'x'** is

$$
\bar{x} = =\frac{(6+7+6+7+7+8+9+7+5+8)}{10} = 7
$$

• Since there are **five, two sixes, four sevens, two eights** and *one*

nine, the expression for **'x'** can be written in the form 10 $(1\times5 + 2\times6 + 4\times7 + 2\times8 + 1\times9)$ $x=-$ ————— $\therefore \bar{x} = =\sum x_i (P_i)$ *i* \overline{x} *x* \geq *z* $\left(\sum x_i P_i\right)$ 9 10 $1 \qquad \qquad$ $8 + \underline{\hspace{1cm}} \times 9$ 10 2 $7 + \text{---} \times 8 + \text{---}$ 10 4 $6+$ \times $7+$ -10 2 $5 + \frac{-}{-} \times 6 + -$ 10 1 $=$ \times $>$ $+$ \times $+$ \times $+$ \times $+$ \times $+$ \times $+$ 10 Probability of getting a $5 = \frac{1}{10}$*and so on* 10 Probability of getting a $6 = \frac{2}{10}$and so on *i* Probability of getting the value of x_n
 b Probability of getting the value of x_n
 Probability of getting the value of x_n
 Probability of getting the value of x_n

Microstates and Macrostates

MACROSTATES AND MICROSTATES Another Example

Distribution of 4 distinguishable particles $\{a,b,c,d\}$ in 2 similar compartments.

a

(3,1) ba
ali <u>Some more examples:</u>

(4,0) 1 0 Microstates: Position, Momentum, Spin,.... d abc Macrostates: Pressure, Volume, Magnetic field,...

- ❖ Consider five non interacting *spins* or *magnetic dipole*
- ❖ They are placed in a magnetic field **'B'**

Energy of spin parallel to the magnetic field $E' = -\mu B$

Energy of spin anti-parallel to the magnetic field $E' = +\mu B$

Question: Calculate the number of possible states having total energy $= -\mu B$

Three Spins Down (µB) 10 Microstates

In this problem we are interested in finding the number of possible states having total energy $= -\mu B$. We found that 10 microstates have total energy $= -\mu B$ Ensemble

In this example, the Ensemble consists of *Ten* systems each of which is in one of the *Ten* accessible Microstates.

Isolated system, all accessible microstates have the same probability

Microcanonical Ensemble

Counting Number of Microstates in Simple Physical Models

Dynamics in Phase - Space

Ex.1 A Particle in a One-Dimensional Box (classical) Hamiltonian *m* $H = \frac{p}{q}$ $2m$ 2 =

Equation of Motion

 \cdot Say, at the initial time, the particle is at x = 0 (green dot) and has a +ve momentum. $p_x = p(E) = \sqrt{2mE}$

❖It will move towards right with constant momentum until it hits the wall. ❖At this time the momentum reverse sign and the particle starts moving towards the left until it hits the left wall and so on and so forth.

- \cdot **Each point on the trajectory (in** Γ **space) is nothing but the** microstate.
- ❖ For a given energy 'E' and length 'L' the particle can be in any of the microstates on the directed line shown.
- ❖ If we want wait long enough, the particle will go through all the possible microstates associated with the macrostate E, L.

 \triangle How to count the number of microstates within E + \triangle E?

Calculating Number of Microstates

- We have seen $S = k \log \Omega$ (E, V, N)
- Ω = Number of Microstates

How to calculate $Ω?$

Classical:

Assume that a particle is moving in 1 dimension.

The phase space is described in the following figure.

Counting Number of States in 2D

- ❖ Each point in this space gives the position and velocity of a particle.
- ❖ The position and velocity of the particles changes with time.
- ❖ The more off the region and so to new cells or new microstates.
- ❖ The number of microstates are so large. Hence we have to make some assumptions about their probabilities.

Let us raise the question

- ❖ " which microstates do we feel are equally likely to occur ?"
- ❖ The answer to this question depends on what we know.
- ❖ If we know nothing about the system then all microstate are equally likely to occur.

