

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical Science (5 Year Integrated Program)

Course Title: Principles of GeneticsCourse Code: BM24C4

Unit-II

Patterns of Inheritance and Genetic Analysis

Dr. K. PREMKUMAR Professor Department of Biomedical Science

Patterns of Inheritance and Genetic Analysis in Humans

(Family Studies, Population Genetics, Gene Mapping, and Multifactorial Inheritance)

Prof. K. Premkumar Dept of Biomedical Science Bharathidasan University

Patterns of Inheritance

Refers to the ways genetic traits are transmitted from one generation to the next.

1. Mendelian Inheritance (Single-Gene Traits):

Traits controlled by a single gene following Mendel's laws. Example:

- Dominant: Huntington's disease (caused by a dominant allele).
- Recessive: Cystic fibrosis (caused by two copies of a recessive allele).

2. Non-Mendelian Inheritance:

Codominance: Both alleles are expressed equally. Example: Blood type AB (A and B alleles are codominant).

Incomplete Dominance: Blending of traits. Example: Pink flowers from red and white parents.

Mitochondrial Inheritance: Traits inherited through mitochondrial DNA. Example: Leber's hereditary optic neuropathy.

Family Studies in Genetics

Purpose:

- Trace inheritance patterns of diseases or traits.
- Identify carriers and risks for future generations.

Pedigree Analysis:

Diagram showing relationships and inheritance of a trait over generations.

Twin Studies:

• Compare traits in monozygotic (identical) vs dizygotic (fraternal) twins. Example: Concordance rates for schizophrenia are higher in monozygotic twins.

Population Genetics

Study of genetic variation within populations and how it changes over time.

1. Allele Frequencies: Proportion of a specific allele in a population.

Example: Sickle-cell allele is more common in malaria-endemic regions. Calculated using the Hardy-Weinberg Equation: $p^2 + 2pq + q^2 = 1$, where p and q are allele frequencies.

2. Gene Polymorphism:

Presence of multiple alleles at a locus within a population. **Example**: Polymorphism in the ABO blood group system.

3. Segregation Analysis:

Statistical analysis to determine the mode of inheritance (dominant, recessive, etc.).

4. Genetic Linkage:

Tendency of genes close together on a chromosome to be inherited together. Example: Genes for red hair and fair skin are often linked.

Polygenic and Multifactorial Inheritance

Polygenic Traits:

 Traits controlled by multiple genes. Example: Height, skin color.

Multifactorial Traits:

 Traits influenced by both genetic and environmental factors. Example: Diabetes, heart disease.

Heritability:

 Proportion of trait variation explained by genetic factors (ranges from 0 to 1).
Example: Heritability of intelligence is estimated at 0.5 (50% genetic, 50% environmental).

Multifactorial Disorders:

- 1. Type 2 Diabetes: Genetic predisposition + lifestyle factors (diet, exercise).
- 2. Heart Disease: Genes affecting cholesterol + risk factors like smoking.
- 3. Asthma: Interaction of genetic susceptibility and allergens.

Prevention and Management:

Lifestyle changes and personalized medicine based on genetic risk.

Gene Mapping

Process of determining the location of genes on a chromosome

1. Linkage Mapping :

Based on recombination frequencies during meiosis.Genes closer together recombine less often.Example: Mapping genes for cystic fibrosis to chromosome 7.

2. Physical Mapping:

Measures actual physical distances between genes using molecular techniques (e.g., DNA sequencing).

3. Applications of Gene Mapping:

Identify disease-causing genes (e.g., BRCA1 for breast cancer). Develop targeted therapies and gene editing tools (CRISPR).

Identification of Human Disease Genes

Steps in Identifying Disease Genes:

Candidate Gene Approach:

Hypothesize a gene based on known biology. Example: Huntingtin gene for Huntington's disease.

Genome-Wide Association Studies (GWAS):

Scans entire genome to identify variants associated with diseases. Example: Identifying risk loci for Alzheimer's disease.

Exome Sequencing:

Focus on protein-coding regions of DNA. Example: Discovering mutations in rare diseases like Marfan syndrome.

Significance:

Improve diagnosis, predict risk, and develop treatments.

Gene mapping and identification of disease genes are revolutionizing healthcare.

