

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical Science (5 Year Integrated Program)

Course Title: Principles of GeneticsCourse Code: BM24C4

Unit-V

Gene Therapy and Ethical Issues

Dr. K. PREMKUMAR Professor Department of Biomedical Science

Gene Therapy and Ethical Issues in Medical Genetics

(Carrier Testing, Population Screening, Probability Theory, and Risk Calculations)

Prof. K. Premkumar Dept of Biomedical Science Bharathidasan University

Gene Therapy

Gene therapy is a technique that modifies or replaces faulty genes to treat or prevent diseases.

Purpose:

Treat genetic disorders. Provide long-term therapeutic effects.

Examples of Treatable Disorders:

Monogenic Disorders:Sickle cell anemia, hemophilia.Complex Disorders:Cancer, cardiovascular diseases.

Types of Gene Therapy

1. Ex-vivo Gene Therapy

Genes are altered outside the body in a laboratory and then transplanted back into the patient.

Procedure:

1.Harvest cells from the patient (e.g., stem cells).

2. Modify the genetic material in the laboratory (e.g., add a functional gene).

3.Reintroduce the genetically modified cells into the patient.

Applications:

SCID (Severe Combined Immunodeficiency): Correcting mutations in immune cells.

Sickle Cell Disease: Editing hematopoietic stem cells to produce normal hemoglobin.

2. In-vivo Gene Therapy

Genes are directly introduced into the patient's body using delivery vectors.

Procedure:

Vectors (viral or non-viral) deliver therapeutic gene directly to target tissues or cells. **Applications**:

Leber Congenital Amaurosis: Direct delivery of the RPE65 gene to retinal cells. **Cystic Fibrosis**: Delivery of the CFTR gene to lung epithelial cells.

Gene Delivery Systems

Viral Delivery Systems

Viruses are modified to carry therapeutic genes without causing disease.

Types:

1. Adenoviruses:

Efficient at delivering genes to a wide range of cells.
Short-lived expression; potential immune response.
Example: Used in cancer therapies.

2. Adeno-Associated Viruses (AAV):

•High safety profile and long-term expression.

•Example: Used in spinal muscular atrophy treatment (Zolgensma).

3. Retroviruses:

•Integrate into the host genome, enabling stable expression.

•Example: Used in SCID treatments.

Non-Viral Delivery Systems

Physical or chemical methods to introduce DNA or RNA into cells.

Methods:

1. Liposomes: Lipid nanoparticles encapsulate genetic material for delivery to cells. mRNA vaccines (e.g., COVID-19).

2. Electroporation:

Uses electric fields to make cell membranes permeable for gene entry.

3. Direct Injection: Naked DNA or RNA injected into tissues (e.g., muscle).

Comparison:

Feature	Viral Systems	Non-Viral Systems
Efficiency	High	Moderate
Safety	Moderate (immune risks)	High
Gene Expression	Stable	Temporary

Challenges in Gene Therapy

1. Immune Response:

Viral vectors can trigger immune reactions, reducing effectiveness. Example: In early gene therapy trials, immune rejection led to complications.

2. Off-Target Effects:

Genes may integrate into unintended sites in the genome, causing mutations or cancer

3. Delivery Efficiency:

Difficulty in targeting specific tissues or organs.

4. Cost and Accessibility:

High costs make gene therapy inaccessible to many.

Example: Zolgensma costs over \$2 million per treatment

Ethical Issues in Medical Genetics

Informed Consent

- Patients must fully understand the risks, benefits, and limitations of gene therapy.
- Example: Patients in gene therapy trials may face unforeseen risks.

Germline vs. Somatic Therapy

Somatic Therapy: Modifies genes in non-reproductive cells; changes are not inherited. Example: Treating hemophilia in an individual.

Germline Therapy: Alters genes in eggs, sperm, or embryos, affecting future generations.

• Ethical Concerns: Risk of designer babies, unforeseen generational effects. Example: CRISPR editing in embryos has sparked global debate.

Equity and Access

Gene therapies are expensive and limited to developed countries. Ethical Issue: Is it fair that only wealthy individuals or nations benefit?

Genetic Privacy

- Risk of genetic information misuse by employers or insurance companies.
- Example: Ethical concerns regarding genetic data sharing by companies like 23 and Me.

Safety Concerns

- Long-term effects of genetic modifications are unknown.
- Example:

Jesse Gelsinger's case (1999): Death during a gene therapy trial raised safety issues.

Human Enhancement

• Risk of using gene therapy for non-therapeutic purposes, such as enhancing intelligence or physical traits.

Applications of Gene Therapy

Condition	Therapeutic Gene/Vectors	Status
SCID	Retroviral vectors	Approved therapy
Leber Congenital Amaurosis	AAV vectors delivering RPE65 gene	Approved (Luxturna)
Sickle Cell Anemia	Gene editing using CRISPR-Cas9	Experimental trials ongoing
Hemophilia	AAV-mediated clotting factor genes	FDA-approved therapies available

Case Study: Spinal Muscular Atrophy (SMA)

Therapy Name : Zolgensma.Mechanism: AAV vector delivers functional SMN1 gene to replace defective gene.Outcome: Restores motor function and prevents early death.Ethical Issues: High cost limits accessibility for many patients globally.

- Gene therapy offers revolutionary treatment options for genetic disorders.
- Ex-vivo and in-vivo methods cater to different therapeutic needs.
- Viral and non-viral delivery systems have unique advantages and challenges.
- Ethical issues, including safety, equity, and germline editing, remain critical concerns.