Counting Number of States in 2D

$$
-P(E+\delta\!E)
$$

12/27/2024

One dimensional Harmonic Oscillator

Newton's Equation

$$
F = -kx
$$

$$
m\frac{d^2x}{dt^2} = -kx
$$

Hamiltonian Equation

$$
\dot{x} = \frac{p}{m} \qquad \dot{p} = -kx
$$

Solution

$$
x = A\sin(\omega t + \delta) \quad p = A\cos(\omega t + \delta)
$$

Parametric representation of curves

Circle

 $t \qquad x = \cos t \quad y = \sin t$ $0 \quad 1 \quad 0 \quad 1$ 2 | | π and π 0 1 π -1 $\frac{3\pi}{2}$ $\begin{array}{c|c|c|c|c} \hline \pi & -1 & 0 \\ \hline \frac{3\pi}{2} & 0 & \end{array}$ $0 \quad -1 \quad$ 2π 1 0 *x y* [−]1 1 1 [−]1 0 A circle $x^2 + y^2 = a^2$ can also be represented in the form $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} = a\cos t\hat{i} + a\sin t\hat{j}$ $+ y(t) \hat{j} = a \cos t \hat{i}$ $= a \cos t t + a \sin t$ ˆ $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} = a\cos t \vec{i} + a\sin t \vec{j}$ $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$ with $x = a \cos t$, $y = a \sin t$, $0 \le t \le 2\pi$. Unit radius $a=1$ | $\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} = \hat{i}$ ^ˆ

35

Phase - Space

$$
x(t) = A \sin(\omega t + \delta) \quad p(t) = A \cos(\omega t + \delta) \text{ Phase - Space}
$$

\n
$$
E = K.E + P.E = \frac{p^2}{2m} + \frac{k}{2}x^2
$$

\n
$$
= \frac{1}{2}(\sin^2 t + \cos^2 t) = \frac{A^2}{2}
$$

\n
$$
E = \frac{A^2}{2} = \text{constant}
$$

\n
$$
E = \frac{A^2}{2} = \text{constant}
$$

\n
$$
E = \frac{A^2}{2} = \text{const}
$$

Each pt on phase – space trajectory is a microstates.

We have to count number of microstates on the circle.

Counting Number of Microstates on the Energy Surface

The Particle in a One Dimensional Box

(Quantum)

THE PARTICLE IN A ONE-DIMENSIONAL BOX

❖ Let us consider a single microscopic particle of mass 'M' moving in one-dimension 'x' and subject to the Potential Energy function of shown in fig.

- ❖ The Potential Energy combines the particle to move in the region between 'o' and 'a' as the 'x' axis. ɛ $n = 4$
- ❖ Time independent Schrodinger equation.

$$
\frac{d^2\Psi}{dx^2} + \frac{2m}{\hbar^2}(E-V)\Psi = 0 \qquad 0 \le x \le a
$$

$$
\frac{d^2\Psi}{dx^2} + \alpha^2\Psi = 0
$$

$$
\Rightarrow \Psi = A \sin \frac{n\pi}{a} x
$$

$$
E_n = \frac{h^2}{8ma^2}n^2 \qquad n = 1, 2, 3, 4
$$

 $(\overline{E}-V)\Psi = 0$ $0 \le x \le a$
 $\begin{array}{|l|}\n\hline\n\frac{n\pi}{a}x\n\end{array}$ $n = 2$
 $\begin{array}{|l|}\n\hline\nn\pi^2 & n = 1,2,3,4\n\end{array}$ $n = 1$
 $\begin{array}{|l|}\n\hline\n\frac{1}{2} & n = 1\n\end{array}$
 $\begin{array}{|l|}\n\hline\n\frac{1}{2} & n = 1\n\end{array}$

Allowed

Microstates43 Ω $n = 3$ $n = 2$ $n = 1$ **Allowed** 12/27/2024 **Microstates**

One Particle in a 2 ^d Box

❖ The Schrodinger equation is

estion: How to count the number of Microstates? /27/2024

 $(4,1)$ $(6,3)$

One Particle in a 3 ^d Box

❖ Schrodinger equation

$$
\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{2m}{\hbar^2} E \Psi = 0
$$

\n
$$
\Rightarrow \Psi = \left(\frac{8}{V}\right)^{\frac{1}{2}} \sin \frac{n_1 \pi x}{a} \sin \frac{n_2 \pi y}{a} \sin \frac{n_3 \pi z}{a}
$$

\n
$$
E_{n_1, n_2, n_3} = \frac{h^2}{8ma^2} \left(n_1^2 + n_2^2 + n_3^2\right) \qquad n_1, n_2, n_3 = 1, 2, 3, \dots
$$

Example:

 $n_1, n_2, n_3 = 1,2,3,......$
sept at 273 K is likely to be in
numbers in the range 10^9 to A Helium gas in a cubic box of volume 0.0024m³ kept at 273 K is likely to be in a single particle quantum state having quantum numbers in the range 10^9 to 1010

❖ Number of Microstates

$$
R^{2} = n_{1}^{2} + n_{2}^{2} + n_{3}^{2} = \frac{8ma^{2}}{h^{2}}E = \left(\frac{2a}{h}\right)^{2}(2mE)
$$

◆ Looks like $x^2 + y^2 + z^2 = r^2$ (equation of the sphere)

- $\mathbf{\hat{v}}$ Volume of the sphere $\frac{1}{2} \pi r^3$ 3 4 *r*
- \clubsuit In our case, we should not consider full volume since n_1, n_2 and $n₃$ are all positive integers.
- ❖ So we have to consider the quadrant in which all are positive numbers.

12/27/2024

The No of available states between the quantum No E and $E + dE$

Density of States

$$
= \frac{1}{8} \times \frac{4}{3} \pi \times \left(\frac{8mL^2}{h^2}\right)^{3/2} E^{3/2}
$$

\n
$$
= \frac{4}{3} \frac{\pi V}{L^3} (2m)^{3/2} E^{3/2}
$$

\n
$$
= \frac{4}{3} \frac{\pi V}{L^3} (2m)^{3/2} [(E + \Delta E)^{3/2} - E^{3/2}]
$$

\n
$$
= 2\pi V \left(\frac{2m}{h^2}\right)^{3/2} E^{1/2} dE
$$

\n
$$
= g(E) dE
$$

\nDensity of States in Energy Space

In momentum space

 $(E)dE=\frac{V}{E}$ $\overline{2}$ $2dK$ $2\pi^2$ VK^2dK $g(E)dE = \frac{VK - dK}{2}$ Density of States in Momentum Space

References:

- 1) B. K. Agarwal and M. Eisner, Statistical Mechanics(New Age International, New Delhi, 2020).
- 2) R. K. Pathria and P. D. Beale, Statistical Mechanics (Academic Press, Cambridge, 2021).
- 3) S. L. Kakani and C. Hemrajani, Statistical Mechanics (Viva Books Private Limited, New Delhi, 2017).
- 4) A. K. Saxena, An Introduction to Thermodynamics and Statistical Mechanics (Alpha Science International, New Delhi, 2010).
- 5) Satya Prakash, Statistical Mechanics(Kedar Nath Ram Nath, Meerut, 2008).
- 6) S. Chandra and M. K. Sharma, A Textbook on Statistical Mechanics(CBS Publisher, New Delhi, 2016).
- 7) S. C. Garg, R. M. Bansal and C. K. Ghosh, Thermal Physics: Kinetic Theory, Thermodynamics and Statistical Mechanics (McGraw Hill, New Delhi, 2013).
- 8) D.A. McQuarrie, Statistical Mechanics(Viva Books India, Viva Student Edition, 2018).
- 9) S. C. Garg, R. M. Bansal and C. K. Gosh, Thermal Physics: with Kinetic Theory, Thermodynamics and Statistical Mechanics (McGraw Hill Education, 2nd edition, 2017).
- 10) B. K. Agarwal and M. Eisner, Statistical Mechanics(New Age International Publishers, 3rd edition, 2013).
- 11) R. K. Pathria and P. D. Beale, Statistical Mechanics(Academic Press, 3rd edition, 2011).
- 12) F. Reif, Fundamentals of Statistical and Thermal Physics(Waveland Press, 2010).
- 13) W. Greiner, L. Neise and H. Stocker, Thermodynamics and Statistical Mechanics (Springer Verlag, New York, 1st edition, 1995).